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Purpose: The paper presents the topology optimization method to design the rotor and the tooth base in the 

stator of the permanent magnet (PM) excited machine with the improved high-speed features. The topological and 

shape sensitivity through the Multi-Level Set Method (MLSM) have been used to attain an innovative design of 

both the rotor and stator made of different materials.  

 

Design/methodology/approach: This framework is based on the application of the topological and the shape 

derivative, obtained by incorporating the AVM into the multi-level set method for the magnetoquasistatic system. 

The representation of the shape and their evolution during the iterative optimization process are obtained by the 

multi-level set method. 

 

Findings: To find the optimal configuration of a PM machine, the stator and rotor poles were simultaneously 

optimized by redistributing the iron and the magnet material over the design domains. In this way, it was possible 

to obtain an innovative design which allows to reduce mechanical vibration and the acoustic noise caused by the 

Cogging Torque, while taking the back-EMF into account.  

 

Originality/value: The novelty of the proposed method is to apply the modified multi-level-set algorithm with the 

Total Variation (TV) to the magnetoquasistatic optimization problem. Given the eddy currents phenomenon in the 

model of a PM machine, it was possible not only to optimize the structure of a PM machine but also to analyse 

electromagnetic losses distribution.  

 

Keywords: Permanent magnet machine, Cogging torque, Back-EMF, Shape and topology optimization, 

Electromagnetic losses,   

  



1. Introduction 

Permanent magnet (PM) synchronous machines with the advantages of the high torque per 

mass,  high power per unit volume and a relatively simple structure have become more 

popular nowadays, see, e.g., (Husain, 2005; Hughes, 2006; Gieras and Wing, 2008; Paplicki, 

2010). In particular, this did result in its broad use in the automotive industry due to their high 

performance, efficiency, and power density, which are important requirements in the 

commercialized hybrid vehicle with a different hybridization level, e.g., (Makini et al., 2008; 

May et al., 2011; Putek et al., 2014, Paplicki, 2014). The machine, however, is characterized 

by an inherently high level of the torque ripple (TR) that results in the mechanical vibration, 

acoustic noise, and some problems with the position or speed control in the application of 

drive systems. From this point of view, the effective design procedure is desired for the high-

performance low torque applications, especially suitable for electric vehicles. Therefore, in 

such a type of an electric machine, designers aim to minimize the cogging torque (CT), while 

taking the harmonic contents in the back electromotive force (the back-EMF) into account. 

Both analyzed quantities together with the saturation of the magnetic circuits and converter 

related issues (Bianchi et al., 2002) are well-known sources of the TR in the developed 

electromagnetic torque. A lot of research related to the minimization of the CR and TR, 

including the back-EMF analysis, have been reported in the literature, for example, (Li and 

Slemon, 1988; Favre et al., 1993; Zhu and Howe, 2000). Among them, the adjustment of the 

magnet arc width in regards to the slot pitch, the shifting of the pole pair, employing the 

fractional number of slots per pole and the skewing of either the stator or the rotor magnets 

belong to the most common methods for the reduction of the CT. The skewing of stator slots 

or rotor magnets can be also applied for the reduction of the amount of higher back EMF 

harmonics (Bianchi et al., 2002). Other proposed solutions include employing dummy slots or 

dummy teeth in the stator laminations, and the shaping of the magnets. However, it is a 

problematic task to design a PM machine by taking into account either the description of the 

machine structure with a few geometrical parameters only (Di Barba et al., 2012) or the 

distribution of one material separately in the rotor poles (Lim et al., 2012) or considering only 

the stator (Lee et al., 2003).  

    Therefore, this work deals with designing a PM machine – since the machine topology 

itself is a major contributor to the CT and the TR. As the shapes of the rotor poles and the 

tooth stator primarily determine the torque characteristics, this work focuses on the 

simultaneous optimization of the iron and magnet rotor poles as well as the stator tooth in the 

Electrically Controlled Permanent Magnet Excited Synchronous Machine (ECPSM)
1
. Due to 

its particular construction, this machine allows to achieve the extended field-weakening 

capability and thus, it might be a suitable solution for automotive industry as a drive for 

electrical vehicles, for example. Therefore, in this work the optimal rotor poles and the tooth 

stator shape of the ECPSM for the minimum of CT and TR have been found by redistributing 

simultaneously the iron and magnet material over a design domain under consideration.  

    The new aspect of our work is to extend the application of the coupled multi-level and the 

topological gradient-based algorithm with the Total Variation technique (TV), proposed by 

(Putek et al., 2014a; Putek et al., 2014b), into the magnetoquasistatic optimization problem. 

Additionally, in contrast to our previous work, the Gâteaux derivative has been used to 

calculate the gradient of a multi-objective cost functional. Thus, this work focuses on the 

topology optimization of the ECPSM structure using a more realistic but still 2-D model, 

                                                            
1 The investigation on the development of the ECPSM construction was conducted in the frame of the project 

called “The Electrically Controlled Permanent Magnet Excited Synchronous Machine (ECPSM) with application 

to electro-mobiles”, supported by the Polish Government under the Grant No. N510 508040.   



where also the eddy current phenomena have been taken into account. Specifically, an 

analysis of the steady state eddy current problem in the time-harmonic regime has been 

carried out. 

In this way, it was possible to optimize and analyze the ECPS machine with respect to not 

only mechanical vibration and the acoustic noise caused by the CT and the TR, but also the 

electromagnetic losses could be considered. 

 
 

 
Figure 1. Cross-section of the ECPSM with the surface-mounted PM rotor and the stator structure (Pałka et. al, 2013) 

2. Model description  

A special construction, the so-called Electrically Controlled Permanent Magnet Excited 

Synchronous Machine, first proposed by May et al. (2011), has been analyzed in our work as 

a case study. The configuration of the ECPSM has been schematically depicted in Figure 1, 

while its main parameters has been included in Table 1. The rotor of the machine is divided 

into two sections. Each section consists of the radially magnetized in different directions 

(south and north) partial surface-mounted PMs. The stator, in turn, comprises the laminated 

core, a stator yoke made of the Soft Magnetic Composites (SMC) and the three phase 

armature windings, which are allocated in stator slots. A key feature of the machine 

construction is an additional circumferential excitation coil that is fixed in the axial center of 

the machine, between the rotor pole structures. The appropriate supply of this auxiliary coil by 

the DC-chopper allows to control the excitation level of the machine. Thus, the 

demagnetizing/magnetizing effect of the DC field winding can be observed. Consequently, the 

Table 1. Main design data of the ECPS machine 
 

2p: number of poles 12 

rostat: outer radius of the stator 67.5 mm 

ristat: inner radius of the stator 41.25 mm 

las: axial length of the one part of the stator 35.0 mm 

woslot: width of the slot opening 4.0 mm 

ns: number of slots 36 

m: number of phases 3 

tm: thickness of magnets (NdFeB, Br=1.2 T) 3.0 mm 
 



effective field excitation produces induced voltages in the armature winding between zero and 

the maximum value, which is only limited by the saturation of the iron core (May et al., 

2012). In this way, it is possible to achieve the field weakening capability of 1:4 or even 1:5. 

The latter, besides the high torque, power and efficiency, the low level of the noise and 

vibration, is a very important requirement in case of the electro-mobiles applications. 

Technical parameters of a PM machine under consideration can be found in (May et al.  

2011). 

    In this work, a two-dimensional (2-D) Finite Element (FE) model is applied to simulate the 

ECPS machine by the time-harmonic, parabolic-elliptic equation on bounded Lipschitz 

domain
air FE PMD D D D  
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  (2.1) 

equipped with the Dirichlet boundary condition ΓD on D. Here,  
T

0 0 :A D A  

and 
2, :r D  B A B are phasors of the magnetic vector potential (MVP) and the 

magnetic flux density, respectively. The latter is defined in the 2-D model as 

    
T T

, , 0 : 0, 0, ,y xA A A      B   (2.2) 

which implies A B  with |  | the L
2
(D)-norm. The material properties σ and υ denote 

the conductivity and the reluctivity, more precisely  = 0∙r with r = (1, PM, FE) stands 

for the relative reluctivity of free space, the permanent-magnet and soft iron, while 0 is the 

permeability of vacuum. Br denotes the remanent flux density of a PM, while 

   
Te 2 e, 0 0 :L D J D  J J with the angular frequency ω refers to the forced 

current density in three phase single tooth windings. We also take the eddy currents 

phenomena in the PM and the iron parts into account in our 2-D model.  However, the 

anisotropy and hysteresis effects have been disregarded. Furthermore, to reduce the 

computational burden, we use both the rotational symmetry utilizing the periodic boundary 

condition ΓPBC (Nakata et al., 1988) and the arbitrary Lagrangian-Eulerian method (Braess 

and Wriggers, 2000) for the simulation of the electric machine rotation. 

2.1. Analysis of  electromagnetic torque fluctuation 

In general, the origin of the torque fluctuation is due to the highly non-linear and discrete 

nature of the torque production, which is mainly responsible for producing the TR and the CT 

and as a result, the speed variations (Chen et al., 2002). Specifically, with reference to the 

sinusoidal PM machine with surface mounted magnets, there are primarily two contributions 

to the torque pulsation.  

    The electromagnetic torque T can be defined using the co-energy variation (Gieras and 

Wing, 2008) in the following way  

 

.

co

i const

W
T

 





  (2.3) 

However, in the case of the synchronous machine with surface mounted permanent magnets, 

both self and mutual inductance coefficients of the armature windings are independent of the 

rotor angular position ϑ (Borghi et al., 1999). Therefore, the electromagnetic torque can be 

further expressed by  
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where nr means the number of phases, ωm is a rotor angular speed and ik is the stator winding 

current, m and Pm represent the equivalent magnetomotive force and the magnetic circuit 

permeance of the magnets, respectively. Furthermore, the back-EMF of the stator winding ek 

is described by the time derivative of the flux-linkage Φ as follows 

 j .ke      (2.5) 

When the flux-linkage is sinusoidal with respect to the rotor (Lee et al., 2003), the back-EMF 

of each winding takes the sinusoidal waveform. This fact has been taken into account in the 

formulation of the optimization problem. The equation (2.4) shows the main contributions 

into the electromagnetic torque pulsation. Thus, the TR due to the field harmonics of the 

magnets is included in the EMF harmonic component (Jahns and Soong, 1996). On the other 

hand, the second term of the equation (2.4) allows to take the CT contribution into account.  

    The cogging torque T can be calculated using the Maxwell stress tensor method (Gieras and 

Wing, 2008) for no-current armature in a FE model 
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where n is the outward unit normal vector of any closed integration surface in the air-gap 

surrounding the rotor, denoted by S. It can be noted that, even if a machine is designed to the 

CT compensation, it can still generate the TR due to the higher harmonics current (Lee et al., 

2003). In turn, if the back-EMF takes a sinusoidal form and, simultaneously, the PM variation 

is reduced, the constant power and torque are obtained. This fact has been taken into account, 

while defining a cost functional. 

3. Multi-level set approach 

The level set method was originally proposed by Osher and Sethian (1988) in order to trace 

interfaces between different phases of fluids flows. More recently, this concept has been 

further generalized by Vese and Chan (2002) on the segment model with more than two 

domains and thus, called the multi-level set method. According to this methodology, for the 

description of the ECPSM geometry, three level set functions have to be employed to express 

five different domains with three different materials, such as the iron pole D2, the PM pole D3, 

the air area D4, the base tooth of the rotor made of iron D5 and the air-tooth opening D6. Thus, 

in case of rotor poles, these domains have been defined by 
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where a signed distance function has taken the form 

  
 min \ ,

0 ,

I I i i

i

I i

r r r D D
r

r D


   
 



  (3.2) 



where 
Ir denotes I-th node on the boundary. In such a situation, the material properties of each 

rotor poles region can be described by the following equations  
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The function H(x) stands for the Heaviside step function. However, in practical computations, 

to obtain numerical robustness, the application of a smeared-out version of the step Heaviside 

function, i.e.  

  
 2 2

H


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  



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with a parameter α influenced the approximation of the function around zero, is recommended 

by Osher and Sethian (1988). It results from the fact that both functions in a precise sense are 

limits of the C

 function given in Chan and Tai (2004). Consequently, the derivative of the 

Heaviside step function H(), the so-called Dirac function, takes the form 
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In the same way, the base of the tooth shape in the stator can be expressed by the signed 

distance function 3 and then, 

  5 3 6 3| 0 }, | 0 }.D r D r         (3.6) 

The material properties of the tooth base domain, however, are specified by 
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The multi-level set model together with the boundaries, which are implicitly embedded as the 

zero-level set of i, is shown on Figures 2 and 3, respectively. Now, if we assume that the 

changes of the shape are determined by a velocity field Vi, more precisely its normal 

component (Haug et al., 1986; Sokołowski and Zolesio, 1992) 
 

 ( ) ( ( ), ),t id r t r t tV   (3.8) 

then, the evolution of the corresponding level-set function can be described by the Hamilton-

Jacobi-type equation (Osher and Sethian, 1988; Sethian, 1999) 
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where : /
i i i

n      and :
i t

d rV is the speed of the zero-level set that corresponds to the 

defined cost functional. In our work, it is further described by a velocity field vector. 

 

Figure 2.  Signed distance functions with the zero level set of 1 and 2 for 2nd iteration of the optimization process 

  

Figure 3.  Signed distance function with the zero level set of 3 for 2nd iteration of the optimization process 

Note that only the normal component of the velocity field contribute to the changes of a 

boundary, which is totally controlled by the zero level set function in this framework. In this 

work, the Adjoint Variable Method (AVM), see, e.g., (Durand et al., 2009; Igarashi and 

Watanabe, 2010) has been used for the calculation of the speed of the zero-level set function. 

4. Direct problem 

Since the reluctivity has discontinuity across the boundary, we work with a weak formulation of 

the optimization problem. 

4.1. Weak formulation 

Let us define the parabolic-elliptic equation (2.1) for the magnetic vector potential in a weak 

formulation for the 2-D model 

   1 2, ( , ) ( , )ra A l l J   B   (4.1) 



with J being the external source different from zero and  a suitable test function for 

A,   H
1
(D). The symbol H

1
(D) denotes the Sobolev space of the complex-valued functions 

with first weak derivatives. Here, the sesquilinear and the linear load forms read as 
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4.2. Cost functional 

     Then, a cost functional for the multi-objective problem of the CT and/or the TR reduction 

in the 2-D magnetoquasistatic system, while taking the back-EMF as a second objective 

criterion, can finally be defined using the weighted aggregation method (Maler, 2009) as 
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which is subjected to the following constraints 
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Here, r is the radius of the circular path taken, LS represents the axial length of the stator. In 

the equation (4.5), the TV() denotes the total variation regularization (Vogel and Omam, 

1998) with three coefficients such as 1, 2 and 3 introduced for controlling the complexity 

of the zero-level set functions. The parameter N refers to the number of winding turns, S is the 

cross-section area of windings, while nr represents the number of phases. It should be noticed 

that the proposed method requires a priori information about objective functions in the form 

of the assumed weight such that w1, w2 > 0 and w1 + w2 = 1. Therefore, the solution obtained 

in this way is not necessarily non-dominated (Putek et al., 2012). The information about a 

more general methodology such as the Pareto front technique or the scalarizing multi-

objective optimization method can be found, for example, in (Hawe and Sykulski, 2008; Di 

Barba, 2010). The prescribed coefficients SRFM, SRPM and SSFM are specified as the area 

fraction of the PM and iron rotor parts as well as the area fraction of the base tooth in the 

stator, respectively.  



5. Optimization problem 

Since the multi-level set method has been used for the representation of both the rotor poles 

and the tooth base geometry, the optimal rotor design is defined as follows: find the 

distribution of the level set functions , for which a cost functional in the form of the equation 

(4.5), reaches its minimum considering the constraints expressed by the equation (4.6) 
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with  = (1, 2, 3). In order to apply the gradient-based optimization method, first the 

Gâteaux derivative of F with respect to p = (, , Br, J) in a direction h has to be defined 

(Durand et al., 2009) 
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Then, the Gâteaux derivative of the first term, the so-called fidelity term 

w1T[p()] + w2U[p()] of the cost functional defined by the equation (4.5) can be calculated as 

follows  
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  (5.3) 

However, in the engineering problems, sometimes it is needed to calculate the total derivative 

with respect to an implicit function of a design vector variable p, for example, the CT 

 ( )pg A and the back-EMF  ( ) .pf A  In such a situation, the approach proposed in (Dyck 

and Lowther, 1994; Kim et al., 2004; Gawrylczyk and Putek, 2008) can be used without loss 

of the generality of the AVM application. As a result, in a dual problem, the following 

formula can be applied as a right side functional 
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where ,T U Ag f    B
are pseudo-source variables.  

5.1. Sensitivity equation 

For the purpose of the gradient calculation, the AVM has been used, see, e.g., (Park et al., 

1994; Park and Shin, 2003; Srinath and Mittal, 2010). This approach has been applied due to 

its lower computational burden in the comparison to such techniques as the differential 



method or the sensitivity equation method. Hence, to calculate F or F the knowledge of 

variations ( )pA  and ( )pA is required. Therefore, according to the AVM, a weak 

formulation expressed by the equation (4.1) has been Gâteaux differentiated with respect to p 

in order to achieve the so-called sensitivity equation for desired quantities. For this purpose, 

first, one should consider the equation (4.1) for p and afterwards for p + h as follows  
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Next, we apply the Gâteaux derivative for the resulted from subtracting both above equalities 

equation, which leads to 

          , j , j , , , .rD D D D D
A A h A h Jh                   B   (5.5) 

Even though, we do not optimize the shape of winding slots in the stator but only the tooth 

base, we decided to leave the term related to J as a result of the applied form of a weak 

formulation. In this way, the same sesquilinear form a(,A) as in the equation (4.1) but with 

a different right side has been achieved. Furthermore, based on the Lax-Miligram theorem 

(Haug et al., 1986), the existence and uniqueness of the solution of the sensitivity equation for 

A  can be proved. However, to avoid the calculation of A  from the equation for h = 1, … , 

N, resulted from the application of the FE analysis, we formulate the dual problem.  

5.2. Dual problem 

It has been demonstrated in the work (Conway 1997) that it is possible to define the dual 

problem using the linear operators  and *
 in such a way that  

   /, ( ( ), ) ( , ( )) .D Da u u u         (5.6) 

Furthermore, taking the equation (5.6) into account, the dual problem for the sensitivity 

equation (5.6) with derivatives of a cost functional defined by equations (5.3) or (5.4) relies 

on finding H
1
(D), such that 

  , ( , ( )) ( ),Da f         (5.7) 

for all  H
1
(), where the functional f() takes the form 
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Finally, the corresponding Gâteaux derivative of a cost functional can be written using the 

state variables and adjoint variables as follows 

        2 , j , , , .rF A A J                  B   (5.9) 



When the A(p) has been calculated from the weak formulation defined by the equation (4.1) 

and (p) from the dual problem, expressed by the equation (5.7), then the equation (5.9) 

allows to find the Gâteaux derivative of a cost functional in any direction. 

5.3. Gradient  of a cost functional 

By the chain rule, it is easy to show, that following relation holds  
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where pj is an element of the vector p = (r, , Br, J) with the size Np, N = 3. Finally, 

considering the piecewise constant functions represented by equations (3.3) and (3.6) as well 

as equations (5.9) and (5.10), it is possible to obtain  
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where H() and  () are the smeared-out version of the step Heaviside function and the 

Dirac function defined by equations (3.4) and (3.5).  

5.4. Total variation regularization and constraints 

In contrast to work by Yamada et al. (2010) and Lim et al. (2012), we incorporate the TV 

regularization technique into the multi-level set method in order to stabilize the optimization 

process and consequently, to indirectly control the length of the level sets. We were inspired 

by (Cimrák and Melicher, 2007), where the TV regularization was used to find the optimal 

shape design of a magnetic random access memory core using, however, a primal-dual 

approach. In our opinion, the penalization effect without smoothing edges might particularly 

be useful in case of the topology optimization of rotor poles and the tooth base made of 

nonlinear, ferromagnetic materials. It resulted from the fact that if the coefficient has large 

jumps, the use of the regularization in the sense of the H
2
(D) or H

1
(D) is not appropriate 

because of the discontinuities of the coefficient (Chan and Tai, 2004). Furthermore, for a non-

differentiable function of coefficient q, |q| can be understood stricte as a measure (Ziemer, 

1989). It should be noted, however, that in our case the complexity of the structure, obtained 

by minimization a cost functional (4.5), can still be controlled by i coefficients. More 

precisely, in this work, we approximate the TV regularization functional by 
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where,  means the order of the mesh size and  is a positive constant by, for example,  

 2
 = 10

-10
. Both parameters have been introduced in order to avoid dividing zero numbers for 



the (i, j) rectangular element. In this way,  is approximated by the piece constant value over 

mesh elements. Finally, the derivative of the regularization functional can be computed 

directly from (Chan and Tai, 2004, Putek et al., 2014) 
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using either AVM (Vogel and Omam, 1998) or its numerical approximation of the filter 

defined by (5.14). In our work, we implemented the second approach.  

    Finally, the constraints defined by the equation (4.6) can naturally be involved in the 

scheme of the MLSM by using the Lagrange multiplier technique. Details of the derivation 

and implementation can be found in, e.g., (Osher and Santosa, 2001; Kim and Park, 2010; 

Yamada et al., 2010; Lim et al., 2012).   

5.5. Topological Gradient approximation 

Since the proper initialization of the multi-level-set-based algorithm could significantly 

accelerate the optimization process (Putek et al. 2014), the topological gradient (TG) method has 

been used for this purpose (Kim et al., 2009; Putek et. al., 2012). Additionally, the application of 

both the shape and topological sensitivities results in a robust algorithm, which gives more 

flexibility in shape changing (Allaire et al. 2004; Burger et al., 2004) and enables to escape local 

minima (He et al. 2007; Li and Lowther, 2011; Putek et al. 2014). Thus, by definition, the TG 

allows to measure the topology changes in the considered domain  and can be defined as 

(Schumacher et al., 1996) 
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with  \ B( r ,d) = { r   Ω, | 'r – r |2 ≥ d}, δ() = – area(B( r ,d)). Here, Fo() denotes a cost 

functional defined in domain , while B( r ,d) is the ball positioned at the point r with the radius 

d. In case of the PDE with linear, isotropic materials, the problem is rather well studied, see, 

e.g., (Sokołowski and Żochowski 1999; Cea et al., 2000; Amstutz et al., 2007), including the 

topological expansion for the Maxwell equations by Masmoudi M. et al. (2005). Using this 

approach we achieve the formulas as in (Kim et al., 2009; Putek et al., 2012)  
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where ζ denotes the adjoint variable, which is the solution of the dual problem, defined by 

equation (5.7) with a right hand functional (5.4). Even though the topological gradient is defined 

in a different way than the derivative function with respect to the infinitesimal change of the 

material parameter, its computation does not require any additional computational burden. 
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Figure 4.  Evolution of the shapes of the one-pole pair and of the tooth base described by the zero-level set function 

in: a) 2th iteration, b) 5th iteration, c) 8th iteration and d) 13th iteration of the optimization process, where the last one 

presents the optimal solution. 

6. Numerical results 

The optimization procedure described in the previous section has now been further validated 

and applied to determine the optimal rotor poles and the base tooth shapes of the three phases, 

the six-pair of poles, the electrically controlled PM synchronous machine in case of no-load. 

The main parameters of the machine are given in Table 1. This solution enables to obtain the 

ultimate short machine designs in comparison with machines with drum type windings and 

allows to achieve the field weakening capability of 1:4 or even 1:5, what is a very important 

requirement in case of the electro-mobiles applications.  



    For the optimal topology design, shapes of the design domains after topological 

initialization in the first iteration is taken, as shown in Figure 2 and 3, respectively. In case of 

both, the rotor poles and the tooth base shape optimization, the evolution of the zero-level set 

function describing their shapes are shown in Figure 4. Furthermore, for the optimal 

configuration represented by the red line on the Figure 4, the numerical full 3D FE model in 

Flux3D has been built based on the result of the 2D optimization. The topology of both 

machines with the specification of their main parts before and after optimization is depicted 

on Figure 5.  

a) 

 

b) 

 

 Figure 5.  Comparison of the topology of the ECPSM for (a) initial and (b) optimal configuration.  

Next, the mesh of 2D models and the magnetic field distribution in the initial and optimized 

structure under consideration is shown in Figure 6. Similarly, the 3D numerical models of one 

pair of pole of the ECPSM as well as the magnetic field distribution calculated for both 

structures are presented in Figure 7. For this purpose, a commercial software the Flux 3D 

(Flux 3D v.10.4.2, Cedrat, Meylan, 2013) has been used, while the algorithm for the 2D 

optimization has been implemented in the commercial software Comsol (COMSOL 3.5a, The 

COMSOL Inc., Burlington, MA, 2008) and Matlab (MATLAB 7.7, The MathWorks Inc., 

Natick, MA, 2008). The 3D FEA analysis of the CT for the initial and optimal structures has 

been conducted, shown on Figures 8a. The CT has been reduced averagely 91% for the 

optimized machine in comparison with the calculation performed in the initial structure. 
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d) 

 

Figure 6.  Mesh and magnetic field distribution in the initial model (a) and (c), as well as in the optimized 2D 



model of one-pole pair of the ECPSM machine (b) and (d). 

a) 

 

b) 

 

c) 

 

d) 

 
Figure 7.  Mesh and magnetic field distribution in the initial model (a) and (c), as well as in the optimized 3D 

model of one-pole pair of the ECPSM machine (b) and (d). 

 

Figures 8 b, in turn, presents the back-EMF waveform in the armature windings at 1000 rotor 

revolutions per minute (rpm) calculated for models before and after optimization. Moreover, 

the total harmonic distortion (THD) indicator including the fundamental plus harmonics as the 

reference shows approximately 63% reduction of higher harmonics of the back-EMF. 

However, the rectified mean values of EMF calculated for the optimized structure has 

dropped about 19%, while the magnetic flux density considered in the air-gap under magnet 

and iron poles has decreased around 16%. As a result, the rectified mean values of the 

electromagnetic torque shows about 18% decrease in comparison with the analogues quantity 

performed in the initial structure.  

  
a) 

 



 

b) 

 
c) 

 

Figure 8. Analysis of the 3D FE model of the ECPSM machine before and after optimization: a) Cogging torque 

vs. rotor position calculated for both configurations, b) Back-EMF waveforms vs. electric degree at 1000 rpm, c) 

Electromagnetic torque vs electric degree for the initial and optimized structure with a sinusoidal armature 

current supply. 

       Moreover, even though during the optimization, the eddy currents losses have not been 

explicitly taken into account, an impact of the shapes of both the rotor poles and tooth base on 

the distribution of iron and magnet eddy currents has been investigated in the 3D FEA model 

before and after optimization.  

Table 2. The coefficient values of Bertotti method for iron losses estimated in Flux3D 

 

 

 

 

 

For this purpose, the Bertotti method that has been implemented in Flux3D for iron losses and 

magnet eddy current losses has been used (Bertotti, 1988). Within the computation framework 

of Flux3D, the Bertotti losses has been defined as:  
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Considered quantities for sheet iron                                      Value                       Unit 

kh: hysteresis loss coefficient  130.246                    [WsT2/m3], 

σ: classical loss coefficient   1923077                   [S/m] 

ke: loss in excess coefficient   0.357                        [W(T/s)3/2/m3], 

d: thickness of steel iron  0.35 10-3                   [m] 

kf: fill factor  0.97 



where kh is the coefficient of losses by hysteresis, ke is the coefficient of losses in excess, σ is 

the conductivity of the material (coefficient of classical eddy currents losses), d is the 

thickness of the lamination, kf is the coefficient of filling that considers the electrical 

insulation of the laminations of the magnetic core (the stacking factor (0 < kf < 1)), f 

frequency (except in Magneto Harmonic), Bm is the peak value of the magnetic flux density. 

In order to determine the ke and kh coefficients, the formula used in the Flux3D on a piece of 

material corresponding to 1 kg has been applied. The results of this estimation have been 

listed in Table 2. 

  

Figure 9.  Current density in the rotor part of the 3D FE model: a) initial, b) optimal. 
 

Furthermore, in case of magnet part of rotor the eddy current losses are computed under 

assumption that has conductive material properties as follows resistivity 1.6e-6 Ωm. Figure 9 

shows the distribution of the iron losses and the magnet eddy-current losses calculated in both 

the initial and optimal models for the first rotor angular position ϑ = 0.   

 

  
 

  



 
 

Figure 10. Distribution of losses in the particular parts of the ECPSM versus electrical degree at 1000 rpm.  

The distribution of eddy current losses calculated in a particular part of the 3D model of the 

ECPSM is presented on Figure 10. It can be noticed that for the optimized structure, the mean 

of total losses has decreased 60%, while the mean of iron pole losses and magnet losses have 

fallen approximately 92% and 80%, respectively. Finally, some essential results of the 

optimization obtained from the 3D analysis are summarized in Table 3. 

 

Table 3. Values of some physical parameters of the ECPSM before and after optimization 

Considered quantities Before optimization After optimization Ratio 

Cogging Torque [Nm] 

Rectified mean values [Nm]                       0.71 0.07 90.78% 

RMS values [Nm]                       0.83 0.08 89.89% 

Minimal values [Nm]                     -1.32 -0.07 94.41% 

Maximal values[Nm]                       1.30 0.21 83.60% 

3D Eddy Currents Losses [W] 

Mean of iron pole losses [W] 0.13 0.01 91.79% 

Mean of magnet losses [W] 0.05 0.01 79.79% 

Mean of stator core losses [W] 1.95 0.84 56.79% 

Mean of rotor core losses [W] 0.60 0.21 64.47% 

Mean of total losses [W] 16.32 6.44 60.52% 

Other quantities 

   Torque Ripple [Nm] 1.09 0.70 35.54% 

THD of the back-EMF [V/V] 0.17 0.06 62.90% 

Rectified mean values of the back-

EMF [V]: 
  222.20            179.94 19.02% 

Mean of flux density Br in the air-gap [T] 0.19 0.16 16.48% 

RMS of  torque [Nm] 2.08 1.71 17.84% 

Mass of iron pole [g] 16.50 13.70 17.00% 

Mass of PM pole [g] 16.50 11.72 29.00% 

Mass of six units of tooth base [g]              6.0 4.0 25.00% 



7. Conclusions 

In this work, the shape of the iron and the PM rotor pole as well as tooth base of  the stator 

have been simultaneously investigated in order to minimize the level of noise and vibration in 

the ECPSM machine that can be used in modern drives for electro-mobiles. Such an approach 

has been undertaken as the main target of this paper to design the unique PM machine with 

the minimum of both the cogging torque and the torque ripple. The developed 2/3D models 

confirm, that the application of topological and shape sensitivity via the multi-level set 

method with the AVM and the TV regularization leads to a significant reduction of both the 

CT and the TR according to the assumed level of the back-EMF. The simulation results 

obtained for the optimized machine configuration are depicted in Figure 8, whereas the 

distribution of the eddy current losses in both the iron and magnet parts of the machine under 

consideration is depicted in Figure 10. It is worth mentioning that the mean value of total 

losses has been reduced about 60,5% for the whole optimized structure. Furthermore, the 

mass of the machine has been also reduced around 17% for the PM pole, 29% for the iron 

pole and 25% for the tooth base in stator. The main result for the optimization was 

summarized in Table 3. This work also highlights the unique design challenges of the 

proposed methodology. 
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