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Abstract

We present high-order compact schemes for a linear second-order parabolic partial differen-
tial equation (PDE) with mixed second-order derivative terms in two spatial dimensions. The
schemes are applied to option pricing PDE for a family of stochastic volatility models. We use a
non-uniform grid with more grid-points around the strike price. The schemes are fourth-order
accurate in space and second-order accurate in time for vanishing correlation. In our numerical
convergence study we achieve fourth-order accuracy also for non-zero correlation. A combi-
nation of Crank-Nicolson and BDF-4 discretisation is applied in time. Numerical examples
confirm that a standard, second-order finite difference scheme is significantly outperformed.

1 Introduction

We consider the following parabolic partial differential equation for
u = u(x1,x2,t) in two spatial dimensions and time,

(1) dur + a1y, oy + a2Ugyry + D1oUs, 2y + C1Ug, + C2uy, =0 in 2x]0, 7] =: Qr,

subject to suitable boundary conditions and initial condition w(z1, z2,0) = ug(z1, x2) with T > 0
and Q = [20) 2] x [28), 2] C R? with 2{), < 2 for i = 1,2. The functions a; =
ai(x1,x2,7) <0, bia = bia(x1,22,7), ¢; = c¢(1,22,7), d = d(21,22,7) map Qr to R, and a; (-, 7),
b(-,7), ¢i(-,7), and d (-, 7) are assumed to be in C?(Q) and u (-,t) € C®(Q) for all 7 €]0,T]. We
define a uniform spatial grid G with step size Az in xj direction for k = 1,2. Setting f = —du,
and applying a standard, second-order central difference approximation leads to the elliptic problem
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with AO = a’lDfoUil7i2 + angDgUihiQ + blZD(ngUil,ig + ClDfUil,iz + CQDgUihim where Dli
denotes the central difference operator in x;, direction, and ¢ € O (h*) if Azy € O (h) for h > 0.
We call a finite difference scheme high-order compact (HOC) if its consistency error is of order
@ (h4) for Az1,Azy € O (h) for h > 0, and it uses only points on the compact stencil, Uy, with

ke {iy —1,i1,i1 + 1} and p € {ix — 1,49,i2 + 1}, to approximate the solution at (z;,,x;,) € G
2 Auxiliary relations for higher derivatives

Our aim is to replace the third- and fourth-order derivatives in (2) which are multiplied by second-
order terms by equivalent expressions which can be approximated with second order on the compact
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stencil. Indeed, if we differentiate (1) (using f = —du,) once with respect to z; (k = 1,2), we
obtain relations

u Pu
3 — =A — = Ao,
(3) oz3 b o3 2
where we can discretise A; with second order on the compact stencil using the central difference
operator. Analogously, we obtain

Ou _ o bp 9w v _ap @ dl

8%411 - aq &ri’axg 81}?8‘%2 - b12 ! b12 8:5‘1“

o*u bia  O*u Oty as as O*u

4 2l _p,— 22 = —— _-2p 22"

( ) 8%% 2 a9 &rlaxg 81’18(E% b12 2 b12 890%’
0*u a2 0ty . 0*u _ap 0*u

0x30zy ay Ox10x3 Ox 03 az 0x30xy’

where we can approximate By and C} with second order on the compact stencil using the central
difference operator. A detailed derivation can be found in [4].

3 Derivation of high-order compact schemes

In general it is not possible to obtain a HOC scheme for (1), since there are four fourth-order
derivatives in (2), but only three auxiliary equations for these in (4). Hence, we propose four
different versions of the numerical schemes, where only one of the fourth-order derivatives in (2)
is left as a second-order remainder term. Using (3) and (4) in (2) we obtain as Version I scheme
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Employing the central difference operator with Az = Ay = h for h > 0 to discretise A;, B;, C;,
in (5)-(8) and neglecting the remaining lower-order term leads to four semi-discrete (in space)
schemes. A more detailed description of this approach can be found in [4]. When a1 = ag or
b12 = 0 these schemes are fourth-order consistent in space, otherwise second-order.

In time, we apply the implicit BDF4 method on an equidistant time grid with stepsize k €
O(h). The necessary starting values are obtained using a Crank-Nicolson time discretisation,



where we subdivide the first timesteps with a step size &' € O (h2) to ensure the fourth-order time
discretisation in terms of h.

With additional information on the solution of (1) even better results are possible. If the
specific combination of pre-factors in (1) and the higher derivatives in the second-order terms is
sufficiently small, the second-order term dominates the computational error only for very small
step-sizes h. Before this error term becomes dominant one can observe a fourth-order numerical
convergence. In this case we call the scheme essentially high-order compact (EHOC).

4 Application to option pricing

In this section we apply our numerical schemes to an option pricing PDE in a family of stochastic
volatility models, with a generalised square root process for the variance with nonlinear drift term,

dS; =pSedt + orSe dW X, dvp = kv (0 — v) dt + oo dW 2,

with a > 0, a correlated, two-dimensional standard Brownian motion, th(l)th(2) = pdt, as well
as drift 4 € R of the stock price S, long run mean 6 > 0, mean reversion speed x > 0, and volatility
of volatility o > 0. For a = 0 one obtains the standard Heston model, for « = 1 the SQRN model,
see [1]. Using Itd’s lemma and standard arbitrage arguments, the option price V- = V(S, v, t) solves

6l+v5262V aQV—I—ﬂaQV—i-rSa—V—&-m)a(O—v)a—V—rV—O
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(9)

where S,0 > 0 and ¢t € [0,T] with T" > 0. For a European Put with exercise price K we have
the final condition V(S,T) = max (K — S,0). The transformations 7 = T' — ¢, u = ¢""V/K,
S =In(S/K), y=v/o as well as S = ¢ (z) [2], lead to
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with initial condition u(z,y,0) = max (1 — e¥(@), O). The function ¢ is considered to be four times
differentiable and strictly monotone. It is chosen in such a way that grid points are concentrated
around the exercise price K in the S—v plane when using a uniform grid in the z—y plane.

Dirichlet boundary conditions are imposed at & = Xy, and & = Tyax similarly as in [2],

U(Iminy Y, T) - U(xmina Y, 0)7 u(zma)n Y, T) == u(zmaxa Y, 0) VT S [07 Tmax] 4 Yy S [ymina ymax]-

At the boundaries y = ymin and y = Ymax we employ the discretisation of the interior spatial domain
and extrapolate the resulting ghost-points using

Ui—1=3Ui0 —3Uin + Uia + O(h*), Ujng1r =AU — 6U; vi—1 + 4Us pi—2 — Ui v—3 + O(h?),

for ¢ =0,..., N. Third-order extrapolation is sufficient here to ensure overall fourth-order conver-
gence [3].

5 Numerical experiments

We employ the function p(z) = sinh(coz+c1 (1—2)) /¢, where ¢; = asinh(¢Smin), ¢2 = asinh(¢Smax)
and ( > 0. Weuse k =1.1,0 =0.2, v =0.3, r =0.05, K =100, T' = 0.25, vmin = 0.1, Umax = 0.3,
Smin = 1.5, Smax = 250, p = 0,—0.4 and { = 7.5. Hence, Tmax — Tmin = Ymax — Ymin = 1. For
the Crank-Nicolson method we use k’/h% = 0.4, for the BDF4 method k/h = 0.1. We smooth the
initial condition according to [5], so that the smoothed initial condition tends towards the original
initial condition for A — 0. We neglect the case @ = 0 (Heston model), since a numerical study of
that case has been performed in [2]. In the numerical convergence plots we use a reference solution
Uret on a fine grid (h = 1/320) and report the absolute /2-error compared to Uet. The numerical
convergence order is computed from the slope of the linear least square fit of the points in the
log-log plot.
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Figure 1: Transformation of the spatial grid and numerical convergence plots.

Figure 1(a) shows the transformation from z to S. The transformation focuses on the region
around the strike price. Figures 1(b), 1(c), 1(d) and 1(e) show that the HOC schemes lead to a
numerical convergence order of about 3.5, whereas the standard, second-order central difference
discretisation (SD) leads to convergence orders of about 2.3, in the case of vanishing correlation.
In all cases with non-vanishing correlation (p # 0) we observe only slightly improved convergence
for Version 1 (V1) when comparing it to the standard discretisation. Version 2 (V2) and Version
3 (V3), however, lead to similar convergence orders as the HOC scheme, even for non-vanishing
correlation. Results of Version 4 are not shown as this scheme shows instable behaviour in this
example.

In summary, we obtain high-order compact schemes for vanishing correlation and achieve high-
order convergence also for non-vanishing correlation for the family (9) of stochastic volatility model.
A standard, second-order discretisation is significantly outperformed in all cases.
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