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Abstract

The degree of relationship between financial products and financial institutions, e.g.,
must be considered for pricing and hedging. Usually, for financial products modelled
with the specification of a system of stochastic differential equations, the relationship
is represented by correlated Brownian motions (BMs). For example, the BM of the
asset price and the BM of the stochastic volatility in the Heston model [14] correlates
with a deterministic constant.
However, market observations clearly indicate that financial quantities are corre-
lated in a strongly nonlinear way, correlation behaves even stochastically and unpre-
dictably. In this work we extend the Heston model by imposing a stochastic corre-
lation given by the Ornstein-Uhlenbeck and the Jacobi processes. By approximating
non-affine terms we find the characteristic function in a closed-form which can be
used for pricing purposes.
Our numerical results and experiment on calibration to market data validate that
incorporating stochastic correlations improves the performance of the Heston model.

Keywords Heston model, Stochastic Correlation process, Ornstein-Uhlenbeck
process, Jacobi process, Characteristic function

1 Introduction

The Heston model [14] is one of the most widely used affine stochastic volatility
models for equity prices. Heston extended the Black and Scholes model [2] by taking
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into account stochastic volatility given by a Cox-Ingersoll-Ross (CIR) process[7] and
found the conditional characteristic function (CF) in a closed form, from which one
can compute the risk-neutral exercise probabilities appearing in the option pricing
formulas. Indeed, the Heston model belongs to the class of affine diffusion processes
(AD), see [9, 11]. The CF of the processes in the AD class exists and can be derived
as follows: Suppose a system of (stochastic differential equations) SDEs given by

dXt = µ(Xt)dt+ σ(Xt)dWt (1.1)

which is said to be of affine form, if

µ(Xt) = a0 + a1Xt for (a0, a1) ∈ Rn × Rn×n, (1.2)(
σ(Xt)σ(Xt)

>)
i,j

= (b0)i,j + (b1)
>
i,jXt for (b0, b1) ∈ Rn × Rn×n×n, (1.3)

for i, j = 1, ..., n. Then, the CF under the risk-neutral measure Q takes the form

φ (u,Xt, t, T ) = EQ
[
eiu
>XT |Ft1

]
= eA(u,τ)+B(u,τ)Xt . (1.4)

Now setting τ := T − t, the coefficients A(u, τ) and B(u, τ) in (1.4) must satisfy the
following complex-valued ordinary differential equations (ODEs):

d

dτ
B(u, τ) = a>1 B(u, τ) +

1

2
B>(u, τ)b1B(u, τ), (1.5)

d

dτ
A(u, τ) = a0B(u, τ) +

1

2
B>(u, τ)b0B(u, τ), (1.6)

with boundary conditions A(u, 0) = 0 and B(u, 0) = iu.

Due to the fact that in many cases the Heston model can not generate enough skews
or smiles in the implied volatility as market required, especially for a short maturity,
a couple of ideas have been proposed to extend the Heston model: one idea is to
adapt the Heston model by allowing time-dependent parameters [16, 12, 3] or time-
dependent correlations [22]; Christoffersen [6] et al. specified an additional volatility
process to the pure Heston model, called the double Heston model; another way
is to extend the Heston model by introducing a stochastic interest rate which is
the Hybrid-Heston-Hull-White model (HHW) [13]. Summarizing, we put this work’s
contribution into context with respect to some other extensions for the Heston model
in Table 1.

1We fix a probability space (Ω,F , P ) and an information filtration (Ft) = {Ft : t ≥ 0} which is
assumed to satisfy the usual conditions (see e.g. [18]), and X is assumed to be Markov relative to
(Ft).
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The Heston model [14] extended by

allowing time-dependent parameters Mikhailov and Nögel [16], Elices[12],
Benhamou et al.[4]

specifying a two-factor volatility Christoffersen et al. [6]
imposing a stochastic interest rate Grzelak and Oosterlee [13]

imposing a time-dependent correlation Teng et al. [22]
imposing a stochastic correlation Teng et al. [23] and this work

Table 1: Literature on the extension of the Heston model.

The reason, why we incorporate a stochastic correlation into the Heston model is
given as follows: firstly, due to the fact that correlation affects skew of the implied
volatility, introducing a non-constant correlation can certainly improve the calibra-
tion. Teng et al. [22] have shown that calibration of the Heston model can be improved
only by allowing an appropriate local time-dependent correlations; secondly, a couple
of papers (e.g. [25, 19, 20, 21]) have indicated that the correlation between financial
quantities can not be a constant. Thus, the correlation in the financial market must
be modelled in a nonlinear way even randomly by using a mean-reverting stochastic
process like modelling volatility or interest rate. This is to say that using a stochastic
correlation is more realistic than using a constant correlation. Therefore we believe
that introducing a stochastic correlation will improve calibration of the Heston model
better compared to other extensions.

Teng et al. [22] discuss the Heston model with stochastic correlations driven by re-
cently developed diffusion correlation processes, as the OU process [24], the Jacobi
process [25, 17] and the transformed mean-reverting processes by the tangens hy-
perbolicus function [20, 21]. However, the speed of pricing products by numerical
approximation using Monte-Carlo simulation is not acceptable for calibration pur-
poses.

In [13], two projection techniques have been used to derive affine approximations
of the Heston model incorporating stochastic interest rates driven by Hull-White
(HW) [15] and CIR [7] processes, so that calibration and pricing benefits greatly
from the speed of evaluating CFs. In this work, we extend the pure Heston model
by imposing a stochastic correlation given by the Ornstein-Uhlenbeck (OU) and
the bounded Jacobi processes. By approximating non-affine terms we bring these
extended models in the class of AD processes so that the CFs in closed-form can be
found. Thus, we can calibrate the model. By comparison with other models we show
that the implied volatility for our model can be better than other models fitted to
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the market data.

The remainder of the paper is organized as follows. The next section specializes
how to impose generally a stochastic correlation into the pure Heston model. In
Section 3, we investigate the approximations of non-affine terms in the Heston model
extended by different stochastic correlation processes and find the corresponding CFs
in closed-form. Section 4 is devoted to the analysis of the approximation error and the
illustration for the advantages of our models compared to some other models. Finally,
Section 5 concludes this work. And an appendix stating proofs and approximations
is given.

2 Stochastic correlation in the Heston model

Heston’s stochastic volatility model [14] under the risk-neutral measure is specified
as {

dSt = rSt dt+
√
νtSt dW

S
t , S0 > 0,

dνt = κν(µν − νt) dt+ σν
√
νt dW

ν
t , ν0 > 0,

(2.1)

where St is the spot price of the underlying asset, νt is the volatility and the Brownian
motions W S

t and W ν
t are correlated with a constant ρSν . Under the log-transform for

the asset, i.e. xt = log(St), the model is represented by{
dxt = (r − 1

2
νt) dt+

√
νt dW

x
t , x0 = log(S0),

dνt = κν(µν − νt) dt+ σν
√
νt dW

ν
t , ν0 > 0,

(2.2)

which is in the class of AD. The discounted CF has been found by Heston [14]. We
extend the model by imposing stochastic correlation between the asset price and the
volatility given by an appropriate SDE system:

dxt = (r − 1
2
νt) dt+

√
νt dW

x
t , x0 = log(S0),

dνt = κν(µν − νt)dt+ σν
√
νt dW

ν
t , ν0 > 0,

dρt = a(t, ρt)dt+ b(t, ρt)dW
ρ
t , ρ0 ∈ [−1, 1],

(2.3)

where
dW x

t dW
ν
t = ρt dt, dW x

t dW
ρ
t = ρxρ dt, dW ν

t dW
ρ
t = ρνρ dt, (2.4)

i.e. the log price process and the volatility process are set to be correlated stochas-
tically, driven by the correlation process ρt which is by itself correlated with the log
price process by ρxρ and with the volatility by ρνρ, respectively.
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To check conveniently the affinity, we reformulate the SDE system (2.3) with respect
to the independent BMs: We first rearrange the SDE system (2.3) as

dνt = κν(µν − νt)dt+ σν
√
νt dW

ν
t ,

dρt = a(t, ρt)dt+ b(t, ρt)dW
ρ
t ,

dxt = (r − 1
2
νt) dt+

√
νt dW

x
t ,

(2.5)

which has a family of correlation matrices

Ct =

 1 ρνρ ρt
ρρν 1 ρρx
ρt ρxρ 1

 , t ≥ 0, (2.6)

which is symmetric, namely ρνρ = ρρν and ρxρ = ρρx. To simplify notation we set
ρ1 := ρνρ(ρρν) and ρ2 := ρxρ(ρρx). Thus, one can perform a Cholesky-decomposition
Ct = LtL>t , where Lt is a family of lower triangular matrices given by

Lt =


1 0 0

ρ1
√

1− ρ21 0

ρt
ρ2−ρ1ρt√

1−ρ21

√
1− ρ2t −

(
ρ2−ρ1ρt√

1−ρ21

)2

 , t ≥ 0, (2.7)

which can be employed to reformulate the SDE system (2.5) with respect to the

independent BMs W̃ ν
t , W̃

ρ
t and W̃ x

t as:

dνt = κν(µν − νt) dt+ σν
√
νt dW̃ ν

t ,

dρt = a(t, ρt) dt+ ρ1b(t, ρt) dW̃ ν
t +

√
1− ρ21b(t, ρt) dW̃

ρ
t ,

dxt = (r − 1

2
νt) dt+ ρt

√
νt dW̃ ν

t +
ρ2 − ρ1ρt√

1− ρ21

√
νt dW̃

ρ
t

+

√√√√1− ρ2t −

(
ρ2 − ρ1ρt√

1− ρ21

)2
√
νt dW̃ x

t .

(2.8)

The family of symmetric instantaneous covariance matrices for Xt := [νt, ρt, xt]
>

reads

σ(Xt)σ(Xt)
> =

 νtσ
2
ν ρ1σν

√
νtb(t, ρt) σννtρt

∗ b2(t, ρt) ρ2b(t, ρt)
√
νt

∗ ∗ νt

 , t ≥ 0. (2.9)
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Since our main aim is to impose a stochastic correlation between the asset process
and the stochastic volatility process, we first assume ρ1 = 0 so that the latter SDE
system becomes

dνt = κν(µν − νt)dt+ σν
√
νtdW̃ ν

t ,

dρt = a(t, ρt)dt+ b(t, ρt)dW̃
ρ
t ,

dxt =

(
r − 1

2
νt

)
dt+ ρt

√
νtdW̃ ν

t + ρ2
√
νtdW̃

ρ
t +

√
1− ρ2t − ρ22

√
νtdW̃ x

t ,

(2.10)

and the family of symmetric instantaneous covariance matrices reads

σ(Xt)σ(Xt)
> =

 νtσ
2
ν 0 σννtρt

∗ b2(t, ρt) ρ2b(t, ρt)
√
νt

∗ ∗ νt

 , t ≥ 0. (2.11)

We define the discounted characteristic function φ (u,Xt, t, T ) =

EQ
[
e−r(T−t)+iu>XT |Ft

]
, whose Kolmogorov’s backward equation is given by

∂φ

∂t
+(r − 1

2
ν)
∂φ

∂x
+ κν(µν − ν)

∂φ

∂ν
+ a(t, ρt)

∂φ

∂ρ
+

1

2
ν
∂2φ

∂x2
+

1

2
νσ2

ν

∂2φ

∂ν2

+
1

2
b2(t, ρ)

∂2φ

∂ρ2
+ σννtρt

∂2φ

∂ν∂x
+ ρ2b(t, ρt)

√
νt
∂2φ

∂ρ∂x
− rφ = 0

(2.12)

subject to the terminal condition φ (u,XT , T, T ) = eiuxt . Obviously, the system (2.10)
is not in the affine form. We can use appropriate approximations in order to generate
an affine form. We first consider σννtρt : assuming independence between ρt and νt
we can straightforwardly take the following approximation

σννtρt ≈ E [σννtρt] = σνE [νt]E [ρt] . (2.13)

A better approximation could be

σννtρt ≈ σνE [νt] ρt, (2.14)

which is justified due to the assumption ρ1 = 0, because the stochasticity of the
correlation process is kept. We discuss the affinity of the terms including a(t, ρt) and
b(t, ρt) in the next section, as it will depend on the chosen stochastic correlation
process.
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3 Stochastic correlation processes

In this section, we apply an OU process and a Jacobi process to model stochastic
correlation and discuss their merits to be a correlation process. By employing ap-
propriate approximations for non-affine terms we find the CF in closed-form for the
extended Heston model by imposing stochastic correlation.

3.1 The Ornstein-Uhlenbeck process

We first use an OU process [24] to be a stochastic process which is defined by the
SDE

dρt = κρ(µρ − ρt) dt+ σρ dW̃
ρ
t . (3.1)

Therefore, the functions a(t, ρt) and b(t, ρt) defined in (2.10) and (2.11) are known
as κρ(µρ − ρt) and σρ, respectively. The major drawback of using an OU process for
stochastic correlation is that the process is not bounded. This is to say the generated
correlations can be out of the correlation interval [−1, 1]; this specially occurs for a
small value of κρ and a large value of σρ. However, due to its analytical tractability,
one would like to use it for modelling correlation; e.g., Düllmann et al. [10] estimated
asset correlations from stock prices or default rates by assuming correlation following
an OU process.

We employ it for modelling stochastic correlations while we limit the mean value µρ
to be in (−1, 1) and choose a relative large value of κρ, a small value of σρ. We name
this extended Heston model as “HO” model. In the HO model, the remaining non-
affine term is only ρ2σρ

√
νt, see (2.11). For its approximation we use the following

result [13]:
ρ2σρ
√
νt ≈ ρ2σρE [

√
νt] , (3.2)

where E
[√
νt
]

is given in the next proposition.

Proposition 3.1. E
[√
νt
]

can be approximated by

E [
√
νt] ≈ m+ ne−lt, (3.3)

where

m :=

√
µν −

σ2
ν

8κν
, n :=

√
ν0 −m, l := − log

(
n−1

(
d̂−m

))
, (3.4)
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d̂ :=

√(
ν0e−κν −

σ2
ν(1− e−κν )

4κν

)
+ µν(1− e−κν ) +

σ2
νµν(1− e−κν )2

8κνµν + 8κνe−κν (ν0 − µν)
.

(3.5)

The detailed derivation and the test of quality of the approximation can be found in
[13].

We start to derive the CF for the HO model, according to [11]. We first assume that
the discounted CF for the HO model is of the following form:

φHO (u,Xt, τ) = e−rτ+A(u,τ)+B(u,τ)xt+C(u,τ)ρt+D(u,τ)νt (3.6)

with final conditions A(u, 0) = 0, B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0 and τ :=
T − t. By substituting (3.6) into (2.12) we obtain the ODEs related to the HO model
given in the following lemma.

Lemma 3.1. The functions in (3.6) A(u, τ), B(u, τ), C(u, τ) and D(u, τ) for the HO
model satisfy the following ODE system:

B′(u, τ) = 0, B(u, 0) = iu, (3.7)

C ′(u, τ) = σνE[νt]B(u, τ)D(u, τ)− κρC(u, τ), C(u, 0) = 0, (3.8)

D′(u, τ) =
1

2
B2(u, τ) +

1

2
σ2
νD(u, τ)− 1

2
B(u, τ)− κνD(u, τ), D(u, 0) = 0, (3.9)

A′(u, τ) =(B(u, τ)− 1)r + κνµνD(u, τ) + κρµρC(u, τ)

+
1

2
σ2
ρC

2(u, τ) + σρρ2E[
√
νt]B(u, τ)C(u, τ), A(u, 0) = 0,

(3.10)

Obviously, the discounted CF can be obtained as long as the closed-form solution of
the latter ODE system is available.

Lemma 3.2. The solution of the ODE system in Lemma 3.1 is given by

B(u, τ) = iu, (3.11)

D(u, τ) =
κν −D1

σ2
ν

· 1− e−D1τ

1−D2e−D1τ
, (3.12)

A(u, τ) = H1(u, τ) + αH2(u, τ) + βH3(u, τ) +
σ2
ρ

2
H4(u, τ), (3.13)
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C(u, τ) =
C1(µν − ν0)
κν + κρ − l1

e(κν−l1)τ−κνT +
C1(ν0 − µν)
κν + κρ

eκν(τ−T )

+
C1µν
κρ
− C1µν
κρ − l1

e−l1 + C1C2e
−κρτ ,

(3.14)

where m, n, and l defined in (3.4) - (3.5) and

D1 =
√
κ2ν + σ2

ν(u
2 + iu), D2 =

κν −D1

κν +D1

, C1 = iu
κν −D1

σ2
ν

, (3.15)

l1 = − ln

(
e−D1 −D2e−D1

1−D2e−D1

)
, α = κρµρ +mσρρ2ui, β = nσρρ2ui, (3.16)

C2 =
µν − ν0

κν + κρ − l1
e−κνT +

ν0 − µν
κν + κρ

e−κνT − µν
κρ

+
1

κρ − l1
, (3.17)

H1(u, τ) = (iu− 1)rτ +
κνµν
σ2
ν

(
(κν −D1)τ − 2 ln

(
1−D2e

−D1τ

1−D2

))
, (3.18)

H2(u, τ) =
C1(µν − ν0)eκν(τ−T )−l1τ

(κν + κρ − l1)(κν − l1)
+
C1(ν0 − µν)eκν(τ−T )

κν(κν + κρ)
+
µντC1

κρ

+
µνC1e−l1τ

(κρ − l1)l1
− C1C2e−κρτ

κρ
+H2c,

(3.19)

H3(u, τ) =
C1(µν − ν0)eτ(κν+l−l1)−T (κν+l)

(κν + κρ − l1)(κν + l − l1)
+
C1(ν0 − µν)e(τ−T )(l+κν)

(l + κν)(κν + κρ)

+
µνC1el(τ−T )

κρl
− µνC1e

τ(l−l1)−lT

(κρ − l1)(l − l1)
+
C1C2eτ(l−κρ)−lT

l − κρ
+H3c,

(3.20)

H2c =
C1(ν0 − µν)e−κνT

(κν + κρ − l1)(κν − l1)
− C1(ν0 − µν)e−κνT

κν(κν + κρ)
− µνC1

(κρ − l1)l1
+
C1C2

κρ
,

(3.21)

H3c =
C1(µν − ν0)e−T (κν+l)

(κν + κρ − l1)(κν + l − l1)
+
C1(ν0 − µν)e−T (l+κν)

(l + κν)(κν + κρ)
+
µνC1e

−lT

κρl

− µνC1e
−lT

(κρ − l1)(l − l1)
+
C1C2e

−lT

l − κρ
,

(3.22)
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H4(u, τ) = H4c1e2κν(τ−T ) +H4c4e−τl1 +H4c5e(−l1−κρ)τ +H4c9eτ(κν−κρ)−κνT

+H4c2e2τ(κν−l1)−2κνT +H4c3eτ(2κν−l1)−2κνT +H4c11eτ(κν−κρ−l1)−κνT

+H4c12eτ(κν−l1)−κνT +H4c13eτ(κν−2l1)−κνT +H4c6eτ(−2κρτ +H4c7e−κρτ

+H4c8e−2l1τ +H4c10eτ(κν−l1)−κνT +H4c14eκρ(τ−T ) +
C2

1µ
3
ντ

κ2ρ
+H4c,

(3.23)

H4c = (H4c1 +H4c2 +H4c3)e−2κνT +H4c4 +H4c5 +H4c6 +H4c7 +H4c8

+ (H4c9 +H4c10 +H4c11 +H4c12 +H4c13 +H4c14)e−κνT ,
(3.24)

with

H4c1 :=
C2

1(ν0 − µν)2

2κν(κν + κρ)2
, H4c2 :=

C2
1(ν0 − µν)2

2(2κν + κρ − l1)2(κν − l1)
, (3.25)

H4c3 :=
2C2

1(ν0 − µν)2

(κν + κρ − l1)(κν + κρ)(l1 − 2κν)
, H4c4 :=

2C2
1µ

2
ν

κνl1(κρ − l1)
, (3.26)

H4c5 :=
2µνC

2
1C2

κ2ρ − l21
, H4c6 := −1

2

C2
1C

2
2

κρ
, H4c7 := −2µνC

2
1C2

κ2ρ
, (3.27)

H4c8 := −1

2

µ2
νC

2
1

l1(κρ − l1)2
, H4c9 :=

2(ν0 − µν)C2
1C2

(κν + κρ)(κν − κρ)
, H4c14 :=

2C2
1(ν0µν − µ2

ν)

κνκρ(κν + κρ)2
,

(3.28)

H4c10 :=
2C2

1(µ2
ν − ν0µν)

(κν + κρ)(κν − l1)(κρ − l1)
, H4c11 :=

2(µν − ν0)C2
1C2

(κν + κρ − l1)(κν − κρ − l1)
,

(3.29)

H4c12 :=
2C2

1(µ2
ν − ν0µν)

κρ(κν − l1)(κν + κρ − l1)
, H4c13 :=

2C2
1(ν0µν − µ2

ν)

(κρ − l1)(κν − 2l)(κν + κρ − l1)
.

(3.30)

The proof can be found in appendix A.1.

3.2 The bounded Jacobi process

In this section, we consider modelling stochastic correlation using the bounded Jacobi
process

dρt = κρ(µρ − ρt) dt+ σρ
√

1− ρ2t dW̃
ρ
t , (3.31)
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where the functions a(t, ρt) and b(t, ρt) defined in (2.10) and (2.11) are κρ(µρ −
ρt) and σρ

√
1− ρ2t , respectively. Van Emmerich [25] proved that the boundaries

−1 and 1 of (3.31) are not attractive and unattainable with the following restriction
of the parameter range

κρ >
σ2
ρ

1± µρ
. (3.32)

For the detailed derivation we refer to [25]. We call this extended Heston model as
“HJ” model. Similar to the HO model, from (2.11) we observe that the non-affine
terms in the HJ model are b2(t, ρt) and ρ2b(t, ρt)

√
νt, as

b2(t, ρt) = σ2
ρ(1− ρ2t ), (3.33)

ρ2b(t, ρt)
√
νt = ρ2σρ

√
1− ρ2t

√
νt. (3.34)

We try to find appropriate approximations for (3.33) and (3.34) which are affine. We
consider first (3.33) which could be approximated by

σ2
ρ(1− E[ρ2t ]), (3.35)

where E[ρ2t ]) is given by [26]

E[ρ2t ] =
1

σ4
ρ + 3κρσ2

ρ + 2κ2ρ
e−t(σ

3
ρ+2κρ)

(
(σ4

ρ + 3κρσ
2
ρ + 2κ2ρ)ρ

2
0

+ 2µρκρρ0(σ
2
ρ + 2κρ)(e

t(σ2
ρ+κρ) − 1) + σ2

ρ(σ
2
ρ + κρ)(e

t(σ2
ρ+2κρ) − 1)

− 2µ2
ρκρ
(
κρ(2et(σ

2
ρ+κρ) − et(σ

2
ρ+2κρ) − 1)− σ2

ρe
t(σ2

ρ+κρ)(etκρ − 1)
))
.

(3.36)

We see that the latter equation is rather complicated and not convenient for further
calculation. Therefore, we introduce the following approximation.

Proposition 3.2. E[ρ2t ] can be approximated by

f2(t) := E[ρ2t ] ≈ e−m2t + b2e
−n2t + a2, (3.37)

where

a2 =
(σ2

ρ + κρ)(σ
2
ρ + 2κρµ

2
ρ)

σ4
ρ + 3κρσ2

ρ + 2κ2ρ
, b2 = ρ20 − a2 − 1, (3.38)

m2 = −2 log
(
γ1 − b2e−

n2
2

)
, n2 = −2 log

(
b2γ1 −

√
b21γ

2
1 − γ2γ3

γ2

)
, (3.39)

with
γ1 := f2(0.5)− a2, γ2 := b2 + b21, γ3 := γ21 + a2 − f2(1). (3.40)

11
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The proof and the test of quality of the approximation can be found in Appendix
B.2.

Next, we investigate the approximation for the other non-affine term (3.34). Due to
ρ1 = 0 we propose to approximate (3.34) using its expectation

ρ2σρ
√
νt ≈ ρ2σρE[

√
1− ρ2t ]E[

√
νt]. (3.41)

E[
√
νt] is already known, see Prop. 3.1. The remaining task is to find a formula for

E[
√

1− ρ2t ]; for this we apply the delta method which has also been used to find the
approximation for E[

√
νt] in [13]. Say that ψ(X) is sufficiently smooth where the first

two moments of X exist, then with the aid of Taylor expansion we have

ψ(X) ≈ ψ(E[X]) + (X − E[X])
∂ψ

∂X
E[X], (3.42)

such that the variance of ψ(X) can be given by

V[ψ(X)] ≈ V
[
ψ(E[X]) + (X − E[X])

∂ψ

∂X
E[X]

]
=

(
∂ψ

∂X
E[X]

)2

V[X]. (3.43)

Now, setting ψ(ρt) =
√

1− ρ2t we obtain

V
[√

1− ρ2t
]

=
E[ρt]

2

1− E[ρt]2
V[ρt]. (3.44)

On the other hand, from the definition of the variance we also get

V
[√

1− ρ2t
]

= E[1− ρ2t ]− E
[√

1− ρ2t
]2
. (3.45)

Directly, from the latter two equations we obtain finally

E
[√

1− ρ2t
]

=

√
E[1− ρ2t ]−

E[ρt]2

1− E[ρt]2
V[ρt] =

√
1− E[ρ2t ]− E[ρt]4

1− E[ρt]2
, (3.46)

where E[ρ2t ] is given in (3.36) and its approximation in (3.37). Besides, we know
E[ρt] = µρ + (ρ0 − µρ)e

−κρt for the correlation process ρt defined in (3.31). In the
same way as above we try to find a suitable approximation for (3.46) which has a
more convenient form.

12
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Proposition 3.3. E[
√

1− ρ2t ] can be approximated by

f3(t) := E[
√

1− ρ2t ] ≈ e−m3t + b3e
−n3t + a3, (3.47)

with

a3 =

√
1−

(σ2
ρ + κρ)(σ2

ρ + 2κρµ2
ρ)− µ4

ρ(σ
4
ρ + 3κρσ2

ρ + 2κ2ρ)

(1− µ2
ρ)(σ

4
ρ + 3κρσ2

ρ + 2κ2ρ)
, b3 =

√
1− ρ20 − a3 − 1

(3.48)

m3 = −2 log
(
η1 − b3e−

n3
2

)
, n3 = −2 log

(
b3η1 −

√
b23η

2
1 − η2η3

η2

)
, (3.49)

with
η1 := f3(0.5)− a3, η2 := b3 + b23, η3 := η21 + a3 − f3(1). (3.50)

We show the proof and measure quality of the approximation in Appendix B.3.
Again, we assume that the discounted CF for the HJ model to be of the following
form:

φHJ (u,Xt, τ) = e−rτ+Ã(u,τ)+B̃(u,τ)xt+C̃(u,τ)ρt+D̃(u,τ)νt (3.51)

with final conditions Ã(u, 0) = 0, B̃(u, 0) = iu, C̃(u, 0) = 0, D̃(u, 0) = 0 and τ :=
T − t. By substituting (3.51) into (2.12) we can obtain a similar ODEs as in Lemma
3.1.

Lemma 3.3. The functions in (3.51) Ã(u, τ), B̃(u, τ), C̃(u, τ) and D̃(u, τ) for the
HJ model satisfy the following ODE system:

B̃′(u, τ) = 0, B̃(u, 0) = iu, (3.52)

C̃ ′(u, τ) = σνE[νt]B̃(u, τ)D̃(u, τ)− κρC̃(u, τ), C̃(u, 0) = 0, (3.53)

D̃′(u, τ) =
1

2
B̃2(u, τ) +

1

2
σ2
νD̃(u, τ)− 1

2
B̃(u, τ)− κνD̃(u, τ), D̃(u, 0) = 0, (3.54)

Ã′(u, τ) =(B̃(u, τ)− 1)r + κνµνD̃(u, τ) + κρµρC̃(u, τ) +
1

2
σ2
ρE[1− ρ2t ]C̃2(u, τ)

+ σρρ2E[
√
νt]E[

√
1− ρ2t ]B̃(u, τ)C̃(u, τ), A(u, 0) = 0.

(3.55)

We observe that there is only a difference between the ODEs in Lemma 3.1 and 3.3 in
A(u, τ) because of the distinct correlation processes used. This also means that the
solutions of B̃(u, τ), C̃(u, τ) and D̃(u, τ) coincide with B(u, τ), C(u, τ) and D(u, τ)
in the HO model. Therefore we only need to calculate (3.55) to gain the discounted
CF for the HJ model (3.51). We state our result in the following lemma.
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Lemma 3.4. The solutions of B̃(u, τ), C̃(u, τ), D̃(u, τ) are respectively equal to
(3.11), (3.14), (3.12), and

A(u, τ) =H̃1(u, τ) + (κρµρ + a3mζ)H̃2(u, τ) + a3nζH̃3(u, τ, l) + b3mζH̃3(u, τ, n3)

+mζH̃3(u, τ,m3) + b3nζH̃3(u, τ, (l + n3)) + nζH̃3(u, τ, (l +m3))

+
σ2
ρ

2
(1− a2)H̃4(u, τ)−

σ2
ρ

2
H̃(u, τ,m2)−

b2σ
2
ρ

2
H̃(u, τ, n2),

(3.56)

where ζ = σρρ2ui, H̃1(u, τ) = H1(u, τ) (3.18), H̃2(u, τ) = H2(u, τ) (3.19), H̃4(u, τ) =
H4(u, τ) (3.23),

H̃3(u, τ, y) =
C1(µν − ν0)eτ(κν+y−l1)−T (κν+y)

(κν + κρ − l1)(κν + y − l1)
+
C1(ν0 − µν)e(τ−T )(y+κν)

(y + κν)(κν + κρ)

+
µνC1ey(τ−T )

κρy
− µνC1eτ(y−l1)−yT

(κρ − l1)(y − l1)
+
C1C2e

τ(y−κρ)−yT

y − κρ
+H3c,

(3.57)

H̃3c =
C1(µν − ν0)e−T (κν+y)

(κν + κρ − l1)(κν + y − l1)
+
C1(ν0 − µν)e−T (y+κν)

(y + κν)(κν + κρ)
+
µνC1e

−yT

κρy

− µνC1e
−yT

(κρ − l1)(y − l1)
+
C1C2e−yT

y − κρ
,

(3.58)

H̃(u, τ, y) = I1e(y+2κν−l1)τ−(y+2κν)T + I2e
(y+κν−l1)τ−(y+κν)T + I3e

(y+κν−2l1)τ−(y+κν)T

+ I4e
(y+κν)(τ−T ) + I5e

(y+κν−l1)τ−(y+κν)T + I6e
(y−2l1)τ−yT + I7e

(y+2κν−2l1)τ−(y+2κν)T

+ I8e
(y+2κν)(τ−T ) + I9e(κν−κρ+y−l1)τ−(y+κν)T + I10e(κν−κρ+y)τ−(y+κν)T

+ I11e
(y−2κρ)τ−yT + I12e

(y−κρ)τ−yT + I13e
y(τ−T ) + I14e

(y−l1)τ−yT + I15e(y−l1−κρ)τ−yT + H̃c,

H̃c = (I1 + I7 + I8)e−(y+2κν)T + (I2 + I3 + I4 + I5 + I9 + I10)e−(y+κν)T

+ (I6 + I11 + I12 + I13 + I14 + I15)e−yT ,
(3.59)
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with

I1 =
−2C2

1(ν0 − µν)2

(κν + κρ − l1)(κν + κρ)(y + 2κν − l1)
, I2 =

2C2
1(µ2

ν − µνν0)
κρ(κν + κρ − l1)(y + κν − l1)

,

I3 =
2C2

1(µνν0 − µ2
ν)

(κρ − l1)(κν + κρ − l1)(y + κν − 2l1)
, I4 =

2C2
1(µνν0 − µ2

ν)

κρ(κρ + κν)(κν + y)
,

I5 =
2C2

1(µ2
ν − µνν0)

(κρ − l1)(κν + κρ)(y + κν − l1)
, I6 =

C2
1µ

2
ν

(κρ − l1)2(y − 2l1)
,

I7 =
C2

1(ν0 − µν)2

(κν + κρ − l1)2(y + 2κν − 2l1)
, I8 =

C2
1(ν0 + µν)

2

(κρ + κν)2(2κν + y)
,

I9 =
2C2

1C2(µν − ν0)
(κν + κρ − l1)(κν − κρ + y − l1)

, I10 =
2C2

1C2(ν0 − µν)
(κν + κρ)(κν − κρ + y)

,

I11 =
C2

1C
2
2

y − 2κρ
, I12 =

2C2
1C2µν

yκρ − κ2ρ
, I13 =

C2
1µ

2
ν

yκ2ρ
,

I14 =
−2C2

1µ
2
ν

κρ(yκρ − l1κρ − yl1 + l21)
, I15 =

−2C2
1C2µν

(κρ − l1)(y − κρ − l1)
.

C1, l1 and C2 are respectively located in (3.15), (3.16) and (3.17).

The proof can be found in appendix A.2.

We have now obtained the explicit CFs for both models. One can thus do fast pricing
by inverting the CFs directly using numerical integration, e.g., see [5, 8] for Fourier
methods.

4 Numerical experiments

In this section, we conduct some numerical experiments to firstly justify the proposed
approximations of non-affine terms and secondly to confirm our statement that im-
posing a stochastic correlation into the Heston model can improve the performance
of the Heston model.
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4.1 Approximation error

We compare the implied volatilities for the extended Heston model (HO and HJ)
to the volatilities implied by performing a Monte-Carlo simulation as the bench-
mark. We define the approximation error as absolute difference between them. For
a Monte-Carlo simulation of the extended Heston with stochastic correlation we use
the method proposed in [23]. The basic idea is: first to discretize the volatility pro-
cess νt by employing quadratic-exponential scheme [1]; however, instead of using the
way proposed by Andersen [1] to discretize the log-price process, one can directly
use the Euler or Milstein scheme for the log-price process in (2.8) or (2.10). For the
motivation and the merits of this simple discretization we refer to [23].

For the Monte-Carlo simulation using the OU process, in order to ensure that the
generated correlations lie in the interval (−1, 1), as mentioned before, we choose
values of µρ and ρ0 from (−1, 1) and a large value of κρ, a small value of σρ. For
using the bounded Jacobi process we only need to take care of the condition (3.32).
We consider a Call-option (S0 = 100) for the maturity of 5 years and present our
results in Table 2 and 3, where 20T steps and 105 paths are used for the Monte-
Carlo simulation; the implied volatilities and errors are expressed as percentage. We
consider first Table 2 where σρ is set to be 0.1. From the values of error we see that
the approximations in both models give highly accurate results. Besides, we observe
that the values of implied volatilities are the same for the HO and HJ model; there is
no significant difference by varying ρ2. This observation can be explained as follows:
the OU process and the bounded Jacobi process are both mean-reverting processes;
more exactly, they have a same structure for the drift. When the value of σρ is so
small that the random part in correlation process will play a minor role, one obtains
thus same implied volatilities for using the OU and the bounded Jacobi process.
Similarly, if the correlation process is not so random for a small value σρ, the effect
of ρ2 will be rather small. In Table 3, we increase the value of σρ to be 0.18, the
mentioned differences between using the HO and HJ model, or for varying ρ2 can
be seen. The error values in this table showed again that the approximations give
a rather accurate result. For the Monte-Carlo simulation we remark: while choosing
the parameters one needs to pay attention to keep the value inside of the square root
to be positive, see (2.10).
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Model HO HJ
ρ2 Strike MC Imp. vol. Approx Err. MC Imp. vol. Approx. Err.

40 19.45 (0.16) 19.12 0.33 19.38 (0.16) 19.12 0.26
80 17.26 (0.20) 17.46 0.20 17.22 (0.20) 17.46 0.24

−0.2 100 16.58 (0.23) 16.83 0.25 16.61 (0.23) 16.83 0.22
120 16.28 (0.25) 16.26 0.02 16.27 (0.25) 16.26 0.01
160 15.08 (0.30) 15.17 0.09 15.33 (0.30) 15.17 0.16

40 19.18 (0.16) 19.13 0.05 19.38 (0.16) 19.13 0.25
80 17.32 (0.20) 17.46 0.14 17.27 (0.20) 17.46 0.19

0 100 16.65 (0.23) 16.83 0.18 16.71 (0.23) 16.83 0.12
120 16.16 (0.25) 16.26 0.10 16.06 (0.25) 16.26 0.20
160 15.23 (0.30) 15.17 0.06 15.22 (0.30) 15.17 0.05

40 19.45 (0.16) 19.14 0.31 19.31 (0.16) 19.14 0.17
80 17.30 (0.20) 17.46 0.16 17.25 (0.20) 17.46 0.20

0.4 100 16.59 (0.23) 16.82 0.24 16.59 (0.23) 16.82 0.24
120 16.22 (0.25) 16.25 0.03 16.10 (0.25) 16.25 0.15
160 15.57 (0.30) 15.18 0.39 15.52 (0.30) 15.18 0.35

Table 2: The other parameters are assumed as: ν0 = 0.02, κν = 2.1, µν = 0.03, σν =
0.2, ρ0 = −0.4, κρ = 3.4, µρ = −0.6, σρ = 0.1, the numbers in round brackets
represent the standard deviations.

4.2 Calibration to the market data

In order to recognize the performance of our models in a calibration setting, we
compare the calibration using the Heston model extended with stochastic correlation
to the calibrations using the pure Heston model and the double Heston model. For
the market data, we choose Put-options on the Nikk300 index on December 31,
2012, which is representative for the skew and patterns observed. Since our aim is
a comparison of our models to the pure Heston model [14] and the double Heston
model [6], we thus just use the standard optimization methods: we fit the prices
computed by the different models to the market observed prices for several strikes
Ti and maturities Kj; one can obtain the parameter estimates by minimizing, e.g.,
mean squared error (MSE)

1

N

∑
i,j

wij(P
Mkt(Ti, Kj)− PMod(Ti, Kj))

2, (4.1)
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Model HO HJ
ρ2 Strike MC Imp. vol. Approx Err. MC Imp. vol. Approx. Err.

40 19.24 (0.16) 19.51 0.27 19.27 (0.16) 19.02 0.25
80 17.38 (0.20) 17.39 0.01 17.37 (0.20) 17.42 0.05

−0.2 100 16.82 (0.23) 16.86 0.04 16.75 (0.23) 16.84 0.08
120 16.05 (0.25) 16.27 0.22 16.18 (0.25) 16.31 0.13
160 15.31 (0.30) 15.35 0.04 15.16 (0.30) 15.35 0.19

40 19.29 (0.16) 19.72 0.43 19.25 (0.16) 19.03 0.22
80 17.34 (0.20) 17.38 0.04 17.24 (0.20) 17.42 0.18

0 100 16.70 (0.22) 16.86 0.16 16.71 (0.22) 16.83 0.12
120 16.26 (0.25) 16.25 0.01 16.14 (0.25) 16.30 0.16
160 15.22 (0.30) 15.37 0.15 15.41 (0.30) 15.36 0.05

40 19.36 (0.16) 20.00 0.64 19.33 (0.16) 19.04 0.29
80 17.35 (0.20) 17.37 0.02 17.31 (0.20) 17.42 0.11

0.2 100 16.61 (0.23) 16.86 0.25 16.79 (0.23) 16.82 0.03
120 16.36 (0.25) 16.22 0.14 16.07 (0.25) 16.30 0.22
160 15.63 (0.30) 15.39 0.24 15.46 (0.30) 15.36 0.10

Table 3: The other parameters are assumed as: ν0 = 0.02, κν = 2.1, µν = 0.03, σν =
0.2, ρ0 = −0.4, κρ = 3.5, µρ = −0.55, σρ = 0.18, the numbers in round brackets
represent the standard deviations.

with the market price PMkt(Ti, Kj) and the corresponding model price PMod(Ti, Kj);
wij is an optional weight.

We report our results in Table 4, where νk0 , κ
k
ν , µ

k
ν , σ

k
ν , σ

k
ν are parameters for the

two stochastic volatilities in the double heston model, k = 1, 2. We see that the

Pure ν0 κν µν σν ρ MSE
Heston 0.05 4.13 0.05 0.39 −0.47 2.3× 10−2

Double ν10 κ1ν µ1
ν σ1

ν ρ1 ν10 κ2ρ µ2
ρ σ2

ρ ρ2 MSE
Heston 0.05 6.36 0.02 0.49 −0.23 0.01 5.69 0.03 0.62 −0.44 1.3× 10−2

Heston ν0 κν µν σν ρ0 κρ µρ σρ ρxρ MSE
OU 0.06 3.32 0.07 2.02 −0.01 2.12 −0.31 0.33 −0.88 6.7× 10−3

Heston ν0 κν µν σν ρ0 κρ µρ σρ ρxρ MSE
Jacobi 0.05 0.75 0.07 0.50 −0 2.72 −0.17 0.02 −0.91 5.4× 10−3

Table 4: Estimated model parameters for the Nikk300 index on December 31, 2012.
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MSE values for the Heston model with stochastic correlation is smaller than the
pure Heston model and the double Heston model.

To illustrate more clearly, we define the error as absolute value of the difference
between the implied market volatilities and the model implied volatility, namely

Error := |V olMkt(Ti, Kj)− V olMod(Ti, Kj)|. (4.2)

Then, we compare the errors for these models in Figure 1 for relatively short ma-
turities T = 30, 90, 180, 360 days and in Figure 2 for relative long maturities
T = 2, 3, 4, 5 years.

We observe, for all maturities, that the Heston model extended by incorporating
stochastic correlation (in the both cases HO and HJ) can be better fitted to real
market data not only than the pure Heston model but also than the double Heston
model, although the extended Heston model with stochastic correlation has one pa-
rameter less than the double Heston model. This proves that introducing a stochastic
correlation can significantly improve calibration. About how each parameter of the
stochastic correlation process effect the implied volatilities we refer to [23].

5 Conclusion

In this article we have presented how to impose a stochastic correlation generally
into the pure Heston model. We have considered the HO and HJ model by using
the OU process and the bounded Jacobi process to model stochastic correlation. By
approximating appropriately non-affine terms we bring the extended model into the
class of AD processes. Thus we find the CF in closed-form, which can be employed
for fast fast pricing and calibration purposes. The error of approximations has been
analyzed by comparison to the Monte-Carlo simulation. The experiments on the
calibration to real market data has shown that introducing a stochastic correlation
can not only improve significantly the performance of the pure Heston model, but
also be better than the double Heston model. The great importance of modelling
financial correlation as a stochastic process has thus been validated.
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Figure 1: Using the Nikk300 index on December 31, 2012 where spot price is 174.3,
and for some short maturities T = 30, 90, 180, 360 days, the errors (defined as
absolute value of the differences between the implied market volatilities and the
implied volatilities for the models) are compared for the pure Heston model (’PH’),
the double Heston model (’DH’), the HO model and the HJ model. ErrorSum denotes
the sum of errors for each maturity with different strikes.

Appendices

A Proofs

A.1 The proof of Lemma 3.2

Proof. Recall the ODE system in Lemma 3.1

B′(u, τ) = 0, B(u, 0) = iu, (A.1)

C ′(u, τ) = σνE[νt]B(u, τ)D(u, τ)− κρC(u, τ), C(u, 0) = 0, (A.2)

D′(u, τ) =
1

2
B2(u, τ) +

1

2
σ2
νD(u, τ)− 1

2
B(u, τ)− κνD(u, τ), D(u, 0) = 0, (A.3)
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Figure 2: Using the Nikk300 index on December 31, 2012 where spot price is 174.3,
and for some long maturities T = 2, 3, 4, 5 years, the errors (defined as absolute value
of the differences between the implied market volatilities and the implied volatilities
for the models) are compared for the pure Heston model (’PH’), the double Heston
model (’DH’), the HO model and the HJ model. ErrorSum denotes the sum of errors
for each maturity with different strikes.

A′(u, τ) = (B(u, τ)− 1)r + κνµνD(u, τ) + κρµρC(u, τ)

+
1

2
σ2
ρC

2(u, τ) + σρρ2E[
√
νt]B(u, τ)C(u, τ), A(u, 0) = 0.

(A.4)

Straightforwardly, due to the final condition B(u, 0) = iu we obtain B(u, τ) = iu.
We consider first the following Riccati-type equation:

∂D(u, τ)

∂τ
=

1

2
B2(u, τ) +

1

2
σ2
νD(u, τ)− 1

2
B(u, τ)− κνD(u, τ), D(u, 0) = 0,

H1(u, τ) = (iu− 1)rτ + κνµν

∫ τ

0

D(u, s) ds, H1(u, 0) = 0,
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which has the same form as those in [14] so that we can gain the solution given by

D(u, τ) =
κν −D1

σ2
ν

· 1− e−D1τ

1−D2e−D1τ
, (A.5)

H1(u, τ) = (iu− 1)rτ +
κνµν
σ2
ν

(
(κν −D1)τ − 2 ln

(
1−D2e

−D1τ

1−D2

))
, (A.6)

where D1 =
√
κ2ν + σ2

ν(u
2 + iu) and D2 = κν−D1

κν+D1
.

We turn to (A.2) where

E[νt] = (ν0 − µν)e−κν(T−τ) + µν . (A.7)

To find its analytical solution we use the approximation

1− e−l1τ ≈ 1− e−D1τ

1−D2e−D1τ
, (A.8)

where l1 defined in (B.4). The detailed information and the measure of the quality
of this approximation can be found in Appendix B.1. We can thus rewrite (A.5) as

D(u, τ) =
κν −D1

σ2
ν

· (1− e−l1τ ). (A.9)

and set

C1 := iu
κν −D1

σ2
ν

, (A.10)

sequentially, (A.2) can be rewritten as

C ′(u, τ) = σνC1

(
(ν0 − µν)e−κν(T−τ) + µν

)
· (1− e−l1τ )− κρC(u, τ), C(u, 0) = 0,

(A.11)
which has a analytical solution, although its calculation is a bit tedious but straight-
forward. We obtain

C(u, τ) =
C1(µν − ν0)
κν + κρ − l1

e(κν−l1)τ−κνT +
C1(ν0 − µν)
κν + κρ

eκν(τ−T ) +
C1µν
κρ

− C1µν
κρ − l1

e−l1 + C1C2e
−κρτ ,

(A.12)

where l1 defined in (B.4), C1 defined in (A.10) and C2 is given by

C2 :=
µν − ν0

κν + κρ − l1
e−κνT +

ν0 − µν
κν + κρ

e−κνT − µν
κρ

+
1

κρ − l1
. (A.13)
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Finally, we rewrite (A.4) with approximations as

A(u, τ) = H1(u, τ) + (κρµρ +mσρρ2ui)︸ ︷︷ ︸
:=α

H2(u, τ) + nσρρ2ui︸ ︷︷ ︸
:=β

H3(u, τ) +
σ2
ρ

2
H4(u, τ),

(A.14)
for whose solutions we only need to calculate the following integrals

H2(u, τ) =

∫ τ

0

C(u, s) ds, H2(u, 0) = 0, (A.15)

H3(u, τ) =

∫ τ

0

e−(T−τ)lC(u, s) ds, H3(u, 0) = 0, (A.16)

H4(u, τ) =

∫ τ

0

C2(u, s) ds, H4(u, 0) = 0, (A.17)

where the constants m, n, and l are defined in (3.4) - (3.5). The calculation of the
integrals above is straightforward but rather tedious.

A.2 The proof of Lemma 3.4

Proof. As indicated before, the solutions of B̃(u, τ), C̃(u, τ) and D̃(u, τ) are the same
as B, C and D in the HO model. We consider now only

A′(u, τ) =(B̃(u, τ)− 1)r + κνµνD̃(u, τ) + κρµρC̃(u, τ) +
1

2
σ2
ρE[1− ρ2t ]C̃2(u, τ)

+ σρρ2E[
√
νt]E[

√
1− ρ2t ]B̃(u, τ)C̃(u, τ), Ã(u, 0) = 0.

(A.18)

By substituting the approximations of E[ρ2t ], E[
√

1− ρ2t ] and E[
√
νt] into (A.18) we

obtain

Ã′(u, τ) =(B̃(u, τ)− 1)r + κνµνD̃(u, τ) + κρµρC̃(u, τ)

+ σρρ2(m+ ne−l(T−τ))(e−m3(T−τ) + b3e
−n3(T−τ) + a3)B̃(u, τ)C̃(u, τ)

+
1

2
σ2
ρC̃

2(u, τ)(1− e−m2(T−τ) − b2e−n2(T−τ) − a2), Ã(u, 0) = 0,

(A.19)
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which can be reformulated as

Ã(u, τ) =H̃1(u, τ) + (κρµρ + a3mσρρ2ui)H̃2(u, τ) + a3nσρρ2uiH̃3(u, τ)

+
σ2
ρ

2
(1− a2)H̃4(u, τ) + b3mσρρ2uiH̃5(u, τ) +mσρρ2uiH̃6(u, τ)

+ b3nσρρ2uiH̃7(u, τ) + nσρρ2uiH̃8(u, τ)−
σ2
ρ

2
H̃9(u, τ)−

b2σ
2
ρ

2
H̃10(u, τ)

with the following integrals

H̃1(u, τ) = (iu− 1)rτ + κνµν

∫ τ

0

D̃(u, s) ds, H̃2(u, τ) =

∫ τ

0

C̃(u, s) ds,

H̃3(u, τ) =

∫ τ

0

e−(T−τ)lC̃(u, s) ds, H̃4(u, τ) =

∫ τ

0

C̃2(u, s) ds,

H̃5(u, τ) =

∫ τ

0

e−(T−τ)n3C̃(u, s) ds, H̃6(u, τ) =

∫ τ

0

e−(T−τ)m3C̃(u, s) ds,

H̃7(u, τ) =

∫ τ

0

e−(T−τ)(l+n3)C̃(u, s) ds, H̃8(u, τ) =

∫ τ

0

e−(T−τ)(l+m3)C̃(u, s) ds,

H̃9(u, τ) =

∫ τ

0

e−m2(T−τ)C̃2(u, s) ds, H̃10(u, τ) =

∫ τ

0

e−n2(T−τ)C̃2(u, s) ds,

H̃i(u, 0) = 0 for i = 1 · · · 10.

It is easy to see that H̃1, H̃2, H̃3 and H̃4 are respectively equal to H1, H2, H3 and H4

which have been given before. Besides, the solutions of H̃5, H̃6, H̃7, H̃8 can be directly
obtained by adopting the solution of H̃3, as they have only different constant coeffi-
cient in the exponential function. For simplicity of notation, we let this coefficient to
be a variable of H̃3, namely H̃3(u, τ, l). The solutions of H̃5, H̃6, H̃7 and H̃8 can thus
be immediately given by H̃3(u, τ, n3), H̃3(u, τ,m3), H̃3(u, τ, (l+n3)) and H̃3(u, τ, (l+
m3)), respectively. Now, only the integral in the following form

H̃(u, τ, y) =

∫ τ

0

e−y(T−τ)C2(u, s) ds, H̃(u, 0) = 0

need to be calculated. The calculation is straightforward, however, rather tedious.
It is Obvious that H̃(u, τ,m2) = H̃9(u, τ) and H̃(u, τ, n2) = H̃10(u, τ). Finally, by
defining ζ := σρρ2ui, A(u, τ) can be rewritten as

A(u, τ) =H̃1(u, τ) + (κρµρ + a3mζ)H̃2(u, τ) + a3nζH̃3(u, τ, l) + b3mζH̃3(u, τ, n3)

+mζH̃3(u, τ,m3) + b3nζH̃3(u, τ, (l + n3)) + nζH̃3(u, τ, (l +m3))

+
σ2
ρ

2
(1− a2)H̃4(u, τ)−

σ2
ρ

2
H̃(u, τ,m2)−

b2σ
2
ρ

2
H̃(u, τ, n2).
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B Approximations

B.1 Approximation I

We match f1(τ) := 1−e−D1τ

1−D2e−D1τ
≈ m1 + n1e

−l1τ := f̃1(τ) for τ → 0, τ →∞, τ → 1 :

lim
τ→0

f1(τ) = 0 = m1 + n1 = lim
τ→0

f̃1(τ), (B.1)

lim
τ→∞

f1(τ) = 1 = m1 = lim
τ→∞

f̃1(τ), (B.2)

lim
τ→1

f1(τ) =
1− e−D1

1−D2e−D1
= 1− e−l1 = lim

τ→1
f̃1(τ), (B.3)

which give us that

m1 = 1, n1 = −1, l1 = − ln

(
e−D1 −D2e

−D1

1−D2e−D1

)
. (B.4)

In order to measure the quality of this approximation we compare f1(τ) to f̃1(τ) for
different randomly chosen parameters in Figure 3.
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Figure 3: The quality of the approximation f̃1(τ) versus the original f1(τ) for ran-
domly chosen parameters.
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B.2 Approximation II

We match f2(t) := E[ρ2t ] ≈ e−m2t + b2e
−n2t +a2 := f̃2(t) for t→ 0, t→ 1

2
, t→ 1, t→

∞ as follows:

lim
t→∞

f2(t) =
(σ2

ρ + κρ)(σ
2
ρ + 2κρµ

2
ρ)

σ4
ρ + 3κρσ2

ρ + 2κ2ρ
= a2 = lim

t→∞
f̃2(t), (B.5)

lim
t→0

f2(t) = ρ20 = 1 + b2 + a2 = lim
t→0

f̃2(t), (B.6)

lim
t→ 1

2

f2(t) = f2(0.5) = e−
m2
2 + b2e

−n2
2 + a2 = lim

t→ 1
2

f̃2(t), (B.7)

lim
t→1

f2(t) = f2(1) = e−m2 + b2e
−n2 + a2 = lim

t→1
f̃2(t). (B.8)

From (B.5) and (B.6) one obtains directly a2 =
(σ2
ρ+κρ)(σ

2
ρ+2κρµ2ρ)

σ4
ρ+3κρσ2

ρ+2κ2ρ
and b2 = ρ20−a2−1.

Then one needs to solve the system of equations (B.7) and (B.8) to find m2 and n2

which has been given in (3.39). Like in the last section, we compare f2(τ) to f̃2(τ)
for different randomly chosen parameters to measure the quality of the proposed
approximation.
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f̃2(ρ)
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Figure 4: The quality of the approximation f̃2(t) versus the original f2(t) for randomly
chosen parameters.
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B.3 Approximation III

We match f3(t) := E[
√

1− ρ2t ] ≈ e−m3t + b3e
−n3t + a3 := f̃3(t) for t→ 0, t→ 1

2
, t→

1, t→∞ as follows:

lim
t→∞

f3(t) =

√
1−

a2 − µ4
ρ

1− µ2
ρ

= a3 = lim
t→∞

f̃2(t), (B.9)

lim
t→0

f3(t) =
√

1− ρ20 = 1 + b3 + a3 = lim
t→0

f̃3(t), (B.10)

lim
t→ 1

2

f3(t) = f3(0.5) = e−
m3
2 + b3e

−n3
3 + a3 = lim

t→ 1
2

f̃3(t), (B.11)

lim
t→1

f3(t) = f3(1) = e−m3 + b3e
−n3 + a3 = lim

t→1
f̃3(t). (B.12)

From (B.9) and (B.10) one obtains directly

a3 =

√
1−

(σ2
ρ + κρ)(σ2

ρ + 2κρµ2
ρ)− µ4

ρ(σ
4
ρ + 3κρσ2

ρ + 2κ2ρ)

(1− µ2
ρ)(σ

4
ρ + 3κρσ2

ρ + 2κ2ρ)

and b3 =
√

1− ρ20 − a3 − 1. Further, we solve the system of equations (B.11) and
(B.12) to find m3 and n3 which has been given in (3.49). The comparison of f3(τ)
with f̃3(τ) and the measure of quality of the approximation for different randomly
chosen parameters is exhibited in Figure 5.
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Figure 5: The quality of the approximation f̃3(t) versus the original f3(t) for randomly
chosen parameters.
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[16] S. Mikhailov and U. Nögel, Heston’s Stochastic Volatility Model: Implementa-
tion, Calibration and some Extensions, Wilmott Magazine (July 2003), 74-79.

[17] J. Ma, Pricing Foreign Equity Options with Stochastic Correlation and Volatility,
Ann. Econ. Fin. 10(2) (2009), 303-327.

[18] B. Øksendal, Stochastic Differential Equations, Springer-Verlag, 2000.
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