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Abstract

It is proven that the relativistic quantum fields obtained from analytic continuation of convoluted

generalized (Lévy type) noise fields have positive metric, if and only if the noise is Gaussian.

This follows as an easy observation from a criterion by K. Baumann, based on the Dell’Antonio-

Robinson-Greenberg theorem, for a relativistic quantum field in positive metric to be a free

field.

Mathematics Subject Classification (2010) 81T08, 81T05

1 Introduction

This note solves the problem, whether some of the Euclidean random fields constructed
from convoluted generalized white noise [1, 2, 3, 4, 8, 9, 10, 11, 12, 15, 16, 27, 32] or white
noise analysis [22] correspond to relativistic quantum fields acting on a (positive metric)
Hilbert space.

While it has been proven that such fields, analytically continued to Minkowski space-
time, fulfill all Wightman axioms [24, 30] except for, possibly, positivity, it has also been
proven in [4] that they can always be represented on Krein spaces and thus fulfill the
modified Wightman axioms by G. Morchio and F. Strocchi [23, 26, 31]. Furthermore, in
some cases they expose non trivial scattering behaviour [1, 5, 6, 7].

A counter example for positivity is given in [3] for a special case. In this case, the
Poisson part of the noise that drives the stochastic partial differential equation, from which
the Euclidean random fields originate as a solution, is large compared to the Gaussian
part. This however leaves the general case open, when the Poisson part of the driving
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noise is only a small or medium perturbation to the Gaussian one. See also [18] for another
partial non-positivity result in the case of presence of particles with masses m1 and m2

such that m1 > 2m2.
In this note we prove that relativistic quantum fields obtained by analytic continuation

of the aforementioned random fields act on a positive metric Hilbert space, if and only
if the Poisson part in the Lévy noise is strictly zero. Despite the fact that the proof is
an almost immediate consequence of a criterion by K. Baumann [13] based on prior work
by G. F. Dell’Antonio, O. W. Greenberg and D. W. Robinson [17, 21, 28], the problem
has not be solved previously since the first publication of models from SPDEs driven by
generalized white noise, see [8, 9, 10, 11] for vector fields and [12] for scalar fields. Since
the criterion we use has only been formulated for scalar, charge free and fields, here we
only consider the non positivity for the models described in [12, 2, 3, 22]. With straight
forward modifications of [13, 28], the argument however also generalizes to the vector
valued fields studied in [5, 6, 11, 8, 9, 10, 15, 16, 27].

2 Models from convoluted generalized white noise

In this section we shortly review some results of [2, 3, 4, 12]. Let d ≥ 3 be the space-time
dimension1 and let η be a generalized white noise with characteristic functional, in the
sense of Bochner-Minlos [25], given by

Cη(f) = E[eiη(f)] = exp

{∫
Rd
ψ(f(x)) dx

}
, (1)

where ψ(t) = ibt− σ2

2
t2+λ

∫
R\{0}(e

ist−1)dr(s) is a Lévy characteristic with drift, diffusion

and compound Poisson part and f ∈ S(Rd,R) is a real-valued Schwartz function. We
assume that b ∈ R, σ2, λ ≥ 0 and r a probability measure on R \ {0}. Furthermore we
assume that r has moments of all orders, i.e. rn =

∫
R\{0} s

ndr(s) <∞.

Let us consider the stochastic pseudo differential equation for m0 ≥ 0 and 0 < α < 1

(−∆ +m2
0)
αφ(x) = η(x) (2)

which is solved by the generalized random field φ(x) with characteristic functional

Cφ(f) = exp

{∫
Rd
ψ(G ∗ f(x)) dx

}
, (3)

where G(x) = 1
(2π)d

∫
Rd

1
(|k|2+m2

0)
α e

ik·x dk is the Green function of the pseudo differential

operator (−∆ + m2
0)
α. G ∗ f(x) stands for the convolution of the tempered distribution

G with the test function f . We note that for α = 1
2

and λ = 0 (i.e. pure Gaussian noise),
we obtain the free field and for 0 < α < 1

2
and λ = 0 a generalized free field is obtained

1For the Dell’Antonio-Greenberg-Robinson theorem in d = 2 there exist counter examples, see however
[14]
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[3]. For α > 1
2
, the two point function is no longer (reflection) positive, hence this case

is ruled out from the beginning. Suppose λ > 0, then the truncated n-point Schwinger
function, or n-th cumulant, of φ is

STn (x1, . . . , xn) = cn

∫
Rd

n∏
j=1

G(xj − y) dy (4)

with a constant cn = λrn > 0 if λ > 0 and n ≥ 4 is even.
The Schwinger function can be analytically continued to the tube domains described

in [24, 30]. Taking the boundary values inside the tube to relativistic time, one obtains the
corresponding Whightman functionsW T

n (x1, . . . , xn) with distributional Fourier transform
are obtained in the case 0 < α < 1

Ŵ T
n (k1, . . . , kn) = c̃n

∫
Rn
Ŵ T
n,m1,...,mn

(k1, . . . , kn)
n∏
l=1

ρα,m0(m
2
l )dm

2
1 · · · dm2

n (5)

with ρα,m0(m
2
l ) = 2 sin(πα)Θ(m2 −m2

0)
1

(m2−m2
0)
α and

Ŵ T
n,m1,...,mn

(k1, . . . , kn) =

[
n∑
j=1

j−1∏
l=1

δ+(k2l −m2
l )

1

k2j −m2
j

n∏
l=1

δ−(k2l −m2
l )

]
δ

(
n∑
l=1

kl

)
.

(6)
Here k2 = (k0)2−

∑d−1
j=1 k

2
j is the invariant inner product on Minkowski space and δ±(k2−

m2) = Θ(±k0)δ(k2−m2) is the invariant measure on the positive/negative m mass shell.
Here Θ(k0) is the Heaviside function and 1

k2−m2 is defined by its principal value with
respect to k0-integration. c̃n is some constant which, for 0 < α < 1, vanishes if and only
if cn vanishes.

It has been proven [4, 19, 31] that for all these models, there exists a Hilbert space K
with positive definite inner product (., .), a self adjoint metric operator θ with θ2 = 1 and
a vector Ω ∈ K with θΩ = Ω such that

W T
n (x1, . . . , xn) = (Ω,Φ(x1) · · ·Φ(xn)Ω)T . (7)

where Φ(x) is a operator valued distribution acting on some dense domain D ⊆ K which
transforms covariantly under some θ-unitary representation U of the proper, orthochro-
neous Poincaré group, i.e. θU(g)θ = U−1(g) on D for g ∈ P

↑
+(Rd). The field operators

are local in the usual sense [Φ(x),Φ(y)] = 0 for spacelike separated x and y and the
Wightman functions fulfill the cluster property. In the case of a mass-gap, this leads to
uniqueness of the vacuum also in the indefinite metric case [19]. Furthermore, the fields
Φ(x) are θ-symmetric, i.e. Φ[∗](x) = θΦ∗(x)θ = Φ(x).

This boils the indefinite metric representation down to a change of the involution from
the usual involution ∗ on the Hilbert space (K, (., .)) to the involution [∗] on the inner
product space (K, 〈., .〉) where 〈., .〉 = (., θ.) [19, 26, 31]. The positive metric case is thus
equivalent to the case of a trivial metric operator, θ = 1.
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3 Baumann’s criterion and non positivity for models

from convoluted generalized white noise

Based on the work in [17, 21, 28], K. Baumann proved the following criterion, when a
local, chargeless and Bosonic quantum field with a unique vacuum is a free field:

Criterion 1 ([13]) Let S̃(Rd,C) be the space of complex valued Schwartz functions f
with Fourier transform f̂(k) = 1

(2π)d/2

∫
Rd e

ik·xf(x) dx such that the support of f̂ is purely

space-like, i.e. f̂(k) = 0 if k2 ≥ 0. Let W T
n (x1, . . . , xn) = (Ω,Φ(x1) · · · ,Φ(xn)Ω), xj ∈ Rd,

denote the truncated Whightman functions of a scalar, chargeless quantum field Φ(x) that
fulfills all Wightman axioms [24, 30] including positivity. Suppose that for some n ∈ N,
n ≥ 2, we have

W T
2n(f, h1, . . . , h2n−2, g) = 0 ∀f, g ∈ S(Rd,C) and hj ∈ S̃(Rd,C) (8)

then Φ(x) is a generalized free field in the sense of Greenberg [20]. Here W T
2n(f, h1, . . . ,

h2n−2, g) stands for W T
2n(x1, . . . , xn) smeared with the test fuctions f, h1, . . . , h2n−2, g.

Baumann’s crterion can be traced back to the requirement that [Φ(h),Φ(f)]Ω =
Φ(h)Φ(f)Ω = 0 for all f ∈ S(Rd,C) and h ∈ S̃(Rd,C) implies [Φ(h),Φ(f)]Ω = [W T

2 (h, f)−
W T

2 (f, h)]Ω for f, h ∈ S(R,C) which is deduced from a representation of the Fourier
tansform of distributions vanishing for space-like arguments (like commutators do) with
solutions of a d + 1-dimensional wave equation [33, 21, 28]. Arguments of [33] can then
be used to enlarge the vanishing domain in momentum space up to the point that the
scalar product (Ψ, [Φ̂(k1), Φ̂(k2)]Ω) always vanishes, unless the projection of Ψ to the
zero momentum eigen space is non vanishing. Here Φ̂(k) is the Fourier transform of
Φ(x). But the eigen space of zero momentum is spanned by the unique vacuum vector
and one obtains (Ψ, [Φ̂(k1), Φ̂(k2)]Ω) = (Ψ,Ω)(Ω, [Φ̂(k1), Φ̂(k2)]Ω) for all Ψ in the Hilbert
space. Using the Reeh-Schlieder property [30], this implies canonical commutation rela-
tions [Φ(h),Φ(f)] = [W T

2 (h, f) −W T
2 (f, h)] with respect to the two point function W T

2

and thus Φ(x) must be a free field, see e.g. [13].
We note that, although rightly remarked by N. Nakanishi and I. Ojima [29] the

Greenberg-Robinson theorem also holds for quantum fields in indefinite metric, this
is not true for Baumann’s criterion, since, e.g. W T

4 (f ∗, h∗, h, f) = 0 does not imply
Φ(h)Φ(f)Ω = 0 if the metric is indefinite and h ∈ S̃(Rd,C) and f ∈ S(Rd,C). Here f ∗ is
the complex conjugate of f .

Baumann’s criterion can be applied to prove non-positivity of the metric: Suppose
the criterion (8) holds for a given set of truncated Wightman functions that fulfill all
Wightman axioms except, possibly, for the positivity axiom. Suppose, furthermore, that
some truncated Wightman function W T

l (x1, . . . , xl) with l > 2 does not vanish identically
and, for some n ∈ N, criterion (8) holds. Then the associated quantum field is not
a generalized free field in the sense of [20]. Consequently, in order not to produce a
contradiction with Baumann’s criterion, the field can not fulfill the Wightman axiom of
positivity.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

5

Let us thus check (8) for the truncated Wightman functions given in (5) in Fourier
space. As these are defined by integrals over the distributions Ŵ T

2n,m1,...,m2n
, it is suffi-

cient to verify the condition for the latter. Using the Plancherel formula for tempered
distributions, one obtains for f, g ∈ S(Rd,C) and hj ∈ S̃(Rd,C)

W T
2n(f, h1, . . . , h2n−2, g) = Ŵ T

2n(f̂ , ĥ1, . . . , ĥ2n−2, ĝ). (9)

Using the explicit representation (6), we see that each product of δ±(k2l −m2
l ) with one

of the functions ĥl(kl) vanishes as a consequence of the time-like support properties of
δ±(k2l −m2

l ) and the space-like support properties of ĥl(kl). However, in each j-term in
the sum in (6) there is at least one such pairing, since for n ≥ 2 at least two functions
hl(kl) are present, but only one term 1/(k2j −m2). Thus we see that the right hand side
of (9) gives zero. We thus proved the following:

Theorem 1 None of the convoluted generalized white noise models obtained as the so-
lution of (3) for α > 0 has an analytic continuation to a relativistic quantum field in
positive metric, unless λ = 0 and 0 < α ≤ 1

2
. In particular, the Poisson part of the

Lévy characteristic has to be trivial. In this case, if α = 1
2
, we obtain a free field and, if

0 < α < 1
2
, a generalized free field.

Let us note that the above theorem analogously holds for the models by M. Grothaus
and L. Streit [22] which share the basic structure of Wightman functions with the convo-
luted generalized white noise models and also for the models with non trivial scattering
in [1] that scan be used to interpolate any given scattering amplitude.

It is also straight forward to generalize the arguments of [13, 17, 20, 28] to Bosonic
fields of general integer spin, as covariance under Lorentz transformations is only used to
enlarge the space-like region in momentum space certain scalar products of the quantum
field vanish (and for the proof of the Reeh-Schlieder property, which however holds for
arbitrary spin [30]). As in the criterion by Baumann (8), one assumes that truncated
Wightman functions in Fourier space vanish for the entire spatial momentum region, this
part of the argument is not even needed here. Therefore, our non positivity theorem
equally holds for the vector fields in [5, 6, 11, 8, 9, 10, 15, 16, 27].

Acknowledgement: We would like to thank the Bernoulli Centre Interfacultaire of
EFPL for hosting us during this work in the framework of the Semster program ”Geo-
metric Mechanics, Variational and Stochastic Methods” 2015. In particular we thank the
co-organisers A. B. Cruceiro and D. Holms.
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