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Abstract

In this work we present a result on the non-existence of monotone, consis-
tent linear discrete approximation of order higher than 2. This is an essen-
tial ingredient, if we want to solve numerically nonlinear and particularly
Hamilton-Jacobi-Bellman (HJB) equations.
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1. Introduction

The Hamilton-Jacobi-Bellman (HJB) equation, as well as other nonlinear
PDEs may not have solution in the classical sense. Therefore, Crandall, Ishi
and Lions [1] introduced in 1992 the concept of viscosity solution, suitable for
HJB equations. For a brief introduction to the theory of viscosity solutions
we refer to [2]. However, it can be a problem to find even such solution
analytically, therefore numerical methods schemes are used [3], [4], [5].

The classical theory proposed by Barles and Souganidis [6], which is
widely used for proving the convergence of numerical schemes for HJB equa-
tions, is based on the monotonicity of the underlying scheme. Convergent
schemes for problems from mathematical finance are often first order-accurate

∗Corresponding author
Email addresses: kossaczky@math.uni-wuppertal.de (Igor Kossaczký),
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in time, and first or second-order accurate in space. Recently, Wang and
Forsyth [4] proposed an approach yielding an accuracy close to second order
in space. In this work, we prove that no better result can exist.

2. Definitions

Let us first introduce the basic notations. U denotes a suitable function
space. Let FV (x), F : U → R be any nonlinear differential operator, and

GV (x) = G
(

V (x), V (x+ b1h), V (x+ b2h), . . . , V (x+ bnh)
)

(1)

be the corresponding discrete scheme approximating it. V (x) is defined as
possibly multidimensional function with suitable properties, bi, i = 1, 2, . . . , n
is of the same dimension as x, and the uniform step size h ∈ R

+.

Definition 1 (Monotonicity). A discrete approximation scheme (1) is mono-
tone, if the function G is non-increasing in V (x+bih) for bi 6= 0, i = 1, . . . , n.

Definition 2 (Standard Consistency). The discrete scheme

GV (x) = G
(

V (x), V (x+ b1h), V (x+ b2h), . . . , V (x+ bnh)
)

is a consistent approximation of FV (x), if limh→0 ‖FV (x)−GV (x)‖∞ = 0,
where V (x) is a solution of the equation FV (x) = 0. Further, GV (x) is said
to be consistent of order p > 0, if ‖FV (x)−GV (x)‖∞ = O(hp), h → 0.

However, the equation FV (x) = 0 may not possess classical solutions,
which turns Definition 2 inapplicable. For example, HJB equations often have
solutions only in the viscosity sense. Therefore, we use another definition of
consistency, that doesn’t use a solution of FV (x) = 0:

Definition 3 (Consistency in Viscosity-sense). The discrete scheme

Gφ(x) = G(φ(x), φ(x+ b1h), φ(x+ b2h), . . . , φ(x+ bnh))

is a consistent approximation of FV (x) if limh→0 ‖Fφ(x) − Gφ(x)‖∞ = 0,
for any smooth test function φ(x). We say it is consistent of order p > 0, if
limh→0 ‖Fφ(x)−Gφ(x)‖∞ = O(hp) for any smooth test function φ(x).

Let V (x, y) : R2 → R be a locally C2-function (x, y ∈ R are now one-
dimensional). We define the differential operator L : C2(R2) → C(R2)

LV (x, y) = α1
∂2V

∂x2
+ α12

∂2V

∂x∂y
+ α2

∂2V

∂y2
+ β1

∂V

∂x
+ β2

∂V

∂y
+ γV. (2)
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We assume α1 6= 0 and investigate some properties of the linear operator
L : C2(R2) → C(R2) given by

LV (x, y) = a0(h)V (x, y) + a1(h)V (x+ b1h, y + c1h)

+ a2(h)V (x+ b2h, y + c2h) + · · ·+ an(h)V (x+ bnh, y + cnh),
(3)

where bi 6= 0, or ci 6= 0, i = 1, 2, . . . , n and there exist j, k such that bj 6= 0,
ck 6= 0. (3) should be an approximation of the differential operator LV (x, y).

Definition 4 (Positive coefficients approximation). The linear discrete ap-
proximation scheme (3) satisfies the positive coefficients condition if ai(h) ≥
0 for i = 1, 2, . . . , n, for all h > 0.

Often a scheme is monotone, if and only if its linear part satisfies positive
coefficient condition.

3. Main Results

Theorem 1. There exist no discrete linear approximation LV (x) of LV (x)
satisfying the positive coefficients condition which is consistent (in the vis-
cosity sense) of order higher than 2.

Proof. We rewrite Lφ(x, y) in the form of a Taylor expansion up to order m:

Lφ(x, y) = a0(h)φ(x, y) + a1(h)φ(x+ b1h, y + c1h)

+ a2(h)φ(x+ b2h, y + c2h) + · · ·+ an(h)φ(x+ bnh, y + cnh)

= a0(h)φ(x, y) +
n

∑

i=1

ai(h)(φ(x, y) +
1

1!

1
∑

j=0

(

1

j

)

∂1φ

∂x1−j∂yj
(bih)

1−j(cih)
j

+ · · ·+
1

m!

m
∑

j=0

(

m

j

)

∂mφ

∂xm−j∂yj
(bih)

m−j(cih)
j)

(4)

For an approximation of order p we have ‖Lφ(x, y) − Lφ(x, y)‖∞ = O(hp).
Using the expansion (4), this yields the matrix equation

































1 1 1 · · · 1
0 b1h b2h · · · bnh

0 c1h c2h · · · cnh

0 (b1h)2

2
(b2h)2

2
· · · (bnh)2

2

0 b1c1h
2 b2c1h

2 · · · bncnh
2

0 (c1h)2

2
(c2h)2

2
· · · (cnh)2

2

0 (b1h)3

3!
(b2h)3

3!
· · · (bnh)3

3!
...

...

0 (c1h)m

m!
(c2h)m

m!
· · · (cnh)m

m!

































·















a0(h)
a1(h)
a2(h)
...

an(h)















=































γ

β1

β2

α1

α12

α2

O(hp)
...

O(hp)































. (5)
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We can write (5) shortly as A(h)a(h) = g(h). Let us look at the fourth
row of the system A(h)a(h) = g(h):

a1(h)
(b1h)

2

2
+ a2(h)

(b2h)
2

2
+ · · ·+ an(h)

(bnh)
2

2
= α1. (6)

The right-hand side is of order O(h0), so should be the left hand side.
Therefore, at least one ai(h) should be of order O(hk), k ≤ −2 such that
bi 6= 0. If for all bi 6= 0, ai(h) = O(hj), j > −2 holds, then each non-
zero term of the left-hand side of (6) is of order h2O(hj) = O(h2+j), where
2 + j > 0, so the whole left hand side is of order greater than zero.

Now let us assume that we have a solution of A(h)a(h) = g(h) for p > 2
satisfying the positive coefficients condition. We consider the 11th row of
(5):

a1(h)
(b1h)

4

4!
+ a2(h)

(b2h)
4

4!
+ · · ·+ an(h)

(bnh)
4

4!
= O(hp). (7)

As we noted, there exists an i such that bi 6= 0 and ai(h) = O(hk), k ≤ −2.

Then, also the term in (7) ai(h)
(bih)

4

4!
is of order O(hq), q = k + 4 ≤ 2. Due

to the positive coefficients condition, each term of (7) is non-negative and
hence also the whole left-hand side of (7) will be of order O(hc), c ≤ 2.
However, the right hand side should be of order higher than 2, which leads
to a contradiction.

Remark 1. The proof of the theorem does not take into account the case of
schemes without node in x itself. However, this can be seen as a subcase of
the above schemes with fixed a0(h) = 0.

Remark 2. The proof for higher dimensional function V , with the corre-
sponding second order PDE operator LV can be done in the same manner.

Remark 3. In the case of a linear differential operator with derivatives of
order higher than 2 similar results on the non-existence may be feasible, with
higher maximal order of consistency (in the viscosity sense).

Let us define

LθV (x, y)

= α1(θ)
∂2V

∂x2
+ α12(θ)

∂2V

∂x∂y
+ α2(θ)

∂2V

∂y2
+ β1(θ)

∂V

∂x
+ β2(θ)

∂V

∂y
+ γ(θ)V,

(8)

where θ is a parameter, x, y ∈ R. We now formulate the main result.
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Theorem 2. There exist no monotone discrete approximation

− sup
θ∈Θ

(

LθV (x, y) + δ(θ)
)

of − sup
θ∈Θ

(

LθV (x, y) + δ(θ)
)

consistent (in the viscosity sense) of order higher than 2.

Proof. Since the supremum is a non-decreasing function, LθV (x, y) has to
satisfy the positive coefficients condition so that − supθ∈Θ(LθV (x, y) + δ(θ))
will be monotone. Then,

− sup
θ∈Θ

(

LθV (x) + δ(θ)
)

= − sup
θ∈Θ

(

LθV (x, y) +O(hk) + δ(θ)
)

= − sup
θ∈Θ

(

LθV (x, y) + δ(θ)
)

+O(hk),

where according to Theorem 1, k ≤ 2.

Remark 4. Non-existence of higher order monotone discrete approximations
of f

(

LV (x, y)
)

for a monotone non-increasing function f can be proven in
the same way as in Theorem 2.

4. Application of the results to HJB equation

Now we apply this result to HJB equation with one space dimension.

Definition 5 (Hamilton-Jacobi-Bellman equation). The PDE

∂V (x, t)

∂t
= sup

θ∈Θ

(

α(θ, x, t)
∂2V

∂x2
+ β(θ, x, t)

∂V

∂x
+ γ(θ, x, t)V + δ(θ, x, t)

)

(9)

is called Hamilton-Jacobi-Bellman (HJB) equation.

The coefficients α, β, γ, δ depend on θ as well as on x and t. However, in
each particular time and space, we can treat them as constants with respect
to x, t. This allow us to write the HJB equation in the form

− sup
θ∈Θ

(∂V

∂t
+ α(θ)

∂2V

∂x2
+ β(θ)

∂V

∂x
+ γ(θ)V + δ(θ)

)

= 0 (10)

for any particular values of t and x. Now, Theorem 2 applied on the left
hand side of (10) with y := t and

LθV (x, t) =
∂V

∂t
+ α(θ)

∂2V

∂x2
+ β(θ)

∂V

∂x
+ γ(θ)V

states, that we cannot obtain a monotone discrete linear scheme for the HJB
equation consistent of order higher than 2 in the viscosity sense.

Remark 5. As noted in Remark 2, Theorem 2 can be proved also for higher
dimensions. Therefore, the same result can be obtained in the case of HJB
equations with more space dimensions.
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5. Conclusion

In this work we showed that we cannot apply the convergence theory
[6] to prove the convergence of linear discrete schemes which are consistent
of order higher than 2 in the viscosity sense, since this theory relies on the
monotonicity of the scheme. We used the Definition 3 of the consistency
(viscosity sense) because for HJB equations the standard Definition 2 cannot
be used. For standard PDEs, also consistency in the standard sense of higher
order is feasible. A typical example is a monotone nine-point stencil for the
Poisson equation [7], which is O(h4)-consistent in the standard sense.

It remains the question, if any monotone scheme for the linear part of the
HJB equation −∂V (x,t)

∂t
+LθV (x, t) being consistent of order higher than 2 in

the sense of Definition 2 exists.

Acknowledgement

This research was supported by the EU in the FP7-PEOPLE-2012-ITN
Program under Grant Agreement Number 304617 (FP7 Marie Curie Action,
Project Multi-ITN STRIKE – Novel Methods in Computational Finance).

References

[1] M.G. Crandall, H. Ishii, P.-L. Lions, Users guide to viscosity solutions
of second order partial differential equations, Bull. Amer. Math. Soc. 27
(1992) 1–67.

[2] Q. Liu, X. Zhou, An introduction to viscosity solution theory, Introduc-
tory notes (2013).

[3] P.A. Forsyth, G. Labahn, Numerical methods for controlled Hamilton-
Jacobi-Bellman PDEs in finance, J. Comput. Fin. 11 (2007) 1.

[4] J. Wang, P.A. Forsyth,Maximal use of central differencing for Hamilton-
Jacobi-Bellman PDEs in finance, SIAM J. Num. Anal. 46 (2008) 1580–
1601.

[5] P.A. Forsyth, K.R. Vetzal, Numerical methods for nonlinear PDEs in
finance, in: Handbook of Computational Finance, Springer, 2012, pp.
503–528.

[6] G. Barles, P.E. Souganidis, Convergence of approximation schemes for
fully nonlinear second order equations, Asympt. Anal. 4 (1991) 271–283.

[7] J.B. Rosser, Nine-point difference solutions for Poisson’s equation, Com-
put. Math. Appl. 3 (1975) 351–360.

6


