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Abstract. In this work we combine high-order-compact (HOC) and alternating-direction-
implicit (ADI) schemes for pricing basket options in a sparse grid setting. HOC schemes exploit
the structure of the underlying partial differential equation to obtain a high order of consistency
while employing a compact stencil. As time discretisation we propose an efficient ADI splitting
to derive a stable scheme. The combination technique is used to construct the so called sparse
grid solution, which leads to a significant reduction of necessary grid points and thus to a lower
computational effort.

1. Introduction. We consider the d-dimensional Black-Scholes partial differential equation (PDE)
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in Q x Q, with Q = [0, 57*] x ... x [0, 59*] and Q; = [0,T]. The volatility of the single assets .S; is
denoted by o; > 0, their correlation is given by p;; for 4, j = 1, ...,d. The risk-free interest rate is given
by r. At maturity ¢ = T the option value is given by its payoff

g(Sl,...,Sd) = (K—Sl —...—Sd)+ (Put), g(Sl,...,Sd) = (S1+~-~+Sd_K)+ (Call)

with the strike price K > 0. We apply the transformations x; = log(S;) for i = 1,...,d, 7 =T — t and
u = e""V, which leads to the transformed PDE
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with space-independent coefficients. In order to solve the PDE (1) numerically we use the method-of-lines
approach and end up with a semi-discretisation in space

%:F(u(ﬂ), 0<7<T,  u0)=g.

We consider ADI splitting schemes in the time domain with the decomposition of the spatial discretisation

where Fj stems from all mixed derivatives and Fj; for i = 1, ..., d belongs to the unidirectional contribution
of the i-th coordinate in the PDE (1). Within the ADI framework the Fy part will always be treated
explicitly. We propose a HOC finite difference discretisation of the F;-terms to compute a highly accurate
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solution while employing a compact stencil. To reduce the number of grid points we use the combination
technique to compute the so called sparse grid solution. Compared to a tensor-based full grid with
O(h~%) points in space, the sparse grid consists of only O(h~!log(h~1)¢~1) nodes. Under suitable
regularity assumptions the pointwise rate of convergence is O(h*log(h~1)?~1) if a fourth order scheme
is used to compute the sub solutions.

2. HOC Finite Differences. We now derive a HOC approximation of the single F; arising in the
decomposition of F. Throughout this article we use standard finite difference operators to approximate
the derivatives. A central discretisation to the first and second derivative of order two is given by
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The mixed derivative term Fy is approximated with the help of fourth order stencils

+ O(h?).

2 1
Oz, uk = 77 (Ukt1 — 2up +up—1) =
:

00 up = o7 (—tro + 8uppy — Bup1 +up2) = (hy).

Thus we can approximate Fy via

Z 100106900 ks + Zo hihd).
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As Fp is always treated explicitly we do not expect any significant adverse effects incorporating these
large stencils regarding the computational effort. The unidirectional contributions are given by

5, 0%u ou
Fz(u):% e 2+(r—1 )axsz, (2)
for i = 1,...,d and some arbitrary right hand side f. Inserting the finite difference operators we obtain
h? 8 u h? 8 u
Fi(uy) = féiuk — lafﬁﬂ + ( o?) Jgiuk - (r - %Uf) —W +O(h ) I (3)

Since the truncation error in (3) is of order two, we can derive a fourth order approximation if the
third and fourth derivative are approximated with second order accuracy. In order to derive these
approximations, we differentiate equation (2) once with respect to z; and get
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Differentiating (2) twice with respect to z; gives
mE(E (-
oz} 2 dz; o? 02 Ox; o? o0x?
The derivatives (4) and (5) can be approximated via central discretisation on the compact stencil with

second order. Hence using (4) and (5) in (3) leads to a fourth order accurate approximation

o2 2 2
h? (r*71> o? o2 B2 h? <T — %)
W‘*‘é 62 uk + <7"—22> 69 uk = fr + §5fo +T62ifk' (6)

Rewriting this scheme in terms of matrices or symbolic operators gives
A, U =B, F

for vectors U and F, where A,, corresponds to the left hand side of (6) and B,, to its right hand side.
The semi-discrete scheme can thus be written as

Ju
5 = Folu) + Bl Agut o+ Byl Agu+ O(h) + ..+ O(hh) + Y O(hih3).

,J



C. HENDRICKS C. HEUER M. EHRHARDT M. GUNTHER

3. HOC-ADI schemes. We now apply three well known ADI schemes to the spatial discretisation
given in the previous section, namely

HOC Douglas scheme:

Z = TI%, Bayun + A (H?_l By, Folun) + 20, H;f? B., Awiun>

VE=
(Ba, — 0MAL) Zi = Zioy — OA Ty Bay Aty for i = 1,...,d (7)
Un41 = Z4,

HOC Craig-Sneyd scheme:

% =Tl By 5 (T B o) + LTI By A

(Bo, — 00 AG,) Zi = Zioa — OA 5y Bo, Au fori=1,....d -

Z = Zo+ 1A, (H}L B., Fo(Za) — T, Bs, Fo(un)) (8)
(By, — M AL ) Z; = Ziq — 0N Hj:i_H By, Agun fori=1,..,d

Up+1 = Zy.

HOC Modified Craig-Sneyd scheme:

Zo =TI Bajun + A (Hf_l By, Fo(u,) + X0, H?? By, Awiun)

(Bo, — 00 AG,) Zi = Zioy — OA TGy Bo, Agup fori=1,....d ”

Z = Zo + 00 (15— Ba, Fo(Za) = Ty Ba, Folun) ) (©)
Zo = Zo+ (L —0)A, (sz1 B.,F(Zs) - 1%, Bg;jF(un))

(Ba, — 0AAL) Zi = Zioy — OAT],_ys1 Bo, Ayt for i = 1,...,d

Up+1 = Zy.

The Douglas scheme, see [2], exhibits a consistency order 2 in time if § = % and Fy = 0, order 1 otherwise.
The consistency order in time of the Craig-Sneyd scheme, see [1], is given by 2 if and only if § = % The
modified Craig-Sneyd scheme, see [4], exhibits consistency order 2 in time for any ¢. The Craig-Sneyd
and the Modified Craig-Sneyd scheme can be seen as an extension of the Douglas scheme.

4. Combination technique. In order to construct the solution on the sparse grid we use the
combination technique, which exploits the error splitting structure to linearly combine an anisotropic
sequence of solutions in such a way that low order error terms cancel out. We assume

d
U(Xh) — U :Z Z wjh-ujk(';hjlﬂ"'ﬂhjk)hi . h;lk,
k=1{j1,....jx}
C{1,...d}
as error with bounded coefficient functions w. The analytical solution on the discrete grid xy, is denoted
by u(xn). Note that such an splitting structure can be shown for a wide class of PDEs and linear finite
difference schemes [7]. Combining the solutions according to

uzdzzwq(dgl) Y w

9= |1\1:n—q

we can expect a pointwise rate of convergence of O(h*log(h~1)471). Here u? denotes the sparse
grid solution on level n. The numerical sub solutions w; are computed on a grid with step sizes
(h1,ha, ..., hg) = (241 01,272 ey, 270 ~cd) with multi-index 1 = (I1,1s,...,14) and grid length ¢;
in coordinate direction i for i =1, ...,d.
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5. Numerical experiments. In this section we apply our numerical schemes to a European
basket put option with two underlyings with parameters

T=1, K=20, 0,=04, 03=03, pi2=005 2™ =_-5 and 2z =log(5K)

K2

for i = 1,2. Figure 1 shows the results of our numerical tests. In the time domain we use the lowest 6
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Figure 1: Numerical convergence plots

value ensuring unconditionally stability in the case of standard second order finite differences [5, 3]. All
three schemes show a stable behaviour, see 1(a) and lead to their expected convergence order. Figure
1(b) and 1(c) show the evolution of the error on the full and sparse grid. We compute the sparse grid
error at the central grid node, which is the only point that belongs to all sub grids and is therefore not
influenced by the interpolation technique used to combine the solutions. The convergence in both plots
is in line with the theoretical findings. Please note that the initial value has been smoothed according
to Kreiss et. al. [6] in order to overcome the deteriorations from the non-smooth option’s payoff.

6. Conclusion and further research. In this work we introduced HOC-ADI schemes to price
basket options. The number of grid points could be reduced significantly using sparse grids and the
combination technique. In a forthcoming paper we generalise these schemes to problems settings with
space-dependent coeflicients. Furthermore we analyse the stability in the von Neumann framework.
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