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Abstract When using the Lanczos method to approximate f(A)b, the action of a

matrix function on a vector, there is, in contrast to the solution of linear systems, no

straightforward way to measure or estimate the error of the current iterate. Therefore,

to be able to decide whether the desired accuracy has been reached, several different

estimates and bounds for the error have been suggested, all of them specific to certain

classes of functions. In this paper, we add to these results by developing a technique

to compute error bounds for Stieltjes functions, using a recently suggested integral

representation of the error, and we show how these bounds can be computed essentially

for free, i.e., with cost independent of the iteration number and the dimension of the

matrix A.

Keywords matrix function · Stieltjes function · Krylov subspace approximation ·
Lanczos method · error estimates · Gaussian quadrature
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1 Introduction

Given a Hermitian positive definite matrix A ∈ Cn×n, a vector b ∈ Cn and a suf-

ficiently smooth function f , a common and important task in numerical simulations

is the computation of f(A)b, the action of the matrix function f(A) on the vector

b. Important examples are the exponential function f(z) = ez used in exponential

integrators for the solution of differential equations [30,31], the matrix sign function in

lattice quantum chromodynamics [6,42] and fractional powers f(z) = zα in fractional

differential equations [7, 36] or sampling from Gaussian-Markov random fields [32].

The direct computation of f(A) is often not feasible as the matrix A is typically

large and sparse in most applications, e.g., a discretization of a differential operator,
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but f(A) is a dense matrix in general; cf., e.g., [29]. Therefore it is common practice

to approximate f(A)b directly by some iterative method. The most prominent class of

iterative methods for matrix functions are Krylov subspace methods [10,22,30,33,37,

43] and among these Arnoldi’s method which reduces to the Lanczos method in the

Hermitian case. In the mth step of this method, an orthonormal basis V = [v1 | · · · |
vm] of the mth Krylov subspace Km(A, b) = span{b, Ab, . . . , Am−1b} is constructed

which fulfills the Lanczos relation

AVm = VmTm + tm+1,mvm+1e
T
m,

where Tm ∈ Cm×m is a tridiagonal matrix and em denotes the mth canonical unit vec-

tor. Given this decomposition, the mth Lanczos approximation for f(A)b is computed

as

fm = Vmf(Tm)V Hm b = ‖b‖Vmf(Tm)e1, (1)

where, as everywhere in this paper unless stated otherwise, ‖ · ‖ denotes the Euclidean

vector norm.

In the special case f(z) = z−1 where the computation of f(A)b corresponds to

solving the linear system Ax = b, the iterates produced by the Lanczos method are

identical to those of the conjugate gradient method for linear systems [28].

One major difference when computing f(A)b for general f instead of solving a

linear system is that no straight-forward stopping criterion is available. When solving

a linear system, one can easily and efficiently compute the norm of the residual rm =

b −Afm to monitor the progress of the method. Using the relation

Aem = rm

for the error em = A−1b − fm one can measure the error via ‖r‖, the AHA-energy

norm of e , or obtain the simple error bound

‖A−1b − fm‖ ≤
1

λmin
‖rm‖,

where λmin denotes the smallest eigenvalue of A, which is supposed to be known. One

can also use more sophisticated techniques to compute error bounds, e.g., based on

Gauss quadrature, see [25].

As one does not have a residual available for general f , one has to resort to other

techniques for deciding at which point the Lanczos iteration can be terminated because

the current iterate fulfills the desired accuracy requirements.

Due to this fact, various estimates and bounds for ‖f(A)b−fm‖ have been consid-

ered in the literature, e.g., for the exponential function [30], for the sign function [42]

or for rational functions [18, 20, 21]. All these bounds and estimates have in common

that they only apply to special functions or classes of functions and do not hold for

arbitrary f . In this paper, we add to these results by considering another class of func-

tions, the Stieltjes functions, see, e.g. [4, 5, 27], i.e., functions f which can be defined

via a Riemann–Stieltjes integral

f(z) =

∫ ∞
0

1

t + z
dµ(t), z ∈ C \ (−∞, 0] (2)
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with respect to some positive, monotone function µ(t), also called the generating func-
tion of f . Two important examples of Stieltjes functions relevant in practical applica-

tions are

z−α =
sin(απ)

π

∫ ∞
0

t−α

t + z
dt for α ∈ (0, 1)

and
log(1 + z)

z
=

∫ ∞
1

t−1

t + z
dt.

For more examples of Stieltjes functions see, e.g., [4, 5, 27].

Using a result from [15,16], one can see that the error of the Lanczos approximation

fm for a Stieltjes function of the form (2) is given as the action of a Stieltjes function

corresponding to a different generating function µ̃ applied to the next Lanczos basis

vector vm+1. This representation can be used to characterize the norm of the error as

a bilinear form which is then bounded using the theory of Golub and Meurant relating

moments of the form vHg(A)v to Gaussian quadrature [24–26]. This is very similar

to what was presented in [18] for certain rational functions in partial fraction form.

These are a subset of the class of Stieltjes functions and in fact, both approaches lead

to the same results in this case. The approach of [18] is applicable to a broader class

of functions in the sense that one can first look for a suitable rational approximation

r ≈ f and then work with r. Our approach, however, works with f directly and does

not require the a priori knowledge of a rational approximation, which may be difficult

or costly to construct. In addition, if one is interested in bounds for the error with

respect to f(A)b (and not r(A)b), one needs to take the sign of the error in the

rational approximation into account, which severely limits the situation in which it

can be guaranteed that the computed estimates are guaranteed bounds. This problem

can also be circumvented by working with f directly.

The remainder of this paper is organized as follows. In Section 2 we briefly review

the Lanczos process and the theory of Golub and Meurant relating it to Gaussian

quadrature and how it can be used to bound or estimate certain bilinear forms. In

Section 3, we recall the integral representation of the error for Stieltjes functions given

in [15, 16] and use it to derive methods for computing error bounds for Lanczos ap-

proximations. In Section 4 we give a detailed description of the Lanczos algorithm with

computation of error bounds, and we focus on how to perform all necessary additional

computations with cost independent of the size n of the matrix as well as of the itera-

tion number m. We briefly comment on extensions of the developed techniques to the

non-Hermitian case in Section 5, to obtain error estimates (not bounds in general) for

the error of the Arnoldi approximation, albeit with computational cost now depending

on m. In Section 6, we investigate various numerical test cases from applications (in-

volving both Hermitian and non-Hermitian matrices), both to demonstrate the quality

of our proposed error bounds and estimates and to study the dependence of our method

on different parameters. Concluding remarks are given in Section 7.

2 The Lanczos process and its relation to Gaussian quadrature

The Lanczos process is the simplified version of Arnoldi’s method for Hermitian matri-

ces. It is based on the well-known short recurrence relation for the orthonormal Krylov

basis vectors that can be employed in this case and is summarized in Algorithm 1;
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cf. , e.g., [34, 37]. Once the matrices Vm and Tm are computed by Algorithm 1, an

approximation for f(A)b can be computed via (1).

Algorithm 1: Lanczos process for building an orthonormal basis of Kmmax (A, b)

Given: A, b, m
Set v0 := 0, v1 := b/‖b‖ and t1,0 := 0.1

for m = 1, 2, . . . ,mmax do2

Set wm := Avk − tm,m−1vm−1.3

Set tm,m := (wm, vm).4

Set wm := wm − tm,mvm.5

Set tm+1,m := ‖wm‖.6

if tm+1,m = 0 then7

Stop.8

Set vm+1 := wj/tm+1,m.9

In the context of this paper, the Lanczos algorithm is of utmost importance not only

because it builds the basis for computing the Lanczos approximation (1) for f(A)b, but

also because it can be related to orthogonal polynomials and thus Gaussian quadrature

as pointed out in [24–26]: The Lanczos polynomials, i.e., the polynomials pk−1 of

degree k − 1 with pk−1(A)v1 = vk, are orthogonal with respect to the inner product

〈p, q〉α =

∫ b

a

p(t)q(t) dα(t), (3)

where α(t) is a step function depending on the eigenvalues and eigenvectors of A and

spec(A) ⊆ [a, b]. More precisely, if λ̂1 < λ̂2 < · · · < λ̂n̂ denote the distinct eigenvalues

of A with corresponding eigenvectors v̂i, α is given by

α(t) =


0, if t < λ̂1,∑i
j=1(ηj)

2, if λ̂i ≤ t < λ̂i+1,∑n̂
j=1(ηj)

2, if λ̂n̂ < t,

(4)

where the coefficients ηj stem from the decomposition v1 =
∑n̂
j=1 ηj v̂j ; see, e.g., [26].

For ease of notation, we will from now on always assume that A has pairwise distinct

eigenvalues λ1 < λ2 < · · · < λn. Using (3) and (4), one can show the following

theorem, relating Gaussian quadrature to matrix functions of Tm.

Theorem 1 (Theorem 4.2 and 6.6 in [26]) Let A ∈ Cn×n be Hermitian
positive definite with smallest and largest eigenvalue λ1 and λn respectively, v1 ∈
Cn with ‖v1‖ = 1, let h be a function defined on [λ1, λn] and let α be defined as
in (4). Let t`, ω`, ` = 1, . . . ,m be the nodes and weights of the m-point Gaussian

quadrature rule for approximating
∫ λn

λ1
h(t) dα(t). Then∑m

`=1
ω`h(t`) = eH1 h(Tm)e1,

where Tm is the tridiagonal matrix obtained by m steps of the Lanczos algorithm
applied to A and v1.
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Error bounds for Stieltjes matrix functions 5

In the same way, the (m + 1)-point Gauss–Radau quadrature rule (a quadrature

rule in which one node is fixed to be at the left endpoint λ1 of the integration interval)

can be evaluated as eH1 h(T̃m+1)e1, with the modified tridiagonal matrix

T̃m+1 =

[
Tm βmem

βmeHm dm

]
, where d = β2

m(Tm − λ1I)
−1em; (5)

see [26]. One important feature of Gauss and Gauss–Radau quadrature is that they

give lower and upper bounds for
∫ λn

λ1
h(t) dα(t) if the derivatives of h have constant

sign on [λ1, λn]; see, e.g., [9, 26].

Theorem 2 Let h be (2m + 1)-times continuously differentiable on [λ1, λn]. Let
t`, ω` and t̃`, ω̃` be the nodes and weights of the m-point Gauss and (m + 1)-

point Gauss-Radau quadrature rule (with one node fixed at λ1) for
∫ λn

λ1
h(t) dα(t),

respectively. If h(2m)(t) ≥ 0 for t ∈ [λ1, λn], then

∑m

`=1
ω`h(t`) ≤

∫ λn

λ1

h(t) dα(t).

If h(2m+1)(t) ≤ 0 for t ∈ [λ1, λn], then

∑m+1

`=1
ω̃`h(t̃`) ≥

∫ λn

λ1

h(t) dα(t).

According to Theorem 2, Gauss and Gauss–Radau quadrature always give lower and

upper bounds for
∫ λn

λ1
h(t) dα(t), respectively, if

(−1)
m+1h(m)

(t) ≥ 0 for all m, and t ∈ [λ1, λn]. (6)

Functions with the property (6) are called completely monotonic on [λ1, λn]. One eas-

ily sees that every Stieltjes function is completely monotonic on any interval [λ1, λn] ⊆
(0,∞). We summarize this and another important property in the following proposi-

tion; see, e.g., [2, 4].

Proposition 1 i) Let f be a Stieltjes function. Then f is completely monotonic
on any interval [λ1, λn] ⊆ (0,∞).

ii) Let f, g be completely monotonic on [λ1, λn]. Then f ·g is completely monotonic
on [λ1, λn].

In the light of Proposition 1, to be able to compute upper and lower bounds (and

not just estimates) for the norm of the error of the Lanczos approximation to f(A)b
by Gaussian quadrature, it suffices to show that it can be expressed as a Riemann–

Stieltjes integral of a product of Stieltjes (or other completely monotonic) functions.

A representation of this type will be derived in the next section.
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3 Representations and bounds for the Lanczos error

In [12, 32, 41], a representation of the error in terms of divided differences was given.

This representation turns out to be highly unstable in finite precision arithmetic in

contrast to the alternative integral representation of the error first given in [16], and

rephrased for Stieltjes functions in [15]. This representation is the key to obtaining our

error bounds.

Theorem 3 (Theorem 2.1 in [15]) Let f be a Stieltjes function, let A ∈ Cn×n
be Hermitian positive definite, b ∈ Cn and denote by fm the mth Lanczos approx-
imation (1) to f(A)b. Define

em(z) = (−1)
m+1‖b‖γm

∫ ∞
0

1

wm(t)
· 1

z + t
dµ(t), z ∈ C \ (−∞, 0], (7)

where wm(t) = (t + θ1) · · · (t + θm) with spec(Tm) = {θ1, . . . , θm} and γm =∏m
i=1 ti+1,i. Then

f(A)b − fm = em(A)vm+1, (8)

where vm+1 is the (m + 1)st Lanczos vector.

In [15] it is shown that the error function em(z) from (7) is again a (scalar multiple

of a) Stieltjes function if A is Hermitian positive definite. To be specific, em(z) =

(−1)m+1‖b‖γmẽm(z) where

ẽm(z) =

∫ ∞
0

1

t + z
dµ̃(t) with dµ̃(t) =

1

wm(t)
dµ(t). (9)

Using Theorem 3, we straight-forwardly find a representation for the norm of the

Lanczos error as a bilinear form.

Corollary 1 Let the assumptions of Theorem 3 hold. Then

‖f(A)b − fm‖2 = ‖b‖2γ2mvHm+1ẽm(A)
2vm+1, (10)

where ẽm(z) is given by (9).

Proof We have

‖f(A)b − fm‖2 =
(

(−1)
m+1‖b‖γmẽm(A)vm+1

)H (
(−1)

m+1‖b‖γmẽm(A)vm+1

)
= ‖b‖2γ2mvHm+1 (ẽm(A))

H ẽm(A)vm+1

= ‖b‖2γ2mvHm+1ẽm(A)
2vm+1,

where the last equality holds because ẽm(A) is Hermitian if A is Hermitian.

Using the spectral decomposition A = QΛQH of A and the short-hand notation

u = Qvm+1 one can rewrite the bilinear form from the right-hand side of (10) as

vm+1ẽm(A)
2vm+1 = uH ẽm(Λ)

2u =
∑n

i=1
ẽm(λi)

2u2
i =

∫ λn

λ1

ẽ(t)2 dα(t), (11)
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Error bounds for Stieltjes matrix functions 7

with

α(t) =


0, if t < λ1,∑i
j=1(uj)

2, if λi ≤ t < λi+1,∑n
j=1(uj)

2, if λn < t;

(12)

see also [26, Chapter 7]. Comparing (12) and (4), one sees that the function α is exactly

the one generated by the Lanczos process started with A and vm+1. Therefore, accord-

ing to Theorem 1, the integral on the right-hand side of (11) can be approximated by

m-point Gaussian quadrature as follows: First compute Tm as a result of m steps of

the Lanczos process for A and vm+1 and then evaluate eH1 (T̃m)2e1. Thus, it is possi-

ble to evaluate the Riemann–Stieltjes integral without explicitly knowing the measure

α (and thus the eigenvalues of A). As ẽ(t)2 is, by (9), the product of two Stieltjes

functions, it is completely monotonic by Proposition 1 and we therefore can conclude

from Theorem 2 that this procedure will give a lower bound for the exact value of

the integral. Of course, all of the above applies in an analogous way for Gauss–Radau

quadrature. We summarize these findings in the following theorem.

Theorem 4 Let f be a Stieltjes function, let A ∈ Cn×n be Hermitian positive
definite, b ∈ Cn and denote by fm the mth Lanczos approximation (1) to f(A)b.

Let vm+1 be the (m + 1)st Lanczos vector and γm =
∏m
i=1 ti+1,i. Denote by T

(2)
k

the tridiagonal matrix resulting from k steps of the Lanczos process applied to A

and vm+1 and by T̃
(2)
k+1 the modification of T

(2)
k according to (5). Then

‖b‖2γ2meH1 ẽ
(
T

(2)
k

)2
e1 ≤ ‖f(A)b − fm‖2 ≤ ‖b‖2γ2meH1 ẽ

(
T̃

(2)
k+1

)2
e1. (13)

Theorem 4 gives a way of computing bounds for the error of the Lanczos approxi-

mation to f(A)b. However, two issues seemingly prevent the result of Theorem 4 from

being useful for practical applications. First, the error function ẽ is in general not known

explicitly and can not be evaluated exactly; see also [16]. Second, computing the error

bounds (13) by a k-point Gaussian quadrature rule (or a (k + 1)-point Gauss–Radau

rule) in the way suggested by Theorem 4 would require k additional matrix vector

multiplications with A which do not contribute to advancing the Lanczos iteration for

approximating f(A)b. Investing this much work for computing the error bounds is in

general not feasible in practical applications. The first issue is covered in the remainder

of this section while avoiding the additional multiplications with A is one of the topics

of Section 4.

In [16], the error representation (8) was used for restarting the Arnoldi iteration

for the computation of f(A)b. There, an “inner” numerical quadrature rule was used

to evaluate the not explicitly known function ẽ(z). Of course, this is also possible for

computing the matrix functions in (13), leading to error estimates computed by two

nested quadrature rules. For these estimates to be bounds again, we therefore have

to take care of computing lower (resp. upper) bounds in the inner quadrature as well.

The proper choice of the inner quadrature rule for this purpose largely depends on

the function to be approximated and on how we take care of the infinite interval of

integration. Assuming that we have a quadrature rule at hand that gives bounds for (8)

in the scalar case, the following result guarantees that it will also compute bounds for

the bilinear forms on the left and right-hand side of (13).
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8 A. Frommer, M. Schweitzer

Proposition 2 Let the assumptions of Theorem 3 hold and let T be any symmet-
ric positive definite matrix. Further, let t`, ω`, ` = 1, . . . , k be the nodes and weights
of a quadrature rule which gives lower bounds, i.e., for which∑k

`=1

ω`
t` + z

≤ ẽm(z) for z ∈ (0,∞). (14)

Then

eH1

(∑k

`=1
ω`(t`I + T )

−1
)2

e1 ≤ eH1 ẽm(T )
2e1.

The result holds analogously for quadrature rules which give upper bounds. In par-

ticular, the result applies to the matrices T
(2)
k and T̃

(2)
k from Theorem 4.

Proof Using the spectral decomposition T = UDUH with diagonal matrix D and

defining the short-hand notation u = UHe1, we have

eH1

(∑k

`=1
ω`(t`I + T )

−1
)2

e1 = uH
(∑k

`=1
ω`(t`I +D)

−1
)2

u

=
∑m

i=1
|ui|2

(∑k

`=1

ω`
t` + dii

)2

. (15)

Using (14), we can bound the right-hand side of (15) by

∑m

i=1
|ui|2

(∑k

`=1

ω`
t` + dii

)2

≤
∑m

i=1
|ui|2ẽm(dii)

2
= uH1 ẽm(D)

2u1 = eH1 ẽm(T )e1,

which concludes the proof for lower bounds. The modifications necessary for proving the

result for upper bounds are straight-forward. The matrix T
(2)
k is obviously Hermitian

positive definite, as A is Hermitian positive definite and T
(2)
k = V HAV for a matrix

V of full rank. For T̃
(2)
k+1 note that the modification (5) again results in a Hermitian

matrix. Its eigenvalues are the nodes of a Gauss–Radau rule, which are known to lie in

the interval [λmin, λmax] of integration, see, e.g., [23], so that T̃
(2)
k+1 is also Hermitian

positive definite.

Let us note, however, that our experiments reported in Section 6 suggest that in

practical applications, the error in the outer Gaussian quadrature rules (13) is typically

significantly larger than the error of the inner quadrature rule for practically feasible

choices of parameters. Therefore one can expect the computed quantities to be bounds

even if the inner quadrature rule does not guarantee this property, such that the above

considerations are mainly of theoretical interest.

4 Computing error bounds with low computational cost

Computing error bounds by Gaussian quadrature with k nodes for the Lanczos iterate

fm directly in the way suggested by Theorem 4 requires k additional matrix vector

multiplications with A (which do not serve to advance the original Lanczos process)

as the tridiagonal matrix T
(2)
k resulting from the Lanczos process applied to A and

vm+1 is needed. However, a result from [18] shows that this matrix can be computed

without investing any additional matrix vector multiplications with A.
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Error bounds for Stieltjes matrix functions 9

Theorem 5 (Theorem 4.1 in [18]) Let Tm+1+k be the tridiagonal matrix re-
sulting from k+m+1 steps of the Lanczos process for A and v1. Let k̂ = min{m, k}
and denote by T̃ the lower right (k+ k̂+ 1)× (k+ k̂+ 1) sub-block of Tm+1+k and
let T̂ denote the tridiagonal matrix resulting from k steps of the Lanczos process

applied to T̃ and ek̂+1. Then T̂ = T
(2)
k , where T

(2)
k denotes the matrix resulting

from k iterations of the Lanczos process for A and vm+1.

By Theorem 5, the matrix T
(2)
k can be computed by applying k steps of the Lanczos

process to a tridiagonal matrix of size of size 2k + 1 (or less if m < k), i.e., with

computational cost O(k2), independent of the size of the original matrix A. The price

for this reduction in computational cost is that the matrix needed for computing bounds

for the error of the mth Lanczos iterate can only be computed in retrospect in the

(m+k+1)st step, i.e., the more quadrature nodes are used (and thus the more accurate

the error bound is), the later the bound is available. We will further comment on and

investigate this trade-off between accuracy and timely availability of the error bounds

in the numerical experiments reported in Section 6.

To be able to compute error bounds according to Theorem 4, one needs, in addition

to the matrix T
(2)
k , to evaluate the nodal polynomial wm(t) at the quadrature nodes,

to be able to approximately evaluate the error function ẽ. The polynomial wm(t) is of

degree m, so a naive approach of evaluating it at ` quadrature nodes ti, i = 1, . . . , `
would require at least O(m`) arithmetic operations and the computational cost would

thus not be independent of the iteration number (albeit growing only linearly in m
and thus still being negligible in practice as long as m stays small in comparison to n).

Fortunately, one can easily compute wm(ti) with cost O(1) if wm−1(ti) is known by

using simple recursion relations, see lines 14–16 of Algorithm 2, where ρi(m) stores the

value wm(ti). These relations can, e.g., be derived from inspecting Gaussian elimination

for the matrix Tm + tI or from certain versions of the (shifted) CG algorithm [18,

19, 38], where they arise naturally. Using these update formulas requires fixing the

quadrature nodes for the inner quadrature rule in advance and using the same nodes

throughout all iterations. This is, however, no problem in practice: adaptively changing

the quadrature nodes to reach higher accuracy is in general not necessary, as we are

only interested in computing bounds which do not necessitate ẽ to be approximated

up to machine precision. In particular, the number k of quadrature nodes in the outer

Gaussian quadrature will in practice be much smaller than `, such that the quadrature

error of the inner rule will not make the main contribution to the sharpness of the

resulting bounds; see also Section 6 for a discussion of numerical results on this topic.

Algorithm 2 summarizes how to incorporate the efficient computation of retrospec-

tive error bounds into the Lanczos process for f(A)b. The upper bound for the error

norm is used as a stopping criterion for the iteration in Algorithm 2. In case that the

upper bound in iteration m lies below the specified tolerance tol, we form the Arnoldi

approximation fm and return it as result of the algorithm, although the error bound

computed corresponds to the approximation fm−k. By a result from [14], it is known

that the Euclidean norm of the error of the Lanczos approximation to f(A)b for A
Hermitian and f a Stieltjes function is monotonically decreasing, so that the upper

bound for the error of fm−k is also valid for fm and we thus have the guarantee that

the returned approximation fulfills the accuracy requirement.

The next result summarizes the additional computational cost of Algorithm 2 in

comparison to Algorithm 1.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt 10 A. Frommer, M. Schweitzer

Algorithm 2: Lanczos approximation with error bounds for f(A)b

Given: A, b, f , k, `, tol
Choose quadrature nodes/weights (ti, ωi)i=1,...,`. {inner quadrature rule}1

Initialize di(0)← 1, ρi(0)← 1, i = 1, . . . , `.2

Initialize t1,0 ← 0.3

v1 ← 1
‖b‖b4

for m = 1, 2, . . . do5

Compute wm ← Avm − hm,m−1vm−16

tm,m ← (wm, vm)7

wm ← wm − tm,mvm8

tm+1,m ← ‖wm‖9

if tm+1,m = 0 then10

compute fm ← ‖b‖Vmf(Tm)e1.11

Stop.12

vm+1 ← 1
tm+1,m

wm13

for i = 1, . . . , ` do14

di(m)← (tm,m + ti)−
t2m+1,m

di(m−1)15

ρi(m)← ρi(m− 1) · tm+1,m

di(m)16

Set k̂ ← min{m+ 1, k + 1}.17

Let T̃ be the lower right (k + k̂)× (k + k̂) sub-block of Tm.18

Perform k steps of Algorithm 1 for T̃ and ek̂, yielding T̂ .19

Modify T̂ according to (5), yielding T̄ .20

Compute lower bound ← ‖b‖2eH1
(∑`

i=1 ωiρi(m− k)(T̂ + tiI)
−1
)2

e121

Compute upper bound ← ‖b‖2eH1
(∑`

i=1 ωiρi(m− k)(T̄ + tiI)
−1
)2

e122

if upper bound ≤ tol then23

Compute fm ← ‖b‖Vmf(Tm)e1.24

Stop.25

Lemma 1 Performing Algorithm 2 instead of Algorithm 1 (plus the computa-
tion of fm) for A ∈ Cn×n and b ∈ Cn requires an additional computational
cost of the order O(k2 + k`) per iteration and thus an overall additional work
of O(mmaxk

2 + mmaxk`), if mmax iterations are necessary to reach the desired
accuracy. In particular, the additional cost in the mth iteration is independent of
both, m and n.

Proof The initializations in line 1–3 of Algorithm 2 have cost O(`), assuming that the

nodes and weights of the quadrature rule are available and do not need to be computed

by a separate algorithm. Line 4–13 (ignoring the computation of fm in line 11) exactly

correspond to the Lanczos process given in Algorithm 1. The for loop in line 14–16

has computational cost O(`), as the update formulas for di and ρi only require a fixed

number of scalar operations. Line 17 has cost O(1). Line 18 has cost O(k) and line 19

has cost O(k2), as T̃ is tridiagonal and matrix vector products with it can therefore be

formed with cost O(k). Line 20 again has cost O(k) for solving the linear system with

T̃ . The computation of the lower and upper bounds in line 21 and 22, respectively,

requires O(k`) operations. Adding up the cost of all individual lines and noting that

O(`),O(k) ⊆ O(k`) gives the desired result.
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Lemma 1 shows that the cost of computing the error bounds for the Lanczos ap-

proximations for Hermitian positive definite A is independent of n. If n is large and k
and ` are small in comparison, the additional cost for computing the bounds is almost

negligible. In the numerical experiments reported in Section 6 we demonstrate that

values of k between 5 and 20 and values of ` between 5 and 50 are typically sufficient

to compute very accurate error bounds, also for large matrix dimension n. Of course,

to further reduce the additional computational work, one can compute error bounds

in Algorithm 2 not in every iteration but only from time to time, e.g., once every ten

iterations.

Remark 1 We conclude this section by briefly commenting on the situation when using

the restarted Lanczos method (with restart length m), see, e.g., [1,12,16,32,41] instead

of the full Lanczos method. In this case, one can not use the Lanczos restart recovery

from Theorem 5 to compute error bounds for all iterations of the method. If m denotes

the restart length, we can only compute error bounds for the first m−k−1 iterations of

each cycle by the approach described before. However, in each restart cycle, one aims to

approximate the error of the iterate from the last restart cycle so that the norm of the

additive correction computed in cycle j can be interpreted as an estimate for the norm

of the error of the iterate from cycle j− 1 and thus gives a first hint on the progress of

the method. One can now refine this using our theory to achieve upper or lower bounds

for the error. To do so, one can use the result of Theorem 4 directly. When restarting the

method, we perform the Lanczos process in the next, jth restart cycle with the matrix

A and the vector v
(j−1)
m+1 . This is exactly what is needed for computing the tridiagonal

matrix used in (13) for approximating ‖f(A)b − f
(j−1)
m ‖. So, in contrast to the full

Lanczos method, using Theorem 4 directly does not mean additional matrix-vector

products, as those of the primary and secondary Lanczos process coincide. Therefore,

at the end of cycle j one can compute lower and upper bounds from an m-point Gauss

and an (m + 1)-point Gauss–Radau rule, respectively, at virtually no additional cost

at all. We will give some examples for the bounds achieved this way in the numerical

experiments reported in Section 6.

5 Extension to non-Hermitian matrices

We now briefly sketch how it is possible to transfer the techniques used in the previous

sections to the case of non-Hermitian matrices. Most of the theoretical results concern-

ing, e.g., the sign of the error in the outer and inner quadrature rules, do not hold any

longer in this case, so that one only gets estimates for the error, but no bounds, in

general.

In [8, 13], it is shown that the Arnoldi process [3, 38] can be related to quadrature

rules in a similar way to how this was done for the Lanczos process in Section 2. The

idea is to investigate the following quadratic form induced by A and v

〈h1, h2〉A,v := vHh1(A)
Hh2(A)v (16)

for functions h1, h2 defined on spec(A). When the functions h1 and h2 are both analytic

in a neighborhood of spec(A), one can rewrite (16) by the Cauchy integral formula as

a double integral along a path Γ which winds around spec(A) exactly once,

〈h1, h2〉A,v =
1

4π2

∫
Γ

∫
Γ

h1(z1)h2(z2)vH(z1I −AH)
−1

(z2I −A)
−1v dz1 dz2. (17)
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Using the quantities from the Arnoldi decomposition for A and v

AVk = VkHk + hk+1,kvk+1e
T
k , (18)

where Hk is unreduced upper Hessenberg, one approximates (16) as

〈h1, h2〉A,v ≈ ‖v‖
2eH1 h1(Hk)

Hh2(Hk)e1. (19)

This can be interpreted as a k-point quadrature rule for (17). One can also show that

the polynomials pk defining the Arnoldi basis vectors are orthogonal with respect to

the quadratic form (16), i.e.,

〈pi, pj〉A,v = δi,j ,

and consequently one has that the resulting k-point quadrature rules are exact for

(h1, h2) ∈ W`−1, where

Wk−1 = (Πk−1 ⊕Πk) ∪ (Πk ⊕Πk−1),

Πk denoting the space of all polynomials of degree ≤ k; see [8] for details. We do not

present the theoretical analysis of the resulting Gauss rules, as most of this theory is

not important or not applicable for the developments presented in this section. For

example, the conditions given in [8] under which these Arnoldi quadrature rules give

upper or lower bounds for the bilinear form (16) are not fulfilled in our setting.

One can now use the upper Hessenberg matrix Hk resulting from k steps of the

Lanczos process applied to A and vm+1 to compute error estimates for themth Arnoldi

approximation to f(A)b, where f is a Stieltjes function, just as in the Hermitian case,

by setting h1 = h2 = ẽm in (19). The key to computing error estimates with affordable

computational cost in the Hermitian case was given by Theorem 5, which allows to

perform the Lanczos process on a matrix of dimension at most (2k + 1) × (2k + 1)

instead of n × n. Unfortunately, the result given in [18] holds only in the Hermitian

case. In the next theorem, we give a modification of Theorem 5 for non-Hermitian

A, which at least allows to perform the Arnoldi process on a matrix of dimension

(m+ k+ 1)× (m+ k+ 1) instead of A. The proof of this result is almost the same as

for the original result from [18].

Theorem 6 Let Hm+1+k be the upper Hessenberg matrix resulting from k+m+1

steps of the Arnoldi process for A and v1. Further, let Ĥ denote the upper Hessen-
berg matrix resulting from k steps of the Arnoldi process applied to Hm+1+k and

em+1. Then Ĥ = H
(2)
k , where H

(2)
k denotes the matrix resulting from k iterations

of the Arnoldi process for A and vm+1.

Proof Let the Arnoldi decomposition arising from k steps of Arnoldi’s method for A
and vm+1 be given as

AṼk = ṼkH
(2)
k + h

(2)
k+1,kṽk+1e

H
k . (20)

As vm+1 ∈ Km+1(A, v1), we have that

Kk+1(A, vm+1) ⊆ Km+k+1(A, v1).
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Error bounds for Stieltjes matrix functions 13

Therefore, the basis vectors ṽ1, . . . , ṽk+1 generated by the Arnoldi process for A and

vm+1 all lie in Km+k+1(A, v1) and can thus be written as linear combinations of the

basis vectors v1, . . . , vk+m+1, i.e.,

[Ṽk, ṽk+1] = Vm+k+1[Qk, qk+1] (21)

for some matrixQk ∈ C(m+k+1)×k. As [Ṽk, ṽk+1] and Vm+k+1 both have orthonormal

columns, [Qk, qk+1] must have orthonormal columns as well. Inserting (21) into the

Arnoldi decomposition (20) gives

AVk+m+1Qk = Vm+k+1QkH
(2)
k + h

(2)
k+1,kVm+k+1qk+1e

H
k . (22)

Left-multiplying both sides of (22) by the projector Vm+k+1V
H
m+k+1 onto the space

Km+k+1(A, v1) gives

Vm+k+1V
H
m+k+1AVk+m+1Qk = Vm+k+1QkH

(2)
k + h

(2)
k+1,kVm+k+1qk+1e

H
k .

which, using V Hm+k+1AVk+m+1 = Hm+k+1 (which follows from (18)), simplifies to

Vm+k+1Hm+k+1Qk = Vm+k+1QkH
(2)
k + h

(2)
k+1,kVm+k+1qk+1e

H
k .

Noting that Vm+k+1 has full (column) rank, this implies

Hm+k+1Qk = QkH
(2)
k + h

(2)
k+1,kqk+1e

H
k . (23)

By [40, Chapter 5, Theorem 1.3] the Arnoldi decomposition is unique up to scaling

of the basis vectors by complex scalars of modulus one (and corresponding scaling of

the entries in Hk). As all subdiagonal entries of H
(2)
k are positive because they were

computed by Arnoldi’s method, it follows that (23) is the unique Arnoldi decomposition

corresponding to Hm+k+1 and q1. As ṽ1 = vm+1, we have that q1 = em+1, which

proves the result.

According to Theorem 6, for a non-Hermitian matrix A, it is not possible to only

use a small sub-block of Hm+k+1 in a secondary Arnoldi process for retrieving H
(2)
k .

Therefore, the cost for computing error estimates in this way scales with the iteration

number m, as multiplications with a matrix of size (m + k + 1) × (m + k + 1) have

to be performed. Other than that, one can straight-forwardly adapt the approach of

Algorithm 2 to the non-Hermitian case with minor modifications (replacing the Lanczos

process by the Arnoldi process and the computation of the bounds in line 27 and 28 by a

quadrature-based approximation for (19) and replacing the recurrence relations for the

ρi, as the simple update formulas do not hold anymore when Hm is not tridiagonal).

The resulting method is given in Algorithm 3.

In contrast to Algorithm 2, there is no guarantee that the exact error of the it-

erate fm lies below the prescribed tolerance tol when the value estimate does in

Algorithm 3, so that it is not always advisable to use this error estimate as a stopping

criterion, especially if it is crucial that the prescribed tolerance is reached. The nu-

merical experiments in Section 6, however, suggest that the error estimates are rather

accurate in many situations, e.g., when dealing with Stieltjes functions. In such situ-

ations it may therefore often be sufficient to use a certain safety factor ε < 1 in the

computations and run Algorithm 3 with the tolerance ε · tol instead of tol.

The additional cost of Algorithm 3 in comparison to the standard Arnoldi method

without computation of error bounds is given in the next lemma.
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Algorithm 3: Arnoldi approximation with error estimate for f(A)b

Given: A, b, f , k, `, tol
Choose quadrature nodes/weights (ti, ωi)i=1,...,`. {inner quadrature rule}1

v1 ← 1
‖b‖b2

for m = 1, 2, . . . do3

Compute wm ← Avm4

for i = 1, . . . ,m do5

hi,m ← (wm, vi)6

wm ← wm − hi,mvi7

hm+1,m ← ‖wm‖8

if hm+1,m = 0 then9

compute fm ← ‖b‖Vmf(Hm)e1.10

Stop.11

vm+1 ← 1
hm+1,m

wm12

for i = 1, . . . , ` do13

ρi(m)← eHm (Hm + tI)−1e114

if m ≥ k + 1 then15

Perform k steps of Arnoldi’s method for H and em−k+1, yielding Ĥ.16

estimate ← ‖b‖2eH1
∑`
i=1 ωi|ρi(m− k)|2(Ĥ + tiI)

−H(Ĥ + tiI)
−1e117

if estimate ≤ tol then18

compute fm ← ‖b‖Vmf(Hm)e1.19

Stop.20

Lemma 2 Performing Algorithm 3 instead of Arnoldi’s method for A ∈ Cn×n and
b ∈ Cn requires an additional computational cost of the order O(m2(k + `) + k`)
in the mth iteration and thus O(m3

max(k + `) + mmaxk`), if mmax iterations are
necessary to reach the desired accuracy. In particular, the cost per iteration is
independent of n, but not of m.

Proof The proof is very similar to the one of Lemma 1, with the following differences.

The secondary Arnoldi process for step m now has a cost of O(m2k), since each

multiplication with Hm+k+1 has cost O(m2) as the upper triangle of this matrix is in

general dense (and we assume k ∈ O(m)). The solution of each linear system in line 14

has cost O(m2) due to the Hessenberg structure of Hm, which results in O(m2`) for

all systems.

We note that while according to Lemma 2, the cost of computing error bounds in

Algorithm 3 grows with the number of iterations that are performed, the cost of the

algorithm is still dominated by the matrix vector product and the orthogonalization

process in the O-sense: The cost of the orthogonalization against the previous basis

vectors in the mth iteration of Algorithm 3 is of order O(mn), and we have that

O(m2k) ⊆ O(mn) if k is fixed independently of m and n. Again, it might nonetheless

be attractive to only compute error estimates after some, but not all of the iterations

of the method.

6 Numerical experiments

In this section, we compute error bounds and estimates for Lanczos/Arnoldi approx-

imations for a few model problems. We begin with investigating examples where the
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Fig. 1 Exact error norm and bounds computed by Algorithm 2 for approximating A−1/2z
in the Gaussian Markov random field model problem. The inner quadrature rule uses ` = 20
nodes, while the number of nodes in the outer quadrature rule is varied between k = 2, 5 and
10.

theory from Section 3 applies, i.e., when approximating Stieltjes matrix functions of

Hermitian positive definite matrices.

The first model problem we consider is sampling from a Gaussian Markov random

field, see, e.g., [32, 39]. Given a set of n points si ∈ Rd,= 1, . . . , n, one defines the

precision matrix A ∈ Rn×n (with respect to two parameters δ, φ) of these points as

aij =

{
1 + φ

∑n
k=1,k 6=i χ

δ
ij if i = j,

−φχδij otherwise,

where χδ is given by

χδij =

{
1 if ‖si − sj‖ < δ,

0 otherwise.

The precision matrix A is Hermitian and strictly diagonally dominant, its smallest

eigenvalue being 1 (corresponding to the eigenvector (1, . . . , 1)H). A sample from a

Gaussian Markov random field (which is a collection of random variables xi corre-

sponding to the points si) is obtained by computing A−1/2z , where z is a vector of

independently and identically distributed standard normal random variables. We sim-

ulate n = 50,000 points in the unit square with parameters φ = 3, δ = 0.01, resulting

in spec(A) ⊂ [1, 109.6] (i.e., a rather well-conditioned matrix) and 830,626 nonzeros in

A. As A−1/2 is a Stieltjes matrix function and A is positive definite, Theorem 4 applies

and we can compute lower and upper bounds for the error norm in Algorithm 2.

Figure 1 presents the bounds computed by Algorithm 2 for the Gaussian Markov

random field model problem for 100 Lanczos iterations and different values of k. We

show the exact error norm as well as the lower and upper bounds computed with

k = 2, 5 and 10 quadrature nodes for the outer Gauss and Gauss–Radau rule. Recall

that the smallest eigenvalue of A is explicitly known to be 1, so that we fixed the

leftmost node of the Gauss–Radau rule to this value. For the inner quadrature rule
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Fig. 2 Exact error norm and bounds computed in the restarted Lanczos method for approx-
imating A−1/2z in the Gaussian Markov random field model problem. The inner quadrature
rule uses ` = 20 nodes, the number of outer quadrature nodes corresponds to the restart length
m = 20.

used for evaluating the error function we use ` = 20 nodes of a Gauss and Gauss–

Radau rule, respectively, chosen such that the sign of the error in the inner and outer

quadrature rule is the same, and we compute guaranteed bounds, cf. also Proposition 2.

As in this model problem, the quality of the bounds is very insensitive to the value of

` and does not substantially change when ` is increased, we do not report results for

other values. A study of the influence of ` is given in the next experiment.

For all values of k, we observe that the qualitative behavior of the error is captured

accurately and that for this well-conditioned matrix even for the very small number of

k = 2 quadrature nodes, the error is only overestimated (respectively underestimated)

by about one order of magnitude. For k = 5 and k = 10, the error bounds lie very close

to the exact value of the integral, however they are only available three (respectively

eight) iterations later than the bounds for k = 2. This raises the question of which

value for k is “optimal” in the sense that it allows to terminate the iteration as early

as possible. For small values of k the bounds are more inaccurate but available early,

and for large values of k the bounds are very accurate but available later. Therefore,

it is not clear a priori which value of k in this trade-off between accuracy and early

availability is optimal, as this does not only depend on the the quality of the bounds

with respect to k, but also, among other factors, on the steepness of the convergence

slope for the given function, matrix and right-hand side. When trying to achieve a

tolerance tol = 10−9 in this experiment, the Lanczos algorithm can be stopped after

92 iterations for k = 2 and k = 5 and after 96 iterations for k = 10, despite the bounds

for k = 10 being extremely accurate. We investigate this topic more thoroughly in the

next numerical experiment.

In Figure 2, we report bounds for the restarted Lanczos method computed accord-

ing to Remark 1. We use restart length m = 20, so that the computed bounds corre-

spond to 20-point Gauss and 21-point Gauss–Radau rules, respectively. Both bounds

are almost indistinguishable from the exact error norm, which might be expected due
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Fig. 3 Exact error norm and bounds computed by Algorithm 2 for approximating(
Q2
)−1/2

Qb in the Hermitian QCD model problem. The inner quadrature rule uses at most
` = 100 nodes, while the number of nodes in the outer quadrature rule is varied between
k = 2, 5, 10 and 20.

to the rather high number of quadrature nodes used. This example illustrates that it is

very attractive to use the developed error bounds also in the restarted Lanczos method,

especially considering that the additional work which is necessary for computing them

is even less than for the unrestarted Lanczos method, as no secondary Lanczos process

is necessary.

The second model problem we consider is from the area of quantum chromodynam-
ics (QCD), a branch of Theoretical Physics in which the strong interaction between

quarks is studied. In Lattice QCD, this theory is discretized and simulated on a four-

dimensional space–time lattice (with 12 variables per lattice point, corresponding to

combinations of three colors and four spins). For computing certain observables, it is

necessary that the chiral symmetry is preserved on the lattice. This can be achieved

by simulating overlap fermions, which requires the solution of linear systems involving

the overlap Dirac operator (see [35])

Novl := ρI + Γ5 sign(Q), (24)

where ρ > 1 is a mass parameter, the matrix Q is the symmetrized Wilson kernel,

see [17], e.g., representing a periodic nearest-neighbor coupling on the lattice, and Γ5

is a permutation which permutes the spins on each lattice point in an identical manner.

The matrix Q is sparse and complex. Depending on a chemical potential ν, the matrix

Q is Hermitian (ν = 0) or non-Hermitian (ν > 0). As one can not explicitly compute

the matrix sign(Q) for realistic grid sizes, one typically solves (24) by an iterative

Krylov subspace method which only requires performing matrix-vector products with

sign(Q). At each outer Krylov iteration one therefore has to compute sign(Q)b where

b changes from one iteration to the next. One typically computes the sign function via

sign(Q)b = (Q2
)
−1/2Qb;
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see, e.g., [42]. Therefore, at zero chemical potential, approximating sign(Q)b amounts

to applying the inverse square root of the Hermitian positive definite matrix Q2 to

the vector Qb, so that our theory for computing error bounds applies again. In our

experiment, we use a lattice with 84 points, resulting in a matrix Q of dimension

12 · 84 = 49,152 with condition number about 3 · 103. We again report the exact error

norm and the bounds computed for different values of k in Figure 3. For computing the

upper bounds for the error, it is necessary to known the smallest eigenvalue of Q (or

at least a good approximation of it). In this experiment, we do not know the smallest

eigenvalue explicitly. As it is quite costly to approximate the eigenvalues of Q before

starting the Lanczos iteration, we use the smallest Ritz value as an approximation

to λmin, as soon as it does not change substantially any longer from one iteration

to the next. We then assume that it has converged to λmin to sufficient accuracy

and use it (multiplied with the safety factor 0.99) as the fixed quadrature node at

the left of the interval of integration for the Gauss–Radau rule. This approach was

suggested in [18]. Qualitatively, the results obtained in this experiment are similar to

those for the Gaussian Markov random field model problem, in the sense that the

bounds again capture the behavior of the exact error norm very well. The order of

magnitude, however, is not captured as well as before, i.e., the bounds are not as close

to the exact error norm. Especially the lower bounds underestimate the exact error

norm by a quite large margin for the smaller values of k (e.g., about two orders of

magnitude for k = 2). The upper bounds lie closer to the actual error norm also for

small values of k and do not improve by such a large margin when k is increased.

Another difference between this and the previous experiment which is worth men-

tioning is that larger numbers ` of inner quadrature nodes are necessary to achieve

satisfactory bounds. The results reported in Figure 3 were produced using an adaptive

approach where two quadrature rules of different order `, ˜̀ are used to estimate the

quadrature error (and increase the number of nodes if the error estimate is to large). To

illustrate the effect that the value ` can have when it is chosen too small, a comparison

of different values of ` is given in Table 1, where we report the maximum of the ratio

between the bounds computed for ` = 10, 20, 50 and the bound for ` = 100 (in all

cases, k = 5). The ratios between the quadrature rules for ` = 10 and ` = 20 and the

most accurate tested rule for ` = 100 are very large, showing that the approximations

computed for these values are not reasonable and one can expect the error in the inner

quadrature rule to make a non-negligible contribution to (or even dominate) the qual-

ity of the computed bounds. The ratio between ` = 50 and ` = 100 is still not small,

but in most cases acceptable, as the deviation of the bound from the exact error will

often not be dominated by it (as the outer Gauss rules are typically more inaccurate).

We also give a more thorough study on what the optimal value of k is for stopping

the iteration as early as possible. Figure 4 reports the iteration numbers at which

Algorithm 2 is terminated for different values of k when a tolerance of tol = 10−9 is

required. The optimal values in this case are found to be k = 12 or 13. For smaller

or larger values, a higher number of iterations is necessary. For values of k larger than

20, the increase in the number of necessary iterations is almost proportional to the

increase in k. This behavior is quite intuitive. For large values of k, the bounds are

already quite accurate, and further increasing the number of quadrature nodes does not

improve them by much. However, each additional quadrature node delays the iteration

at which convergence is detected. Therefore, it seems like a reasonable guideline for

practical computations to choose not too many quadrature nodes, say, not more than

k = 20, for the outer quadrature rule, in particular when considering that the number
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Fig. 4 Iteration number at which the stopping criterion in Algorithm 2 is fulfilled (with
tol = 10−9) for the Hermitian QCD model problem and different values of k.

` ratio lower bound ratio upper bound

10 5500 6.18
20 10.47 3.17
50 1.12 1.33

Table 1 Maximum ratio between the of the bounds computed by Algorithm 2 for the values
` = 10, 20, 50 of inner quadratures nodes and the bounds computed for ` = 100 for the
Hermitian lattice QCD model problem and k = 5.

of superfluous iterations is not very large for the smaller values of k (e.g., for k = 5,

one performs 472 instead of 469 iterations).

We again also present error bounds computed in the restarted Lanczos method

(with restart length m = 20) for the Neuberger overlap operator at zero chemical

potential, see Figure 5. The upper bound again almost completely agrees with the exact

error norm, the lower bound slightly underestimates it, but by less than one order of

magnitude, again demonstrating that this approach gives very accurate estimates for

the error norm in the restarted Lanczos setting.

As a variation of the previous experiment, we consider approximating the action

of the overlap operator at nonzero chemical potential, which leads to computing the

inverse square root of a non-Hermitian matrix. We use a matrix of the same size as

in the zero chemical potential case, but introduce a chemical potential ν = 1/20. We

refer to [6], e.g., for a description how ν enters into the Wilson kernel Q. The error

estimates computed by Algorithm 3 are depicted in Figure 6. The error estimates again

show the same qualitative behavior as the exact error norm. Nonetheless, the error is

severely underestimated for smaller values of k. The estimate for k = 2 differs from the

exact value by about two orders of magnitude, for k = 10, the error is underestimated

by about one order of magnitude. Although we do not have theoretical results on the

behavior or quality of the error estimates in the non-Hermitian case, this experiment

at least illustrates that there are situations in which one can expect the estimates to

reasonably capture the convergence behavior of the method. We do not report results

for the restarted Arnoldi method, since in the non-Hermitian case, where one can not
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Fig. 5 Exact error norm and bounds computed by the restarted Lanczos method for approxi-

mating
(
Q2
)−1/2

Qb in the Hermitian lattice QCD model problem. The inner quadrature rule
uses at most ` = 50 nodes, the number of outer quadrature nodes corresponds to the restart
length m = 20.
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Fig. 6 Exact error norm and estimates computed by Algorithm 3 for approximating(
Q2
)−1/2

Qb in the non-Hermitian QCD model problem. The inner quadrature rule uses
` = 100 nodes, while the number of nodes in the outer quadrature rule is varied between
k = 2, 5, 10, 20 and 30.

expect to compute bounds, there is no reason to expect the quadrature based estimates

to be better approximations to the exact error norm than just taking the norm of the

last update as an estimate.
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Fig. 7 Exact error norm and (approximate) bounds computed by Algorithm 2 for approxi-

mating e−θ
√
AA−1b for the semi-discretization of the wave equation. The inner quadrature

rule uses ` = 20 nodes, while the number of nodes in the outer quadrature rule is varied
between k = 2, 5 and 10.

In our last experiment, taken from [11], we consider the semi-discretization of the

wave equation

∆u− ∂2u

∂θ2
= 0 on (0, 1)

3 × (0,∞),

u(x, t) = 0 on ∂(0, 1)
3

for all θ ∈ [0,∞),

u(x, 0) = u0(x) for all x ∈ (0, 1)
3.

The discretized equation is solved by

u(θ) = e−θ
√
Au0,

where A is the standard finite difference discretization of the Laplace operator. We

rewrite this as

u(θ) = (I −Af(A))u0,

with

f(z) =
1− e−θ

√
z

z
, (25)

and note that the function f from (25) has the integral representation

f(z) =

∫ ∞
0

1

t + z

sin(θ
√
t)

πt
dt.

While f from (25) is not a Stieltjes function (as the corresponding function µ satisfies

µ′(t) = sin(θ
√
t)/(πt) and thus is not monotonically increasing), we can still use

the algorithmic techniques from Section 4 for computing error estimates, which are,

however, no guaranteed bounds any longer. In this experiment, we choose N = 51

grid points in each spatial direction, θ = 0.1 and initial conditions u0 = 1. Figure 7
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provides results for both Gauss and Gauss–Radau quadrature, which show that we

still get bounds in this case, although we can not rely on this to be true. For the

Gauss–Radau rule, we use the fact that the smallest eigenvalue of the three-dimensional

discretized Laplacian is explicitly known and thus cheaply available. Alternatively, one

could again use the smallest Ritz value after some iterations as an approximation,

giving very similar results. The inner quadrature in this case is a standard 20-point

Gauss–Legendre rule. The quality of the computed estimates is very similar to what

was already observed in the two other experiments involving Hermitian matrices. The

(approximate) upper error bound decreases below 10−9 in iteration 108 for k = 2 and

k = 5 and in iteration 109 for k = 10, so that again all values lie closely together and

each of them represents a reasonable choice. However, we again stress that one has to

keep in mind that in this situation, the error estimate decreasing below 10−9 is not a

guarantee that the exact error norm lies below the tolerance (although this is the case

in the example presented here), so that one has to be careful when using it as a sole

stopping criterion in an actual computation.

7 Conclusions

We presented an approach to compute quadrature based estimates for the norm of the

error of (restarted) Arnoldi/Lanczos approximations for f(A)b when f is a Stieltjes

function. When A is Hermitian positive definite, these error estimates can be computed

essentially for free (with cost independent of the matrix size n and the iteration number

m) by using the concept of Lanczos restart recovery from [18] together with recurrence

relations for the residual norms of Lanczos iterates for shifted linear systems. We proved

that for suitably chosen quadrature rules the computed estimates are upper or lower

bounds for the exact error norm when A is Hermitian positive definite. Numerical

experiments with matrices from practical applications illustrated the quality of the

bounds as well as their dependence on certain parameters. For non-Hermitian A it

can not be guaranteed that the estimates are bounds and Lanczos restart recovery

is not applicable. We did, however, propose a variant of this restart recovery which

allows to also compute error estimates in the non-Hermitian case with additional cost

which, although not being independent of the iteration number m, is lower than the

orthogonalization cost in the Arnoldi process.
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