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Transparent boundary conditions for the hierarchies

of parabolic equations where the solution of the n-

th equation is used as an input term for the n + 1-

th equation are derived. The existence, uniqueness,

and the well-posedness of the initial boundary value

problem for the system of the coupled parabolic

equations with the derived boundary conditions is

established. Such coupled systems of the parabolic

equations can be used to approximate the solution

of the Helmholtz equation. The derived transparent

boundary conditions may be therefore used for the

simulation of the wave propagation in unbounded

media.

1 Introduction

The parabolic equations theory is a powerful com-
putational tool for the solution of various wave
propagation problems (including the simulation of
elastic, seismic and electromagnetic waves). The
wide-angle parabolic equations (PEs) are tradition-
ally derived by means of the operator square root
approximation with a Padé series [1] (hereafter they
are referred to as Padé wide-angle PE). Recently
another approach to the wide-angle parabolic ap-
proximations was proposed [2]. The PE derivation
[2] is based on the systematic use of the multiple-
scale expansion method, and the resulting high-
order parabolic approximations have the form of
the system of parabolic equations (PEs), where the
input term of the n-th PE is obtained from the so-
lution of n − 1-th PE [2]. It is important that for
such parabolic approximations consistent interface
and boundary conditions may be easily derived us-
ing the same multiple-scale asymptotic expansions
[2]. In order to solve numerically wave propaga-
tion problems on unbounded domains using these
new parabolic approximations one has to truncate
the domain by introducing an artificial boundary
(say z = L). The boundary conditions at such ar-
tificial boundary must be set up in such a way that

the outgoing waves leave the computational domain
without being reflected at z = L. Such boundary
conditions are called transparent boundary condi-
tions (TBCs). The theory of the TBS for the stan-
dard narrow-angle PE is well-developed (see [3] for
details and references). The TBCs for the Padé
wide-angle PE were also proposed in several papers
including [4, 5, 6, 7, 8]. In this work we develop the
TBCs for the wide-angle parabolic approximations
derived in [2].

2 Parabolic approximations

The time-harmonic sound field p(x, z) in an acous-
tical waveguide is described by the solution of the
Helmholtz equation for the sound pressure [1]:
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where z denotes the depth (the axis is directed
downwards), and x is the horizontal spatial vari-
able. The medium properties are represented by
the wavenumber κ = κ(x, z) = ω/c, where c is
the sound speed, and the density ρ = ρ(x, z). A
point source at x = 0, z = zs can be introduced
into the equation (1) as an input term of the form
δ(x)δ(z − zs). We consider high-order (wide-angle)
parabolic approximations [2] pn(x, z) to the solu-
tion of (1)

pn(x, z) = eiκ0x

j=n
∑

j=0

Aj(x, z) ,

where κ0 is the reference wavenumber, and κ =
κ + ν(x, y). The envelope functions Aj(x, z) are
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determined by
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where
A−1(x, z) = 0 .

Note that equation (2) greatly simplifies in the case
of a homogeneous medium, where it can be written
as

2iκ0Aj,x +Aj,zz + νAj +Aj−1,xx = 0 . (3)

It is clear that the medium beyond the artificial
boundary must be homogeneous (otherwise the in-
homogeneities will produce back-scattered waves
which cannot be accounted using the TBCs). Hence
in the sequel we restrict our attention to the con-
struction of the TBCs for the simplified system of
the coupled equations (3).
Let A = (A0(x, z), A1(x, z), . . . , An(x, z)) be a

solution to the reference initial boundary value
problem (IBVP) for the system (3):

2iκ0Aj,x +Aj,zz + νAj +Aj−1,xx = 0 ,

A0(0, z) = S(z) , Aj(0, z) = 0 , j = 1, 2, . . . ,

Aj(x, 0) = 0 ,

lim
z→∞

|Aj(x, z)| = 0 .

(4)

in the domain

Ω = {(x, z)|0 ≤ z, 0 ≤ x ≤ xmax}

with the initial condition S(z) compactly supported
on [0, L] where L is sufficiently large. The main
goal of this study is to develop the TBCs for (4) at
z = L.

3 Transparent boundary conditions for

the standard PEs

The TBCs for the standard paraxial equation

i
∂u

∂x
+

∂2u

∂y2
= 0 . (5)

(which is equivalent for the equation (3) for A0)
were proposed in [9], a fully discrete approach was

developed in [5]. The TBCs for the equation (5) at
y = ±a read as
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∂y
(x,±a) = ∓e−iπ/4

√
π

∂

∂x

∫ x

0

u(ξ,±a)
dξ√
x− ξ

= 0 .

(6)
These conditions allow one to replace the Cauchy
problem for (5) on the interval y ∈ (−∞,∞) to
a problem on the finite interval y ∈ [−a, a]. It is
shown in [3, 5] that the Cauchy problem for (5) on
[−a, a] has a unique solution which coincides on this
interval with the solution of the Cauchy problem for
(5) on an unbounded interval y ∈ (−∞,∞) (the
initial conditions are assumed to be identical for
both problems and the initial condition

u(0, y) = S(y) ∈ L2[−a, a]

at x = 0 is compactly supported on [−a, a]).
Our goal is to generalize the condition (6) to the

case of the system (4).

4 TBCs for the higher-order parabolic

approximations

4.1 Problem statement and the DtN operator

We seek to construct the artificial boundary condi-
tions of the form

B(Aj) = 0 , (7)

for (4) at z = L such that the solution At =
(At

0(x, z), A
t
1(x, z), . . . , A

t
n(x, z)) to the IBVP for

the system (4) on the truncated domain Ωt =
{(x, z)|0 ≤ z ≤ L, 0 ≤ x ≤ xmax} with the com-
pactly supported on [0, L] initial conditions and
boundary conditions (7) at z = L coincides with
the solution of the reference IBVP.
The reference IBVP in the halfspace z ≥ 0 is

obviously equivalent to the two coupled systems of
IBVPs:














2iκ0A
t
j,x +At

j,zz + νAt
j +At

j−1,xx = 0 ,
At

0(0, z) = S(z) , At
j(0, z) = 0, j = 1, 2, . . . ,

At
j(x, 0) = 0, j = 0, 1, . . . ,

At
j,z(x, L) = Aj,z(x, L) ,

(8)
where (x, z) ∈ Ωt and















2iκ0A
r
j,x +Ar

j,zz + νbA
r
j +Ar

j−1,xx = 0 ,
Ar

j(0, z) = 0, j = 0, 1, . . . ,
Ar

j(x, L) = At
j(x, L) ,

limz→∞ |Ar
j(x, z)| = 0 ,

(9)
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where (x, z) ∈ Ωr = [0, xmax]× [L,∞).
The system (9) can be solved explicitly for a

given input function Ar
j(x, L) = At

j(x, L). Then
we may compute the derivative of the obtained so-
lution Ar

j,z and use it as a Neumann condition for
the problem (8). The mapping

DN : At
j(x, L) → At

j,z(x, L)

is called Dirichlet-to-Neumann operator, and the
TBC may be written in the form

At
j,z(x, L) = DN (At

j(x, L)) .

4.2 Laplace transformation

To obtain the explicit form of the DN operator we
solve the IBVP (9). First we apply the Laplace
transform to (9):










Âr
j,zz + (2iκ0ξ + νb)Â

r
j = −ξ2Âr

j−1, z ∈ [L,∞),

Âr
j(ξ, L) = Ât

j(ξ, L) ,

limz→∞ |Âr
j(ξ, z)| = 0 .

(10)
Introducing a new variable t = z − L and set-
ting Âr

j(ξ, z) = uj(t), 2iκ0ξ + νb = −w2, ξ2 = v,

Ât
j(ξ, L) = aj in (10), we rewrite the BVP (10) as







u′′

j − w2uj = −vuj−1 , t ∈ [0,∞) ,
uj(0) = aj ,
limt→∞ |uj| = 0 .

(11)

Note that v, w are independent on t, and w =
+
√−2iκ0ξ − νb denotes the branch of the square
root with positive real part.
The solution of (11) can be easily obtained using

standard technique and reads

uj(t) = e−wt (aj + aj−1vP1(t, w)

+aj−2v
2P2(t, w) + · · ·+ a0Pj(t, w)

)

, (12)

where Pk(t) for k ≥ 1 are polynomials such that
u(t) = e−wtPk(t) is a particular solution to the
BVP with homogeneous boundary conditions, i.e.:







u′′ − w2u = −e−wtPk−1(t) ,
u(0) = 0 ,
limt→∞ |u| = 0 .

Substituting u(t) into the latter BVP, we obtain a
BVP for Pk(t)







P ′′

k − 2wP ′

k = −Pk−1 ,
Pk(0) = 0 ,
limt→∞ |Pk(t)e

−wt| = 0 .
(13)

It is easy to check that the problem (13) has an
explicit solution of the form

Pk(t) =
k
∑

j=1

αk,j
tj

w2k−j
, (14)

where the set of coefficients ᾱk+1 = {αk+1,j} may
be computed from the set ᾱk via the recursive for-
mulae:







αk+1,k+1 = 1
2(k+1)αk,k ,

αk+1,j =
j+1
2 αk+1,j+1 +

1
2jαk−1,j , j = 2, . . . , k ,

αk+1,1 = αk+1,2 .
(15)

Using the formulae (12) and (14) we immediately
arrive at the solution Âr

j of the exterior problem
(10) in the Laplace domain (ξ, z):

Âr
j(ξ, z) = e−w(ξ)(z−L)

×
(

j
∑

k=0

ξ2kPk(z − L,w(ξ))Ât
j−k(ξ, L)

)

, (16)

We differentiate the last equation with respect to z
in order to obtain the DN operator:

∂Âr
j(ξ, z)

∂z
= e−w(z−L)

(

j
∑

k=0

ξ2k(P ′

k(z − L)

− wPk(z − L))Ât
j−k(ξ, L)

)

. (17)

Let us recall that the coupling condition in the
IBVP (8) reads At

j,z(x, L) = Ar
j,z(x, L). Next we

substitute the expression for Ar
j,z(ξ, z) from (17)

into this condition. Observing that

w(ξ)e−w(ξ)(z−L)

×
(

j
∑

k=0

ξ2kPk(z − L,w(ξ))Ât
j−k(ξ, L)

)∣

∣

∣

∣

∣

z=L

= w(ξ)Ât
j(ξ, L) ,

and

j
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k=1

ξ2kP ′

k(z − L,w)Ât
j−k(ξ, L)

∣

∣

∣

∣

∣

z=L

=

j
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k=1

ξ2k
αk,1

w2k−1
Ât

j−k(ξ, L) ,
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we obtain the desired TBC in the Laplace domain:

∂Ât
j(ξ, z)

∂z

∣

∣

∣

∣

∣

z=L

= −w(ξ)Ât
j(ξ, L) +

j
∑
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ξ2k
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w2k−1
Ât
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(18)

In order to obtain the TBCs in the physical domain
we compute the inverse Laplace transform L−1 :
f̂(ξ) 7→ f(x) of the equation (18) using the well-
known properties of L−1:

L−1(ξ2kf̂(ξ)) =
d2kf

dx2k
,

L−1(ĝ(ξ − a)f̂(ξ))

= eax
∫ x

0

g(x− y)e−ayf(y)dy

= eaxL−1(ĝ(ξ)L(e−axf(x))) ,

L−1

(

f̂(ξ)

ξk

)

=

∫ y

0

. . .

∫ y2

0

f(y1)dy1dy2 . . . dyk ,

L−1
(

+
√

ξf̂(ξ)
)

=
d

dx

∫ x

0

f(y)dy√
x− y

,

and observing that

1

w(ξ)2k−1
=

ei
π

4
(2k−1)

(2κ0)k−
1
2

+

√

ξ − iνb
2κ0

(

ξ − iνb
2κ0

)k
.

Thus we obtain the following TBCs

∂At
j(x, z)

∂n
= −

√

2κ0

π
e−iπ

4 e
i

ν
b

2κ0
x d

dx

∫ x

0

dy√
x− y

(

At
j(y, z)e

−i
ν
b

2κ0
y

−
j
∑

k=1

αk,1(−2iκ0)
−k

∫ y

0

∫ yk

0

. . .

∫ y2

0

e−i
ν
b

2κ0
y1

∂2kAt
j−k(y1, z)

∂y2k1
dy1dy2 . . . dyk

)

(19)

at z = L and z = 0 (n denotes the outward unit
normal vector at z = L, z = 0 respectively). We
provide the values for the first few coefficients αk,1:

α1,1 =
1

2
, α2,1 =

1

8
, α3,1 =

1

16
, α4,1 =

5

128
,

which are necessary to evaluate the sum in (19).
The TBCs (19) simplify significantly if we choose

the reference wavenumber κ0 in such a way that
νb = 0 (this condition is fulfilled if we set κ0(x) =
κb in (2) ). Under this assumption the multiple
integral on the right-hand side of (19) vanishes, and
the TBC becomes

∂At
j(x, z)

∂n
= −

√

2κ0

π
e−iπ

4

×
j
∑

k=0

αk,1(−2iκ0)
−k d

dx

∫ x

0

∂kAt
j−k(y, z)

∂yk
dy√
x− y

,

at z = 0, L , (20)

where α0,1 = −1.

Note that the TBCs (19), (20) are a natural gen-
eralization of the TBC (6) for the paraxial PE (5)
with the potential vanishing at the artificial bound-
ary [9, 10].

All standard theorems about the existence,
uniqueness, and the well-posedness of the IBVPs for
the narrow-angle parabolic equations (see [3, 5, 11]
for the details) with the transparent boundary con-
ditions can be naturally generalized to the case of
the IBVP (8) with the TBCs (20).

5 Numerical results

To test our TBCs (19) we consider the solution
of the system (8) in the stripe 0 ≤ z ≤ L where
L = 200 m, and the wavenumber corresponds to
the frequency f = 100 Hz and the sound speed
c = 1500 m/s. The TBC (20) is imposed at z = L.
We use the optimal Gaussian initial condition [1]
that simulates the field produced by a point source
located at zs = 100 m as the Cauchy data S(z) for
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Figure 1: Analytical solution A2(x, z) com-
puted by the Fourier method
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Figure 2: Numerical solution A2(x, z) com-
puted by the finite-difference discretization of
the IBVP (8) with the TBC (20)

the first equation (i.e. the equation for A0) in the
system (4). In the case of a homogeneous medium
and the Gaussian Cauchy data the system (4) has a
simple analytical solution (which can be easily ob-
tained using the Fourier method to write the free
space solution and then putting the image source
at z = −zs).

The numerical solution is computed using the
Crank-Nicholson-type scheme for the PE equations
in (8) and the generalization of the Baskakov-
Popov discretization [9] for the TBC (20). It was
shown recently [10] that this discretization allows to
maintain the unconditional stability of the Crank-
Nicholson scheme. Note that this is not necessarily
true for the arbitrary numerical implementation of
the non-local TBCs of the type (6). In cases of

−2 −1.5 −1 −0.5 0
−2.5

−2

−1.5
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log
10

(∆ x)

lo
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Figure 3: Errors for the solution A2(x, z)
(computed at x = 1200 m) as a function of
the mesh size ∆x.

some specific discretizations the stability region of
the resulting numerical scheme may be somewhat
bizarre as it is shown in [12, 13].
As an example we compare the analytical and

the numerical solutions of the third equation of the
system (4), i.e. the equation for A2(x, z). They
are shown in Fig. 1 and 2 respectively. Note that
the amplitude of the reflected wave is much smaller
than that of the incident one. In Fig. 3 we plot-
ted the errors of the numerical scheme (which are
attributed to the reflection) for different values of
the mesh size ∆x (the ratio (∆z)2/∆x = 2 was
kept constant). It is clear that the errors decrease
steadily with the mesh size, and this confirms that
the TBCs (20) are indeed valid for the system (4).

6 Conclusion

In this work the TBCs for the system of the cou-
pled PEs (4) were proposed. This system repre-
sents a wide-angle parabolic approximation for the
Helmholtz equation (1), and as such it is useful for
the solution of various wave propagation problems.
The derived TBCs allow to use these parabolic ap-
proximation in situations where the medium has no
physical boundaries (such problems are ubiquitous
e.g. in the underwater acoustics).

Acknowledgements

The reported study was accomplished dur-
ing P.S. Petrov’s visit to the Bergische Uni-
versität Wuppertal under the DAAD program



6 DAYS on DIFFRACTION 2015

“Forschungsaufenthalte für Hochschullehrer und
Wissenschaftler”. P.S. Petrov was also supported
by the RFFI foundation under the contract No. 14-
05-3148614 mol a and No. 15-35-20105 mol a ved,
the POI FEBRAS Program “Nonlinear dynamical
processes in the ocean and atmosphere”, and the
RF President grant MK-4323.2015.5.

References

[1] Jensen, F.B., Porter, M.B., Kuperman, W.A.,
Schmidt, H., 2011, Computational ocean
acoustics. Springer, New-York et al.

[2] Trofimov, M.Y., Petrov P.S., Zakharenko,
A.D., 2013, A direct multiple-scale approach
to the parabolic equation method, Wave Mo-
tion, vol. 50, pp. 586–595.

[3] Antoine, X., Arnold, A., Besse, C., Ehrhardt,
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parabolic equations, J. Acoust. Soc. Amer.,
vol. 116, pp. 2864–2875.

[7] Mikhin, D., 2008 , Analytic discrete transpar-
ent boundary conditions for high-order Padé
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