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Abstract: Multiobjective combinatorial optimization problems are known
to be hard problems for two reasons: their decision versions are often NP-
complete and they are often intractable. Apart from this general observation,
are there also variants or cases of multiobjective combinatorial optimization
problems which are easy and, if so, what causes them to be easy? This article
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1 Introduction
It is a well known fact that multiobjective combinatorial optimization (MOCO) prob-
lems are not efficiently solvable in general. This is true for several reasons. First, from
an asymptotic worst case perspective, the number of nondominated points may grow
exponentially with the input size. This property is referred to as intractability in the
MOCO literature (it should be pointed out that intractability is typically used in a
different meaning in the theoretical computer science community). Second, the compu-
tation of nonsupported efficient solutions may be significantly more demanding than the
solution of the single objective analogon. Linear scalarization methods capable of yield-
ing nonsupported efficient solutions introduce new (knapsack-type) constraints to the
combinatorial structure. Thus, these scalarized problems lead to resource constrained
versions of combinatorial problems with the consequence that these scalarized single
objective combinatorial optimization problems turn out to be NP-hard. To sum it up,
a MOCO problem can only be polynomially solvable, if it has a polynomially bounded
number of nondominated points and if the nonsupported efficient solutions (if existent)
can be computed efficiently. These two observations motivate this article.
The article of Serafini [1987] is one of the first publications surveying multiobjective

combinatorial optimization while emphasizing complexity theory. Serafini distinguishes
between nine different notions of solving a multiobjective optimization problem: it can
be understood as computing (1) all efficient solutions, (2) all nondominated points and
one corresponding efficient solution for each, (3) all nondominated points, (4) a given
number of nondominated points ((5) and one corresponding effcient solution for each),
(6) one efficient solution, (7) one nondominated point, and (8/9) two decision problems.
We adapt Serafini’s second notion which is nowadays referred to as computing a minimal
complete set of efficient solutions.
Many articles have been published on different types of MOCO problems since then.

Complexity analysis of the considered MOCO problems is an integral part in many
articles published (see e. g. Ulungu and Teghem [1994], Ehrgott and Gandibleux [2000],
Bökler et al. [2016] and the references given therein). However, most of the complexity
results for MOCO problems stress their difficulty, i. e. most of the MOCO problems are
intractable and NP-hard in general. Ehrgott [2000] discusses reasons for this difficulty
and concludes that it is “hard to say it’s easy” in general. In this article, we revisit
this question and focus on particular cases of MOCO problems, which are polynomially
solvable. We aim at categorizing them, explaining their polynomial solvability in terms
of general structural properties, and, finally, explore the grey zone between easy and
hard MOCO problems.
The remainder of this article is organized as follows. Section 2 provides some the-

oretical background and notation. The following sections comprise particular cases of
MOCO problems which are polynomially solvable. In Section 3, we consider multiobjec-
tive MOCO problems with binary coefficients in sum objective functions. The following
section generalizes this by weakening this assumption of binary coefficients. Section 5
then surveys easy MOCO problems with a different kind of objective function, so-called
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bottleneck objectives. In Section 6, the borderline between easy and hard MOCO prob-
lems is studied. The article concludes with a brief summary of the main observations.

2 Definitions and Notation
In the following, let E be a finite set E := {e1, . . . , en}, |E| = n, and let cl : E → Z be a
cost function for each l = 1, . . . , q, q ∈ N, which maps the elements of E to integer values.
A multiobjective combinatorial optimization problem (MOCO) is then characterized by

• a feasible set X ⊆ 2E , where 2E denotes the power set of E ,

• and q (generally conflicting) objective functions f l : X → Z, l = 1, . . . , q, which are
to be minimized in general.

With this notation we can write this optimization problem in the usual form

min
x∈X

f(x) = min
x∈X

(
f1(x), . . . , f q(x)

)
. (MOCO)

Here, x ∈ X denotes a subset of E , x ⊆ E . For each l ∈ {1, . . . , q}, the objective
function value f l(x) of a feasible solution x ∈ X depends on the cost functions cl(e) with
e ∈ x. Two types of objective functions are predominantely considered in multiobjective
combinatorial optimization, sum objectives and bottleneck objectives, i. e.

f l(x) =
∑
e∈x

cl(e) and f l(x) = max
e∈x

cl(e).

Consequently, the problem

min
x∈X

f(x) = min
x∈X

(∑
e∈x

c1(e), . . . ,
∑
e∈x

cq(e)
)

is called a sum problem and the problem

min
x∈X

f(x) = min
x∈X

(
max
e∈x

c1(e), . . . ,max
e∈x

cq(e)
)

is referred to as a bottleneck problem.
Bottleneck objective functions focus on the largest cost coefficient among all selected

elements in a feasible solution. This concept can be generalized as follows (cf. Gorski
and Ruzika [2009]). For an integer k such that 1 ≤ k ≤ minx∈X |x|, the k-max objective
for x ∈ X is k-maxe∈x c(e), where k-maxe∈x refers to the kth largest cost coefficient
among the elements of x. Note that the 1-max function is equivalent to the bottleneck
function.
Throughout the article we use the Pareto concept of optimality (cf. Steuer [1986],

Ehrgott [2005]). For y, z ∈ Rq, q ≥ 2, we define the following componentwise orderings:

y ≤ z :⇐⇒ yl ≤ zl, for l = 1, . . . , q, but y 6= z,

y < z :⇐⇒ yl < zl, for l = 1, . . . , q.
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For minimization problems, an image y = f(x1) is called dominated by another image
z = f(x2), if z ≤ y. An image is called nondominated, if it is not dominated by any
other image. Analogously, for x ∈ X , we call x efficient, if f(x) is nondominated. We
call a feasible solution x1 weakly efficient if there does not exist x2 ∈ X such that
f(x2) < f(x1). The image y = f(x1) is then called weakly nondominated.
The set of all efficient solutions and weakly efficient solutions is called the efficient set

and weakly efficient set, respectively. They are denoted by XE and XwE . Analogously,
the set of all (weakly) nondominated points is called the (weakly) nondominated set, and
abbreviated by YN and YwN , respectively. This notation can be easily adapted to the
case of maximization problems (which will not be done here explicitly due to intended
brevity).
Throughout this paper, we understand the task of multiobjective optimization as

computing a minimal complete set of efficient solutions, i. e. finding all nondominated
images y ∈ YN and, for each image y, a preimage x ∈ XE with f(x) = y.
A MOCO problem is called intractable, if the size of the set of nondominated points

can be exponential in the size of the problem instance. This means there exists no
polynomial p such that the cardinality of the nondominated set |YN | is bounded by
O (p(n)), where n denotes the encoding length of the problem instance.
For some weight vector 0 ≤ λ ∈ Rq, the single objective optimization problem

min
x∈X

q∑
l=1

λlf
l(x) (1)

is called a weighted sum scalarization of (MOCO). This scalarization was introduced in
Zadeh [1963]. It is well-known that every optimal solution of (1) is a weakly efficient
solution for (MOCO). Solutions that can be obtained in this way are called supported
(weakly) efficient solutions, all other efficient solutions are called nonsupported (weakly)
efficient solutions.
Further, a supported (weakly) efficient solution x is an extreme supported (weakly)
efficient solution, if its objective value y = f(x) cannot be expressed by a convex com-
bination of points in YN\{y}.
The ε-constraint method, which was introduced in Haimes et al. [1971], is another well-

studied technique for solving multiobjective optimization problems. It can be formulated
as

min f j(x)
s. t. f l(x) ≤ εl l = 1, . . . , q, l 6= j

x ∈ X
(2)

where ε ∈ Rq and j ∈ {1, . . . , q}. In contrast to the weighted sum method, the objectives
are not aggregated in the ε-constraint method. Instead, one of the objectives is chosen to
be minimized (or maximized) while the others are added to the problem’s constraints.
Similar to the weighted sum scalarization, every optimal solution x of (2) is weakly
efficient for (MOCO) and every efficient solution can be obtained by solving (2) with an
appropriate choice of ε.
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Also, in particular sections we examine the connectedness of the set of efficient solu-
tions XE , which we define accordingly to Gorski et al. [2011]. That is, XE is connected, if
the graph G = (V,E) with V = XE and E = {(u, v) : u, v ∈ XE∧u and v are adjacent}
is connected. The adjacency property is problem specific; for example, the exchange of
variables in MOCO problems (for i 6= j and xi = 1, xj = 0, set xi = 0 and xj = 1)
is a common adjacency property. Likewise, for multiobjective linear problems two ba-
sic solutions of the simplex algorithm, where one can be generated from the other by
exchanging base indices, are adjacent regarding a canonical adjacency property.

3 Sum Objectives with Binary Coefficients
In this section, we consider MOCO problems with sum objectives. Moreover, we assume
that the coefficients cli of all individual objective functions f l (but one) are binary.

Theorem 3.1. Consider a multiobjective combinatorial optimization problem with q
linear sum objectives, where q−1 of them contain only binary coefficients, i. e. cki ∈ {0, 1}
for all i = 1, . . . , n, and k = 2, . . . , q:

min
( n∑
i=1

c1
ixi,

n∑
i=1

c2
ixi, . . . ,

n∑
i=1

cqixi
)

(3)

s. t. x ∈ X ⊆ {0, 1}n.

Then |YN | ≤ (n+ 1)q−1, i. e. the cardinality of the nondominated set YN is polynomially
bounded in the coding length of the input.

Before stating the proof, it should be noted that we slightly abuse the notation of
feasible solutions: For convenience, we simply identify each solution x ⊆ E with a binary
indicator variable x specifying which elements of the ground set E are contained in x.

Proof. We solve the problem using an iterative application of the ε-constraint scalariza-
tion by restricting the objectives with binary coefficients. Since objective functions with
binary coefficients can only attain integer values in {0, . . . , n}, one has to consider n+ 1
different values of the right hand side for each ε-constraint on the objective functions
2, . . . , q. Thus, (n + 1)q−1 is an upper bound on the number of nondominated points.
Consequently, the number of nondominated points is polynomially bounded by the size
of the problem instance.

In the following, we make use of this result and combine it with particular properties for
distinct problems in order to get easy MOCO cases. Starting with matroid problems, we
present a variety of cases for which the nondominated set of multiobjective combinatorial
problems can easily be computed. Nevertheless, the mere presence of binary coefficients
does not guarantee a polynomial time algorithm for the whole nondominated set as will
be shown later in Section 6.1.
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3.1 Matroid Problems
Single objective optimization problems on matroids have been extensively studied, with
a prominent example being minimum spanning tree problems [Oxley, 2004]. Single
objective optimization problems on matroids are considered easy problems since they
can be solved using greedy algorithms. More precisely, if there exists a (polynomial
time) black box algorithm that can check, if a particular set is contained in the matroid
structure, we can indeed apply a greedy type algorithm for this class of problems.

Definition 3.2. A matroidM is an ordered pair (E , I) consisting of a finite set E and
a collection I of subsets of E satisfying

1. ∅ ∈ I,
2. x1 ⊆ x2, x2 ∈ I =⇒ x1 ∈ I and
3. x1, x2 ∈ I and |x1| < |x2| =⇒ ∃ e ∈ x2 \ x1 : x1 ∪ {e} ∈ I.

If these conditions are satisfied, x ∈ I is called an independent set. Moreover, an
independent set x ∈ I is called maximal independent set or basis of M, if x ∪ {e} 6∈ I
for all e ∈ E \ x.

Example 3.3. Let G = (V,E) be an undirected simple finite graph. The graphic matroid
M(G) is then given by E = E and I = {T ⊆ E : T contains no cycle}. The bases of
M(G) correspond to the spanning trees of G.

Let X ⊆ I denote the set of all bases of a matroidM = (E , I). Then the multiobjective
matroid problem is given by

min (c1(x), . . . , cq(x))
s. t. x ∈ X .

In the special case q = 2, we obtain the biobjective matroid problem.
An intuitive conjecture is that optimization problems on matroids remain easy also

in the bi- and multiobjective setting. However, it turns out that this can be shown only
under quite restrictive assumptions on the problem setting while it is not the case in
general.

Hard Cases More precisely, the biobjective matroid problem is in general intractable,
i. e., the nondominated set may grow exponentially with the size of the instance even for
q = 2. Moreover, the decision version of the biobjective matroid problem is NP-complete
(see Ehrgott [1996, 2005]).

Easy Cases On the other hand, Gorski [2010] showed for the biobjective case, q = 2,
that, if the coefficients in one of the objectives are binary, then the nondominated set of
the biobjective matroid problem has at mostm elements, wherem denotes the cardinality
of a basis ofM. Note that this result also follows from Theorem 3.1 above. Moreover,
the nondominated set can be computed in polynomial time using a simple exchange
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argument adapted from an algorithm of Gabow and Tarjan [1984]. This method implies
that (1) all nondominated points of the biobjective matroid problem are supported, and
(2) the nondominated set of this problem is connected (for an introduction to and results
concerning connectedness of efficient solutions we refer to Ehrgott and Klamroth [1997]
and Gorski et al. [2011]).

Open Questions Generalizations to other types of bounded coefficients and/or to prob-
lems with more than two objective function pose several interesting research questions.

3.2 Greedy Algorithms
For some cases, the combinatorial structure of the problem is not matroid or, at least, its
verification is not easy. Nonetheless, the correctness of a greedy approach can be some-
times proved directly as shown by the following variant of the multiobjective knapsack
problem [Gorski et al., 2012b].

max
n∑
i=1

c1
ixi

min
(

n∑
i=1

c2
ixi, . . . ,

n∑
i=1

cqixi

)
s. t. x ∈ X

x ∈ {0, 1}n,

where X denotes the set of all feasible solutions specified by multiple knapsack con-
straints. For q = 2, an O(n logn) time algorithm that pre-sorts the coefficients solves
the problem. In [Gorski et al., 2012b], the authors propose a greedy strategy for the
special case of q = 3 and cli ∈ {0, 1} for i = 1, . . . , n and l = 2, 3 by pre-sorting the
coefficients. Their greedy algorithm runs in O(n2). This running time is asymptotically
optimal, since there exist O(n2) nondominated objective vectors in general. However,
the greedy strategy fails for q = 4 [Gorski et al., 2012b].

3.3 Dynamic Programming
Dynamic programming is a well-established algorithmic technique for solving optimiza-
tion problems which exhibit Bellman’s Principle of Optimality [Bellman, 1957]: optimal
solutions of the overall problem can be easily constructed by extending optimal solutions
of smaller subproblems. Dynamic programming often leads to very efficient algorithms
(cf. several variants of the shortest path problem) or, for NP-hard problems, it often
implies pseudo-polynomial running time of solution algorithms (cf. various versions of
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the knapsack problem). In the following we use the knapsack problem

max f1(x) =
n∑
i=1

c1
ixi

s. t.
n∑
i=1

wixi ≤W

xi ∈ {0, 1} ∀i ∈ {1, ..., n}

as an illustrative example.
In a dynamic programming algorithm, the solution process is divided into S stages.

For the knapsack problem, for example, one stage corresponds to the decision of fixing
one variable. Thus, the number of stages is equal to the number of variables, S = n.
Each stage contains at most T different states corresponding to solutions of exactly one
subproblem. For the knapsack problem, there is one state for every possible value of the
left hand side of the constraint, i. e., overall we obtain T = W + 1 states.
The states in stage i can be evaluated through recursive equations applied on the states

of stage (i−1) (or on all previously computed states), which retain the feasibility of each
solution. As described before, in the context of the knapsack problem the recursion is
based on iteratively fixing one additional variable xi to 0 or 1, respectively, leading to
new partial solutions that extend partial solutions from the predecessor states. Bellman’s
principle then guarantees that one optimal solution for each state in stage i can be
generated by only using the optimal solutions of the states in stage (i − 1) (or in all
predecessor states, respectively). Therefore, an overall optimal solution can be computed
recursively. For the knapsack problem, the optimal solution in state t of stage i can be
obtained by comparing the value of state t of stage (i− 1) and c1

i added to the value of
state t− wi of stage (i− 1), if it exists.
The dynamic programming process takes O(S ·T ·R)-time, where R is the complexity

of the recursion to obtain a new state.
Bellman’s principle of optimality can be extended to multiobjective optimization prob-

lems with new objective functions f2, . . . , f q. In this case, instead of one optimal solu-
tion, a state contains a set of efficient solutions. The cardinality of these sets distinguishes
between easy and hard instances:

Hard Cases In general, adding one or more objectives make these problems intractable.
As for matroid problems the nondominated set for each state may grow exponentially
with the size of the instance. See, for example, Bazgan et al. [2009b] for the knapsack
problem and Guerriero and Musmanno [2001] for the shortest path problem.

Easy Cases However, as shown in Theorem 3.1, restricting the additional (q−1) objec-
tives to binary coefficients also restricts the number of nondominated objective vectors
to at most ` ≤ (n + 1)q−1. This directly transfers to every of the S · T states of the
dynamic programming process, which, therefore, handles at most O(S ·`·T ·R) solutions.
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The recursion requires to filter on efficient solutions, which can be done for every state
in O(`2)-time by pairwise comparison of the at most ` objective vectors in this state.
Figure 1 illustrates how a state t in stage i is built using states t and t−wi of stage (i−1)
for an instance of the knapsack problem with two objectives, the second one with binary
coefficients.

1 5 10 15

1

f1

f2

f1

f2
add item i

i− 1 i

t

t− wi

1 5 10 15

1

f1

f2

1 5 10 15

1

f1

f2

Figure 1: For an instance of the knapsack problem with two objectives f1 and f2, f2
with binary coefficients, this figure illustrates the transformation from two
states in stage (i − 1) to a new state in stage i. The symbols and show
the nondominated objective vectors of the respective states. The symbols
and show dominated objective vectors in stage i that are filtered out during
the transformation.

Sequence Alignment Problem A particular case of a biobjective problem with binary
objectives that can be solved by dynamic programming in polynomial amount of time
is the pairwise sequence alignment problem [Roytberg et al., 1999]. Sequence alignment
aims to identify regions of similarity in sequences of biological data, such as nucleotide
and amino acid residues and it has many applications in Bioinformatics. The procedure
consists of inserting gaps between the residues so that similar symbols from several se-
quences become aligned. The biobjective pairwise problem consists of finding alignments
of two sequences that maximize the number of aligned symbols and minimize the number
of inserted gaps. It can be reformulated as finding a path in a directed acyclic graph with
polynomial number of nodes and edges and binary cost coefficients, leading to a linear
number of nondominated solutions; see the graph formulation for the scalarized version
of the problem in [Gusfield, 1997] and algorithms for the biobjective version in [Roytberg
et al., 1999, Abbasi et al., 2013]. However, for an arbitrary number of sequences, the
problem becomes NP-hard [Gusfield, 1997].

Open Questions Dynamic programming algorithms are often assumed inefficient for
practical applications. However, recent progress in efficient implementations using,
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among others, preprocessing techniques and bound computations, has shown that dy-
namic programming algorithms can indeed be competitive in comparison with other
exact solution methods (see Figueira et al. [2013] and Bazgan et al. [2009b]). A strong
point in favor of dynamic programming algorithms is their versatility with respect to
multiobjective problems. Moreover, dynamic programming algorithms can be used to
derive polynomial time approximation schemes, see, for example, Erlebach et al. [2002]
and Bazgan et al. [2009a] in the context of the multiobjective knapsack problem. The
implications of structural properties of the considered problem instances may lead to
new insights in this context.

3.4 Total Unimodularity
Inspired by the existence of polynomial time solvable single objective combinatorial
optimization problems with totally unimodular constraint matrices, one might ask about
the possibility of generalizing this result.

Definition 3.4. A matrix A ∈ Rm×n is totally unimodular, if every square submatrix
of A has a determinant of 0,+1 or −1.

Total unimodularity has rarely been considered in the multiobjective context. There
are only few articles that address this structural property in the presence of multiple ob-
jectives (Isermann [1979], Serafini [1987], Kouvelis and Carlson [1992], Williams [2002]).
This might be explained by the fact that (linear) scalarization methods introduce new
constraints (except for the weighted sum scalarization), which may destroy total uni-
modularity. Hence, at first glance, total unimodularity seems to help only in computing
the supported nondominated points.
However, there are particular cases where the property of total unimodularity is com-

patible with the ε-constraint method, Brockhoff et al. [2015]. Obviously, these cases
have objective functions with a particular structure which can be reformulated in terms
of ε-constraints.

Theorem 3.5 (Maintaining total unimodularity at ε-constraint). Consider a multiob-
jective program with q ≥ 2 objectives. Let A ∈ Rm×n be a totally unimodular matrix and
let C̃ ∈ R(q−1)×n contain the cost vectors cl, l = 1, . . . , q− 1 with cli ∈ {0,±1} for all i, l.
Then the constraint matrix

Ã :=
(
A 0
C̃ 1

)
is totally unimodular, if each cost vector cl, l = 1, . . . , q − 1 fulfills one of the following
cases:

(i) cl = (0, ..., 0), that is, the cost vector is a zero-valued vector.
(ii) cl = aj· or cl = (−1) · aj·, for some row aj·, j ∈ {1, ...,m} of A.
(iii) cl contains (n− 1) zero entries and exactly one ±1 entry. That is, the cost vector

is a row of the identity matrix or such a row multiplied by a scalar −1.

10
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(iv) A has at most two non-zero entries for each column and there are columns with less
than two non-zero entries. Further, for each column, where A has only a non-zero
entry with value 1, there is at most one cl that has an entry with value −1 in this
column. Vice versa, for each column, where A has only a non-zero entry with value
−1, there exists at most one cl with an entry with value 1. For each zero-valued
column of A, there are at most one entry with value 1 and at most one entry with
value −1 in this column of C̃. All other entries of C̃ are zero.

Proof. We prove this for q = 2, that is, we add one row cl. As we can successively add
rows, the proof for q > 2 follows immediately.
(i) Trivial.
(ii) Let cl = aj· and B be a submatrix of Ã. We only have to consider the cases, where

B contains entries of cl.
• Case 1: B does not contain entries of aj·. Then, detB ∈ {0,±1}, because B
is a submatrix of A.
• Case 2: B contains entries of aj·. Then, B is singular and hence detB = 0.

Now, if cl = (−1) · aj·, we do not have to consider the second case, as singularity
is maintained. For case 1, we use the Laplace expansion. Then, we get

detB = (−1) · detB(aj·) = (−1)r · det B̃(aj·),

where B(aj·) is the matrix, where we substituted row cl by aj· and at B̃(aj·), we
put the row aj· in the right position, such that this matrix is a submatrix of A and
therefore has a determinant of 0,±1. Further r ∈ {1, 2}, depending on the change
of position of aj·. Hence, detB is 0,±1.

(iii) Let cl be a row of the identity matrix and cli = 1. Then, we use the Laplace
Expansion at the first row of B:

detB = 1 · detB1l ∈ {0,±1},

clearly B1l is a submatrix of A. For cli = −1, we get analogously detB = (−1) ·
detB1l.

(iv) In this case, Ã suffices the requirements for the theorem by Hoffman and Kruskal
[2010] and this implies the total unimodularity of Ã.

The following example shows that even one of the easiest objectives, a sum objective
with all weights 1, destroys the property of total unimodularity.

Example 3.6. If cl only contains entries with value 1, Ã =
(
cl 1
A 0

)
is in general not

totally unimodular. We use the following totally unimodular matrix

A =


−1 −1 0 0 0 1
1 0 −1 −1 0 0
0 1 1 0 −1 0
0 0 0 1 1 −1

 .

11
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Total unimodularity of A can be proven by the theorem of Hoffman and Kruskal [2010].
If we now add a row with only 1 entries, we get

Ã =


1 1 1 1 1 1 1
−1 −1 0 0 0 1 0
1 0 −1 −1 0 0 0
0 1 1 0 −1 0 0
0 0 0 1 1 −1 0

 .

Now, if we choose rows 1 and 5 and columns 5 and 6, the resulting submatrix is

B =
(

1 1
1 −1

)
,

with detB = −2 /∈ {0,±1}. Hence, Ã is not totally unimodular.
The same holds, when using a cost vector with only −1 entries.

Also, it is easy to see that, if the cost vector is equal to the sum or difference of two
rows of A, Ã is in general not totally unimodular.
Still, there are multiobjective combinatorial problems, where total unimodularity can

be preserved while scalarizing. For example, the constraint matrix of the binary knapsack
problem or the binary assignment problem are totally unimodular. Hence, there exist
some instances, where both supported and nonsupported efficient solutions can be found
efficiently. Nevertheless, our result does not hold for every instance of the particular
problem (see Section 6.1).
However, if we consider a biobjective problem that fulfills Theorem 3.5, Brockhoff et al.
[2015] showed that all solutions are supported and we get the whole nondominated set
by dichotomic search (Aneja and Nair [1979]).
Conclusively, the requirements on the objective functions so that total unimodularity

is preserved during scalarizations are very restrictive. Remark, that a complete charac-
terization of all possible cost vectors that maintain total unimodularity for the scalarized
problem is not achievable; for objective functions that are not affected by Theorem 3.5,
the matrix Ã has to be tested by the definition or the known equivalent propositions of
total unimodularity.

4 Sum Objective Functions with Non-Binary Coefficients
In this section, we weaken the assumption of having binary coefficients in the objective
functions and only demand bounded coefficients. We obtain a result similar to Theorem
3.1:

Corollary 4.1. The cardinality of YN is also polynomially bounded by the size of the
problem instance, if the value of the largest coefficient of q − 1 objective functions, i. e.
2-maxl∈{1,...,q}maxi∈{1,...,n} cli, is polynomially bounded in the input size n.
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Corollary 4.1 implies that the size of the nondominated set YN remains polynomial for
all MOCO problems with q ≥ 2 objective functions, if for q− 1 of them their coefficients
grow at most polynomially with the instance size.
This immediately transfers to the complexity of the dynamic programming processes of
Section 3.3, since in general the number of nondominated objective vectors in a state can
be bounded by the same value, say O(`), where ` is a polynomial of the instance size.
These can be filtered for dominance in O(`2), for example, by straightforward pairwise
comparisons, leading to an overall polynomial time algorithm.
Besides dynamic programming there are other noteworthy applications. Exemplarily,

we present results on a special case of the biobjective minimum spanning tree problem.

4.1 Minimum Spanning Trees
Seipp [2013] considered the biobjective minimum spanning tree problem with cost co-
efficients in {0, 1, 2}. He first proved that all efficient solutions are supported and all
efficient solutions are connected. Moreover, he showed that the cardinality of the non-
dominated set is bounded from above by a polynomial in the size of the underlying graph
and, more precisely, it holds |YN | ≤ 2n− 1. This bound is tight. Interestingly, this cost
structure causes that all efficient points can be computed by solving a weighted sum
scalarization problem with three different values of λ only.

5 Bottleneck Objective Functions
In a bottleneck objective function (or generalization of it), one selects exactly one cost
coefficient out of n possibilities. In the presence of q objective functions, the cardinality
of |YN | is in O(nq), which is a polynomial in the input length of the instance. In
the following, we first present results for multiobjective problems with (generalized)
bottleneck objective functions. Then, the same type of function is considered to achieve
a representation of the whole nondominated set that meets certain requirements.

5.1 Bottleneck and Generalized Bottleneck Objectives
In the context of multiobjective optimization, Gorski [2010] and Gorski et al. [2012a]
considered problems with one general objective function f : X → R which could, for
example, be the weighted sum of cost coefficients, and (q − 1) k-max objectives with
possibly different values of k and different cost coefficients c2, . . . , cq:

min
(∑
e∈x

c1(e), k2-max
e∈x

c2(e), . . . , kq-max
e∈x

cq(e)
)

s. t. x ∈ X .

Since k-max objective functions can attain at most |E| = n different values, a bound
on the cardinality of the nondominated set similar to the case of binary coefficients (c.f.
Theorem 3.1 in Section 3) can be obtained (see Gorski et al. [2012a]):
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Theorem 5.1. Consider a multiobjective combinatorial optimization problem with one
arbitrary objective function and with (q − 1) k-max objective functions. Then the cardi-
nality of the nondominated set YN is bounded by (n+ 1)q−1, i.e., |YN | ≤ (n+ 1)q−1.

This result has been used in Gorski et al. [2012a] to derive efficient solution methods
for problems with one sum objective and (q − 1) k-max objectives. These methods
are based on the recursive solution of at most O(nq−1) ε-constraint scalarizations of
this class of problems, with ε-values defined by the cost coefficients in the respective
objectives. These ε-constraint scalarizations can be reformulated by assigning binary
weights ĉi(e) ∈ {0, 1} to all elements in E such that, in objective i, 2 ≤ i ≤ q, ĉi(e) = 1
if and only if ci(e) > ε. We thus want to minimize objective one (i.e.,

∑
e∈x c

1(e)) under
the constraints that the weighted sum of the binary coefficients (i.e.,

∑
e∈x ĉ

i(e)) stays
below ki in objective i, i = 2, . . . , q:

min
∑
e∈x

c1(e)

s. t.
∑
e∈x

ĉi(e) ≤ ki, i = 2, . . . , q

x ∈ X .

Hard Cases Budget constrained versions of combinatorial optimization problems are
NP-hard in general, see, for example, Garey and Johnson [1979]. The fact that the
constraints have binary coefficients may lead to polynomial special cases. An example
where this can be proven is given below.

Easy Cases Similar to the discussion in Section 3, ε-constraint scalarizations with bi-
nary coefficients can be solved in polynomial time if, for example, the underlying problem
is a matroid. Moreover, efficient dynamic programming implementations can be realized
whenever the problem structure allows this. This has been utilized, for example, for the
case of knapsack problems with k-min objectives in Rong et al. [2013].

Open Questions It is an interesting open question to analyse which types of budget
constrained combinatorial optimization problems can be solved in polynomial time in
the case that all budget constraints have binary coefficients.

5.2 Representations of the Nondominated Set
Uniformity, coverage and ε-indicator are often used quality measures for representing
subsets of the set of nondominated points (Sayin [2000], Ruzika and Wiecek [2005],
Vassilvitskii and Yannakakis [2005]). Since they focus on different aspects of a good rep-
resentation, one can integrate them in a multiple objective setting and find a triobjective
representation problem given a maximal cardinality of the representing subset.
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Easy Cases For the nondominated set YN of a discrete biobjective optimization prob-
lem, finding a representing subset R ⊆ YN , which is Pareto optimal with respect to these
three quality measures, can be solved in polynomial time. For biobjective minimization
problems the triobjective representation problem optimizing uniformity, coverage and
ε-indicator can be stated as follows:

max min
ri,rj∈R
ri 6=rj

||ri − rj ||

min max
y∈YN

min
r∈R
||r − y||

min max
y∈YN

min
r∈R

max
i∈{1,2}

yi

ri

s.t.R ⊆ YN
|R| ≤ k.

Since we only consider pairwise nondominated points in R2, we can presume that they
are positioned on a line. In the following, we will assume that the nondominated points
are sorted with respect to their first component. Together with the bottleneck objective
functions this makes two solution approaches applicable: dynamic programming and
threshold algorithms.
Due to the bottleneck objectives, there is only a polynomial number of feasible solu-

tions. Since the corresponding feasibility problems can be reformulated to longest path
problems, which are efficiently solvable on these special type of graphs, a threshold al-
gorithm can solve this triobjective representation problem in a polynomial amount of
time of the input size. The Bellman principle of optimality holds, if one considers in
each state t(i, j) only these partial solutions, which consist of i points up to point j and
contain this point in the representing subset. Thus, any representation problem for a
biobjective discrete optimization problem using a combination of these quality measures
as objectives can be solved in polynomial time by either dynamic programming or a
threshold algorithm (for details see Vaz et al. [2014]).

Hard Cases Solving the uniformity problem for the nondominated set of multiobjec-
tive discrete optimization problems is NP-hard in general, since it is equivalent to the
geometric dispersion problem (proven by Baur and Fekete [2001]). However, it is shown
that the uniformity problem is efficiently solvable for the nondominated points of a
biobjective problem.

Open Questions Is the uniformity problem NP-hard for the nondominated points of a
triobjective problem? To the best of our knowledge there is no proof for this.
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6 On the Borderline of Hard and Easy
So far, we have seen both, easy and hard cases for numerous multiobjective combinatorial
problems. As we observed, the separation of these two categories always depends on the
problem structure itself and hence there is no all-embracing condition for having an easy
case. The adjustments that are necessary for a distinct MOCO problem always differ,
which leads us to three extreme cases, while we traverse the borderline between hard
and easy:

• First, we present a particular problem, which, regarding its structure, would fit
into Section 3, but nevertheless remains hard to solve. Very strict additional
requirements are necessary to obtain an easy case, although similar problem cases
of Section 3 are easy even without additional requirements. Figuratively speaking,
the borderline for this problem is very thick compared to other problems.

• Second, combining two cases of a problem with different additional requirements
for the input of an instance can result in not only an easy but trivial problem case,
although the original cases belong to hard cases in general. Hence, we have a thin
but sharp borderline that passes directly through to triviality.

• A third approach is to constrain the nondominated set one is interested in. In
particular, we omit nonsupported solutions and observe cases, where the set of
nondominated supported solutions can be easily obtained. This leads us to the
conclusion that the borderline not only separates different problem cases but also
divides the nondominated set YN .

We start with the former case that tackles the biobjective assignment problem.

6.1 Biobjective Assignment Problem with One Binary Objective
In this section, we consider a special case of the biobjective assignment problem. By
allowing only binary coefficients in one objective, we obtain a simplification of the gener-
ally NP-complete and intractable binary assignment problem. We show that the number
of nondominated points is polynomially bounded in the instance size. However, there
exist nonsupported nondominated points and the complexity of the corresponding deci-
sion problem is still an open question. In Papadimitriou [1984] the constrained bipartite
matching problem with bounded coefficients in the constraint is mentioned as a problem
with unknown complexity. Alfakih and Murty [1998] state that the complexity of the
equality constrained assignment problem with binary coefficients in the constraint up to
future research. In contrast to the general biobjective assignment problem, for which
Serafini [1987] proved NP-completeness by reduction to Partition, for the version with
binary coefficients there is neither a polynomial algorithm nor a NP-completeness proof.
Since the supported nondominated points can be computed in polynomial time using
the Hungarian method (Kuhn [1955]), the computational complexity of the problem is
due to the nondominated nonsupported points.
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(b) Assignment 2
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(c) Assignment 3

1

2

3

1 ′

2 ′

3 ′

(d) Assignment 4

Figure 2: The four efficient assignments in Example 6.1

We consider a biobjective assignment problem with only binary coefficients in the
second objective function (i. e. c2

ij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}):

min f1(x) =
n∑
i=1

n∑
j=1

c1
ijxij

min f2(x) =
n∑
i=1

n∑
j=1

c2
ijxij

s. t.
n∑
j=1

xij = 1 ∀i = 1, . . . , n

n∑
i=1

xij = 1 ∀j = 1, . . . , n

x ∈ {0, 1}n×n.

The following example shows: There are nonsupported nondominated points in the
outcome space even in this simplified version of the biobjective assignment problem.

Example 6.1. Consider the biobjective assignment problem with 3+3 nodes and the
objective function coefficients

C1 = (c1
ij) =

1 1 4
3 4 1
4 4 1

 and C2 = (c2
ij) =

1 1 0
1 0 1
0 0 1

 .
Then we obtain four efficient solutions, depicted in Figure 2. The objective function

values of these four assignments are (6, 2), (11, 1), (12, 0), and (5, 3), respectively. It is
easy to see that the objective vector of Assignment 2 (Figure 2(b)) is indeed nonsupported
(c. f. Figure 3).
This does not contradict the results of Section 3.4, as the constraint matrix of the ε-
constraint scalarization is not totally unimodular.

Corollary 6.2. The biobjective assignment problem with one binary objective has at
most n+ 1 nondominated points.

Proof. Follows directly from Theorem 3.1.
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f1(x) =
∑

(i,j)∈E

c1
ijxij

f 2
(x

)=
∑

(i
,j

)∈
E

c2 ij
x

ij

1 2 3 4 5 6 7 8 9

1

2

3

Figure 3: Supported nondominated points are depicted circles, nonsupported nondom-
inated points as rectangles, the R2

+-convex hull is illustrated by the dashed
line.

Easy Cases While the complexity of this biobjective assignment problem with binary
coefficients is not known, surely easy instances of it are the ones in which the second
objective function maintains the total unimodularity, i.e. the corresponding ε-constraint
problem is totally unimodular (cf. Subsetion 3.4).

Open Questions Are there other properties than the totally unimodular ε-constraint
subproblems, which make the assignment problem easy?

6.2 Biobjective Knapsack Problem with Additional Restrictions
In the following, we tackle the second case mentioned above. We summarize some
particular interesting variants of the biobjective knapsack problem. The results are
based on Gomes da Silva et al. [2004]. Three cases will be presented and we examine
their properties and algorithmic aspects for computing the set of efficient solutions.
The general integer programming formulation of the biobjective knapsack problem is as
follows:

max f1(x) =
n∑
i=1

n∑
j=1

c1
ixi

max f2(x) =
n∑
i=1

n∑
j=1

c2
ixi

s. t.
n∑
i=1

wixi ≤W

x ∈ {0, 1}n
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with W ≥ 0 and c1
i , c

2
i , wi ≥ 0, ∀i = 1, . . . , n. Recall that biobjective knapsack problems

can be solved in pseudopolynomial time by dynamic programming, c. f. Section 3.3
above.
For further presentation of results, we introduce Iso-item lines, which consist of ob-

jective vectors of feasible solutions with the same number of elements:

ISO(δ) =
{

(f1(x), f2(x)) :
n∑
i=1

xi = δ

}
, for δ ∈ N0.

Case 1: All Items of the Same Weight At first, we consider the case of all weights
being constant, i. e. wi = w ≥ 0. Let ` := bWw c. Then all efficient solutions satisfy∑n
i=1 xi = `. This constraint is also known as cardinality constraint. We refer to the

biobjective knapsack problem with cardinality constraint as Case 1 and get the following
result:

Lemma 6.3. The set of nondominated points is contained in the ISO-item line for `:
YN ⊆ ISO(`). In other words YN = ISO(`)N .

Also, as the cardinality constraint is the only given constraint, the constraint matrix
is totally unimodular, i. e., all extreme points of the convex hull of the set of feasible
solutions X are integral. As a consequence, all supported nondominated points can be
computed using a biobjective simplex algorithm. However, not every efficient solution
is supported. A small example with ` = 1 contains three items with profits (4, 1), (2, 2)
and (1, 5). Here, (2, 2) is nondominated but nonsupported. Nonsupported solutions
can, for example, be generated within a 2-phase method using a ranking procedure,
Murty [1983]. However, in this case we can not guarantee that every instance of Case
1 is solvable in polynomial time. To the contrary, it can be shown that the problem is
NP-hard in general.

Theorem 6.4 (Case 1: Same weights). The decision problem corresponding to the biob-
jective knapsack problem with equal weights, namely is there a feasible knapsack solu-
tions x ∈

{
{0, 1}n :

∑n
i=1 xi = `

}
such that

∑n
i=1 c

1
ixi ≥ b1 and

∑n
i=1 c

2
ixi ≥ b2, is

NP-complete.

Proof. Let M > maxi=1,...,n c
2
i be a sufficiently large integer and consider the single

objective knapsack problem with fixed cardinality

max
{

n∑
i=1

c1
ixi :

n∑
i=1

(M − c2
i )xi ≤ (`M − b2),

n∑
i=1

xi = `

}
.

The corresponding decision problem is NP-complete, see Caprara et al. [2000], and it is
euqivalent to the above formulation.
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Case 2: All Items with the Same Sum of Objective Coefficients In the following, we
extend the biobjective knapsack problem by demanding that the cost coefficients of all
items add up to a constant α ≥ 0, that is c1

i + c2
i = α for every item i = 1, . . . , n. Hence,

the objective functions can be reformulated to

max
( n∑
i=1

c1
ixi,

n∑
i=1

(α− c1
i )xi

)
.

If we consider the sum of these two objectives, each item generates a profit of α. Hence,
for an ISO-item line with ñ items, the total profit for the sum objective is ñα for
every nondominated point of ISO(ñ). So, the sum of profits increases with increasing
cardinality, see Figure 4. This gives us the possibility to state more results for this case:

f1(x)

f2(x)

n1

n2

n3

n4

n5

Figure 4: Structure of the outcome space with several cardinalities ni = i. The isolines
(lines with same objective value sum) mark possible regions for nondominated
points and contain the ISO-item line for the respective cardinality.

Theorem 6.5 (Case 2: Constant sum). Let x and x′ be feasible for Case 2 of the
biobjective knapsack problem.
(i) If f(x), f(x′) ∈ ISO(ñ), then they do not dominate each other.
(ii) If f(x) ∈ ISO(n1) and f(x′) ∈ ISO(n2) with n1 < n2, then f(x) does not dominate

f(x′).
(iii) Let nmax be the maximal number of items of a solution in X . Then every f(x) ∈

ISO(nmax) is nondominated.

Proof. (i) As both objective vectors are in ISO(ñ), we have f1(x) + f2(x) = ñα =
f1(x′) + f2(x′) and therefore, f(x) cannot dominate f(x′) and vice versa.

(ii) As f1(x) + f2(x) = n1α < n2α = f1(x′) + f2(x′), f(x) cannot dominate f(x′).
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(iii) This follows immediately from (i) and (ii).

Further, by the first result of Theorem 6.5, we get: If we add a cardinality constraint
to Case 2, all efficient solutions are supported. Also, remark that with the cardinality
constraint we have a problem of type Case 1. This implies a procedure for solving biob-
jective knapsack problems with a constant sum of coefficients: We can solve the problem
for each cardinality and afterwards compare the obtained solutions. Theorem 6.5 sug-
gests starting with the highest cardinality and we do not need to compare solutions
of the same cardinality. We can improve this procedure by applying it as a dynamic
programming algorithm, which is a special case of the single objective dynamic program-
ming algorithm for the {0, 1}-knapsack problam. However, although all nondominated
points are supported for one ISO-item line, Case 2 is in general not an easy case of the
biobjective knapsack problem. In particular, the number of possible ISO-item lines is in
general not bounded by a polynomial in the input size of an instance.

Case 3: All Items of the Same Weight and with the Same Sum of Objective Co-
efficients Again, we extend our consideration by combining the requirements of the
previous setups. We assume that the sum of objective coefficients is constant and all
items have the same weights.

max
( n∑
i=1

c1
ixi,

n∑
i=1

(α− c1
i )xi

)
s. t.

n∑
i=1

xi = `,

xi ∈ {0, 1}, i = 1, 2, . . . , n.

Here, we can combine the results of the Cases 1 and 2 and immediately state the following
theorem:

Theorem 6.6 (Case 3: Same weights and constant sum).
(i) Every solution in ISO(`) is nondominated. In particular, every feasible solution

is efficient.
(ii) The set of efficient solutions is connected and the extreme points of its convex hull

are integer valued.

The computation of all efficient solution requires simply the computation of all com-
binations using ` items. By Theorem 6.6, these solutions are connected and supported
and can be found by a single objective simplex method (with f1(x) as objective func-
tion and bounded variables). Also, one can use Murty’s ranking procedure, because
this procedures computes all adjacent solutions to a starting point that do not decrease
the objective function value. In particular, Case 3 is a trivial variant of the biobjective
knapsack problem.
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6.3 Problems with a Polynomial Number of Supported Solutions
Seipp [2013] considered the minimum spanning tree problem and showed a somewhat
surprising result (and extended an earlier result of Chandrasekaran [1977]): for an arbi-
trary but fixed number of objective functions, the cardinality of the set of nondominated
extreme points is polynomially bounded in the input length even of the minimum span-
ning tree instance. This complements the intractability result for the multiobjective
minimum spanning tree problem by delivering more information about a “small” subset
of nondominated points.
The idea—which can be easily generalized to some matroid problems—used by Seipp

to show this result can be briefly sketched as follows. Consider the weight space

W 0 :=
{
λ ∈ Rq : λ > 0,

q∑
i=1

λi = 1
}
,

which is the set of all (reasonable) weights for the weighted-sum method. It can be
shown that a feasible solution x ∈ X of MOCO is an extreme supported solution. Its
objective value y = f(x) ∈ Y is a nondominated extreme point if and only if there exists
a strictly positive weighting vector λ ∈ Rq such that y is the unique optimal solution of
minȳ∈Y λ>ȳ. Equivalently, for some λ ∈ Rq> all minimizers of the weighted sum problem
are equivalent efficient solutions and have objective value y.
For the multiobjective minimum spanning tree problem, it should be noted that the

weighted sum problem is again a minimum spanning tree problem which can be denoted
by

min
q∑
l=1

λi
∑
e∈T

cl(e) =
∑
e∈T

cλe

s. t. T ∈ T ,

where T denotes the set of all spanning trees in the given graph, T denotes some specific
tree, e denotes an edge in the tree, and cl(e) the l-th cost value of edge e, l = 1, . . . , q.
This implies that the weighted sum problem can be solved in polynomial time by some
greedy algorithm (e. g. Kruskal’s or Prim’s algorithm). It should be emphasized that the
result of the greedy algorithm depends on the sorting of the edges in order of increasing
cost only and not on the specific cost values. Thus, each λ ∈ W 0 implies a sorting and
for λ1, λ2 ∈ W 0, the corresponding weighted sum problems yield the same solution, if
the sortings of the edges are the same. On the other hand, several different sortings
of the edges may still lead to the same minimum spanning tree. Thus, if W 0 can be
subdivided in a polynomial number of subsets such that all weights in one subset imply
the same sorting, a polynomial upper bound for the number of nondominated extreme
points is obtained.
To establish this subdivision of W 0, subsets of weights, which generate the same

ordering of the weighted edge costs, are found. For two edges e, f ∈ E with ce 6= cf
consider the set

h(e, f) := {λ ∈ Rq : cλe = cλf} = {λ ∈ Rq : 〈λ, ce − cf 〉 = 0},
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which is the set of all weights implying the same weighted edge costs for e and f . Note
that h(e, f) ⊂ Rq is a separating hyperplane through the origin. It divides Rq into two
half-spaces, one of which corresponds to the set of all weighting vectors for which edge
e is cheaper than edge f (and the other one vice versa).
Consider now the set H of all such hyperplanes h(e, f) for e, f ∈ E. This set dissects

Rq into q-dimensional polyhedral subsets. Note that there is a one-to-one relationship
between these polyhedral subsets and the sortings of the weighted edge costs. Thus,
counting the number of polyhedral subsets yields an upper bound for the number of
nondominated extreme points. This set H induces a so-called arrangement of hyper-
planes. Seipp first proved the following theorem.

Theorem 6.7 (Seipp [2013]). Let C := {cl : l ∈ I} ⊆ Rq \ {0} denote a discrete set
of nonzero vectors with underlying index set I := {1, . . . , n}. Then the family of linear
hyperplanes hl := h=(cl) = {λ ∈ Rq : 〈λ, cl〉 = 0}, l ∈ I, which are induced by vectors in
C divides Rq into at most 2q+1 · nq full-dimensional polyhedral subsets.

This implies for the minimum spanning tree problem the following polynomial bound
on the number of extremal supported nondominated points.

Theorem 6.8 (Seipp [2013]). Let P be an instance of the q-objective minimum spanning
tree problem with underlying graph G = (V,E). Then the number of extremal supported
nondominated points of P is of the order O(m2q), where m = |E| denotes the number of
edges of G.

This observation can be carried over to some matroid problems, since it basically relies
on the assumption that the occuring single objective problems can be solved by a greedy
algorithm and that the solution solely depends on the sorting of some items.
Seipp later improved his intially found bound.

Theorem 6.9 (Seipp [2013]). Let P be an instance of the q-objective minimum spanning
tree problem with underlying graph G = (V,E). Then the number of extremal supported
nondominated points of P is bounded from above by 2 ·m2(q−1), where m = |E| denotes
the number of edges of G.

Note that this finding has quite some consequences. Seipp provides several insights in
the structure of the weight space since his arrangement of hyperplanes induces a weight
space decomposition. Moreover, the dichotomic search (Aneja and Nair [1979]) is now
guaranteed to terminate in a polynomial number of steps for the multiobjective minimum
spanning tree problem. This influences e. g. the first phase in the so-called two-phases
method (Visée et al. [1998]).

7 Concluding Remarks
Despite general intractability and NP-hardness results for many multiobjective combi-
natorial optimization problems (cf. Ehrgott [2005], Ruzika and Hamacher [2009]), there
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exist cases of “easy” MOCO problems. These easy MOCO problems exhibit (a) a “small”
nondominated set and (b) a decision problem belonging to the complexity class P.
The first requirement, i. e. a “small” nondominated set, means that the number of non-

dominated points grows at most polynomially with the size of the input data. This can
be guaranteed, for example, for MOCO problems with sum objective functions having
binary coefficients or for MOCO problems involving bottleneck objective functions.
However, a small nondominated set is in general not sufficient to guarantee that a

MOCO problem is easy. Only in combination with additional properties like, for ex-
ample, total unimodularity, matroid optimization, or when efficient greedy or dynamic
programming implementations are available, a minimal complete set of efficient solutions
can be computed in polynomial time.
It should be pointed out that the borderline between easy and hard problems is not

sharp. For example, if one strives for computing only a certain subset of a minimal
complete set of efficient solutions (e. g. those solutions being supported extreme points),
this might change the status of difficulty.
It should be pointed out that this categorized collection of “easy” and “halfway easy”

multiobjective combinatorial optimization problems is by no means complete – it is
better regarded as a starting point of more intense research in this direction.
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