
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM)

Preprint BUW-IMACM 15/28
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Abstract

We present high-order compact schemes for a linear second-order parabolic partial differen-
tial equation (PDE) with mixed second-order derivative terms in two spatial dimensions. The
schemes are applied to option pricing PDE for a family of stochastic volatility models. We use a
non-uniform grid with more grid-points around the strike price. The schemes are fourth-order
accurate in space and second-order accurate in time for vanishing correlation. In our numerical
convergence study we achieve fourth-order accuracy also for non-zero correlation. A combi-
nation of Crank-Nicolson and BDF-4 discretisation is applied in time. Numerical examples
confirm that a standard, second-order finite difference scheme is significantly outperformed.

1 Introduction

We consider the following parabolic partial differential equation for
u = u(x1, x2, t) in two spatial dimensions and time,

duτ + a1ux1x1
+ a2ux2x2

+ b12ux1x2
+ c1ux1

+ c2ux2
= 0 in Ω×]0, T ] =: QT ,(1)

subject to suitable boundary conditions and initial condition u(x1, x2, 0) = u0(x1, x2) with T > 0

and Ω =
[
x
(1)
min, x

(1)
max

]
×
[
x
(2)
min, x

(2)
max

]
⊂ R2 with x

(i)
min < x

(i)
max for i = 1, 2. The functions ai =

ai(x1, x2, τ) < 0, b12 = b12(x1, x2, τ), ci = c(x1, x2, τ), d = d(x1, x2, τ) map QT to R, and ai (·, τ),
b (·, τ), ci (·, τ), and d (·, τ) are assumed to be in C2(Ω) and u (·, t) ∈ C6(Ω) for all τ ∈]0, T ]. We
define a uniform spatial grid G with step size ∆xk in xk direction for k = 1, 2. Setting f = −duτ
and applying a standard, second-order central difference approximation leads to the elliptic problem

f =A0 −
a1(∆x1)2

12

∂4u

∂x41
− a2(∆x2)2

12

∂4u

∂x42
− b12(∆x1)2

6

∂4u

∂x31∂x2

− b12(∆x2)2

6

∂4u

∂x1∂x32
− c1(∆x1)2

6

∂3u

∂x31
− c2(∆x2)2

6

∂3u

∂x32
+ ε,(2)

with A0 := a1D
c
1D

c
1Ui1,i2 + a2D

c
2D

c
2Ui1,i2 + b12D

c
1D

c
2Ui1,i2 + c1D

c
1Ui1,i2 + c2D

c
2Ui1,i2 , where Dc

k

denotes the central difference operator in xk direction, and ε ∈ O
(
h4
)

if ∆xk ∈ O (h) for h > 0.
We call a finite difference scheme high-order compact (HOC) if its consistency error is of order
O
(
h4
)

for ∆x1,∆x2 ∈ O (h) for h > 0, and it uses only points on the compact stencil, Uk,p with

k ∈ {i1 − 1, i1, i1 + 1} and p ∈ {i2 − 1, i2, i2 + 1}, to approximate the solution at (xi1 , xi2) ∈
◦
G.

2 Auxiliary relations for higher derivatives

Our aim is to replace the third- and fourth-order derivatives in (2) which are multiplied by second-
order terms by equivalent expressions which can be approximated with second order on the compact
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stencil. Indeed, if we differentiate (1) (using f = −duτ ) once with respect to xk (k = 1, 2), we
obtain relations

∂3u

∂x31
=A1,

∂3u

∂x32
= A2,(3)

where we can discretise Ai with second order on the compact stencil using the central difference
operator. Analogously, we obtain

∂4u

∂x41
=B1 −

b12
a1

∂4u

∂x31∂x2
⇐⇒ ∂4u

∂x31∂x2
=

a1
b12

B1 −
a1
b12

∂4u

∂x41
,

∂4u

∂x42
=B2 −

b12
a2

∂4u

∂x1∂x32
⇐⇒ ∂4u

∂x1∂x32
=

a2
b12

B2 −
a2
b12

∂4u

∂x42
,(4)

∂4u

∂x31∂x2
=C1 −

a2
a1

∂4u

∂x1∂x32
⇐⇒ ∂4u

∂x1∂x32
= C2 −

a1
a2

∂4u

∂x31∂x2
,

where we can approximate Bk and Ck with second order on the compact stencil using the central
difference operator. A detailed derivation can be found in [4].

3 Derivation of high-order compact schemes

In general it is not possible to obtain a HOC scheme for (1), since there are four fourth-order
derivatives in (2), but only three auxiliary equations for these in (4). Hence, we propose four
different versions of the numerical schemes, where only one of the fourth-order derivatives in (2)
is left as a second-order remainder term. Using (3) and (4) in (2) we obtain as Version 1 scheme

f =A0 −
c1(∆x1)2

6
A1 −

c2(∆x2)2

6
A2 −

a2(∆x2)2

12
B2 −

b12(∆x2)2

12
C2

−
a1
(
2a2(∆x1)2 − a1(∆x2)2

)
12a2

B1 +
a1
(
a2(∆x1)2 − a1(∆x2)2

)
12a2

∂4u

∂x41
+ ε,

(5)

as Version 2 scheme

f =A0 −
c1(∆x1)2

6
A1 −

c2(∆x2)2

6
A2 −

a1(∆x1)2

12
B1 −

b12(∆x1)2

12
C1

−
a2
(
2a1(∆x2)2 − a2(∆x1)2

)
12a1

B2 +
a2
(
a1(∆x2)2 − a2(∆x1)2

)
12a1

∂4u

∂x42
+ ε,

(6)

as Version 3 scheme

f =A0 −
c1(∆x1)2

6
A1 −

c2(∆x2)2

6
A2 −

a1(∆x1)2

12
B1 −

a2(∆x2)2

12
B2

− b12(∆x2)2

12
C2 +

b12
(
a1(∆x2)2 − a2(∆x1)2

)
12a2

∂4u

∂x31∂x2
+ ε,

(7)

and, finally, as Version 4 scheme

f =A0 −
c1(∆x1)2

6
A1 −

c2(∆x2)2

6
A2 −

a1(∆x1)2

12
B1 −

a2(∆x2)2

12
B2

− b12(∆x1)2

12
C1 +

b12
(
a2(∆x1)2 − a1(∆x2)2

)
12a1

∂4u

∂x1∂x32
+ ε.

(8)

Employing the central difference operator with ∆x = ∆y = h for h > 0 to discretise Ai, Bi, Ci,
in (5)–(8) and neglecting the remaining lower-order term leads to four semi-discrete (in space)
schemes. A more detailed description of this approach can be found in [4]. When a1 ≡ a2 or
b12 ≡ 0 these schemes are fourth-order consistent in space, otherwise second-order.

In time, we apply the implicit BDF4 method on an equidistant time grid with stepsize k ∈
O
(
h
)
. The necessary starting values are obtained using a Crank-Nicolson time discretisation,
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where we subdivide the first timesteps with a step size k′ ∈ O
(
h2
)

to ensure the fourth-order time
discretisation in terms of h.

With additional information on the solution of (1) even better results are possible. If the
specific combination of pre-factors in (1) and the higher derivatives in the second-order terms is
sufficiently small, the second-order term dominates the computational error only for very small
step-sizes h. Before this error term becomes dominant one can observe a fourth-order numerical
convergence. In this case we call the scheme essentially high-order compact (EHOC).

4 Application to option pricing

In this section we apply our numerical schemes to an option pricing PDE in a family of stochastic
volatility models, with a generalised square root process for the variance with nonlinear drift term,

dSt =µStdt+
√
vtStdW

(1)
t , dvt = κvαt (θ − vt) dt+ σ

√
vtdW

(2)
t ,

with α ≥ 0, a correlated, two-dimensional standard Brownian motion, dW
(1)
t dW

(2)
t = ρdt, as well

as drift µ ∈ R of the stock price S, long run mean θ > 0, mean reversion speed κ > 0, and volatility
of volatility σ > 0. For α = 0 one obtains the standard Heston model, for α = 1 the SQRN model,
see [1]. Using Itô’s lemma and standard arbitrage arguments, the option price V = V (S, v, t) solves

(9)
∂V

∂t
+
vS2

2

∂2V

∂S2
+ ρσvS

∂2V

∂S∂v
+
σ2v

2

∂2V

∂v2
+ rS

∂V

∂S
+ κvα (θ − v)

∂V

∂v
− rV = 0,

where S, σ > 0 and t ∈ [0, T [ with T > 0. For a European Put with exercise price K we have
the final condition V (S, T ) = max (K − S, 0). The transformations τ = T − t, u = erτV/K,
Ŝ = ln(S/K), y = v/σ as well as Ŝ = ϕ (x) [2], lead to

ϕ3
xuτ +

σy

2

[
ϕxuxx + ϕ3

xuyy
]
− ρσyϕ2

xuxy +
[σyϕxx

2
+
(σy

2
− r
)
ϕ2
x

]
ux − κσαyα

θ − σy
σ

ϕ3
xuy = 0,

with initial condition u(x, y, 0) = max
(
1− eϕ(x), 0

)
. The function ϕ is considered to be four times

differentiable and strictly monotone. It is chosen in such a way that grid points are concentrated
around the exercise price K in the S–v plane when using a uniform grid in the x–y plane.

Dirichlet boundary conditions are imposed at x = xmin and x = xmax similarly as in [2],

u(xmin, y, τ) = u(xmin, y, 0), u(xmax, y, τ) = u(xmax, y, 0) ∀ τ ∈ [0, τmax] ∀ y ∈ [ymin, ymax].

At the boundaries y = ymin and y = ymax we employ the discretisation of the interior spatial domain
and extrapolate the resulting ghost-points using

Ui,−1 = 3Ui,0 − 3Ui,1 + Ui,2 +O
(
h3
)
, Ui,M+1 = 4Ui,M − 6Ui,M−1 + 4Ui,M−2 − Ui,M−3 +O

(
h4
)
,

for i = 0, . . . , N . Third-order extrapolation is sufficient here to ensure overall fourth-order conver-
gence [3].

5 Numerical experiments

We employ the function ϕ(x) = sinh(c2x+c1(1−x))/ζ, where c1 = asinh(ζŜmin), c2 = asinh(ζŜmax)
and ζ > 0. We use κ = 1.1, θ = 0.2, v = 0.3, r = 0.05, K = 100, T = 0.25, vmin = 0.1, vmax = 0.3,
Smin = 1.5, Smax = 250, ρ = 0,−0.4 and ζ = 7.5. Hence, xmax − xmin = ymax − ymin = 1. For
the Crank-Nicolson method we use k′/h2 = 0.4, for the BDF4 method k/h = 0.1. We smooth the
initial condition according to [5], so that the smoothed initial condition tends towards the original
initial condition for h→ 0. We neglect the case α = 0 (Heston model), since a numerical study of
that case has been performed in [2]. In the numerical convergence plots we use a reference solution
Uref on a fine grid (h = 1/320) and report the absolute l2-error compared to Uref. The numerical
convergence order is computed from the slope of the linear least square fit of the points in the
log-log plot.

3



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

x

0 0.5 1

S

0

50

100

150

200

250

(a) Transformation with ζ = 7.5
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(b) HOC: α = 0.25, ρ = 0
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(c) HOC: α = 0.5, ρ = 0
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(d) HOC: α = 0.75, ρ = 0
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(e) HOC: SQRN model, ρ = 0
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(f) EHOC: α = 0.25, ρ = −0.4
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(g) EHOC: α = 0.5, ρ = −0.4
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(h) EHOC: α = 0.75, ρ = −0.4
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(i) EHOC: SQRN model, ρ = −0.4

Figure 1: Transformation of the spatial grid and numerical convergence plots.

Figure 1(a) shows the transformation from x to S. The transformation focuses on the region
around the strike price. Figures 1(b), 1(c), 1(d) and 1(e) show that the HOC schemes lead to a
numerical convergence order of about 3.5, whereas the standard, second-order central difference
discretisation (SD) leads to convergence orders of about 2.3, in the case of vanishing correlation.
In all cases with non-vanishing correlation (ρ 6= 0) we observe only slightly improved convergence
for Version 1 (V1) when comparing it to the standard discretisation. Version 2 (V2) and Version
3 (V3), however, lead to similar convergence orders as the HOC scheme, even for non-vanishing
correlation. Results of Version 4 are not shown as this scheme shows instable behaviour in this
example.

In summary, we obtain high-order compact schemes for vanishing correlation and achieve high-
order convergence also for non-vanishing correlation for the family (9) of stochastic volatility model.
A standard, second-order discretisation is significantly outperformed in all cases.
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