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Efficiency and Sensitivity Analysis of Observation Networks for

Atmospheric Inverse Modelling with Emissions ∗

Xueran Wu†, §, Hendrik Elbern†, ‡ and Birgit Jacob§

Abstract

The controllability of advection-diffusion systems, subject to uncertain initial values

and emission rates, is estimated, given sparse and error affected observations of prognos-

tic state variables. In predictive geophysical model systems, like atmospheric chemistry

simulations, different parameter families influence the temporal evolution of the system.

This renders initial-value-only optimisation by traditional data assimilation methods as in-

sufficient. In this paper, a quantitative assessment method on validation of measurement

configurations to optimize initial values and emission rates, and how to balance them, is

introduced. In this theoretical approach, Kalman filter and smoother and their ensemble

based versions are combined with a singular value decomposition, to evaluate the poten-

tial improvement associated with specific observational network configurations. Further,

with the same singular vector analysis for the efficiency of observations, their sensitivity

to model control can be identified by determining the direction and strength of maximum

perturbation in a finite-time interval.

Keywords: Atmospheric transport model, emission rate optimisation, observability, observa-

tional network configuration, singular value decomposition, data assimilation

1 Introduction

Air quality and climate change are influenced by the fluxes of green house gases, reactive gas

emissions and aerosols in the atmosphere. The ability to quantify variable, yet hardly observ-

able emission rates is a key problem to be solved for the analysis of atmospheric systems, and

typically addressed by elaborate and costly field campaigns or permanently operational obser-

vation networks. The temporal evolution of chemistry in the atmosphere is usually modelled by

atmospheric chemistry transport models. Optimal simulations are based on techniques of com-

bining numerical models with observations. In meteorological forecast models, where initial
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values are insufficiently well known, while exerting a high influence on the model evolution,

this procedure is termed data assimilation ([8]). There is no doubt that the optimization of

the initial state is always of great importance for the improvement of predictive skill. How-

ever, especially for chemistry transport or greenhouse gas models with high dependence on the

emissions in the troposphere, the optimization of initial state is no longer the only issue. The

lack of ability to observe and estimate surface emission fluxes directly with necessary accuracy

is a major roadblock, hampering the progress in predictive skills of climate and atmospheric

chemistry models. In order to obtain the Best Linear Unbiased Estimation (BLUE) from the

model with observations, efforts of optimization included the emission rates by spatio-temporal

data assimilation have been made. The first full chemical implementation of the 4D-variational

method for atmospheric chemistry initial values is introduced in [9]. Further, Elbern et al.

([11]) took the strong constraint of the diurnal profile shape of emission rates such that their

amplitudes and initial values are the only uncertainty to be optimized and then implemented

it by 4D-variational inversion. This strong constraint approach is reasonable because the diur-

nal evolution of emissions are typically much better known than the absolute amount of daily

emissions. Moreover, several data assimilation strategies were designed to adjust ozone ini-

tial conditions and emission rates separately or jointly in [23]. Bocquet et al. introduced a

straightforward extension of the iterative ensemble Kalman smoother in [2].

In many cases, the better estimations of both the initial state and emission rates are not

always sustained based on appropriate observational network configurations when using pop-

ular data assimilation methods, such as 4D-variation and Kalman filter and smoother. It may

hamper the optimization by unbalanced weights between the initial state and emission rates,

which can, in practice, even result in degraded simulations beyond the time intervall with avail-

able observations. The ability to evaluate the suitability of an observational network to control

chemical states and emission rates for its optimised designis the a key qualification, which

needs to be adressed.

Singular value decomposition (SVD) can help identifying the priorities of observations by

detecting the fastest growing uncertainties. The targeted observations problem is an important

topic in the field of numerical weather prediction. Singular vector analysis based on SVD was

firstly introduced to numerical weather prediction by Lorenz ([21]), who applied it to analyse

the largest error growth rates in an idealised atmospheric model. Because of the high cost

of computation, the singular vector analysis was not widely applied until 1980s. Later the

method of singular vector analysis of states of the meteorological model with high dimension

was feasible ([6]).

In atmospheric chemistry, studies about the importance of observations are still sparse.

Khattatov et al. ([17]) firstly analysed the uncertainty of a chemical compositions. Liao et

al. ([18]) focused on the optimal placement of observation locations of the chemical transport

model. However, singular vector analysis for atmospheric chemistry with emissions is different

since emissions play an similarly important role in forecast accuracy with initial values. Goris

and Elbern ([14]) recently used the singular vector decomposition to determine the sensitivity

of the chemical composition to emissions and initial values for a variety of chemical scenarios

and integration length.

Hence, in this paper, applying the Kalman filter and smoother as the desirable data assim-

ilation method we introduce an approach to identify the sensitivities of a network to optimize
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emission rates and initial values independently and balanced prior to any data assimilation pro-

cedure. Through singular value decomposition and ensemble Kalman filter and smoother, the

computational cost of this approach can be reduced so that it is feasible in practice. Then, by

the equivalence between 4D variation and Kalman filter for linear models, the approach is also

feasible for the data assimilation of adjoint models via 4D variational techniques.

This paper is organized as follows. In section 2, we describe the atmospheric transport-

diffusion model with emission rates first and then reconstruct the state vector such that the

emission rates are included dynamically. In section 3, the theoretical approach derives in order

to determine the efficiency of observations or observational network configurations before run-

ning any data assimilation procedure. In section 4, based on the theoretical analysis in section

3, we discuss the ensemble approach to evaluate the efficiency of observation configurations

and present elementary examples. In section 5, we present the approach to identify the sen-

sitivity of observations by determining the directions of maximum perturbation growth to the

initial perturbation. In the appendices, the above approaches are generalised to continuous-time

systems for comprehensive applications.

2 Model description

The chemical tendency equation including emission rates, propagating forward in time, is usu-

ally described by the following atmospheric transport model

dc

dt
= A(c) + e(t),

where A is a nonlinear model operator, c(t) and e(t) are the state vector of chemical con-

stituents and emission rates at time t, respectively .

The a priori estimate of the state vector of concentrations c(t) is given and denoted by

cb(t), termed background state. The a priori estimate of emission rates are usually taken from

emission inventories, denoted by eb(t).
Let A be the tangent linear operator of A, the evolution of the perturbation of states c(t)

and e(t) follows the tangent linear model with A as

dδc

dt
= Aδc + δe(t), (1)

where δc(t) is the perturbation evolving from the perturbation of initial state of chemical state

δc(t0) = c(t0)− cb(t0) and emission rates δe(t) = e(t)− eb(t).
After discretizing the tangent linear model in space, let M(·, ·) be the evolution operator

or resolvent generated by A. It is straightforward to obtain the linear solution of (1) with

continuous time as

δc(t) = M(t, t0)δc(t0) +

∫ t

t0

M(t, s)δe(s)ds, (2)

where δc(t) ∈ R
n, δe(t) ∈ R

n, n the dimension of the partial phase space of concentrations

and emission rates. Obviously, M(·, ·) ∈ R
n×n.
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In addition, let y(t) be the observation configuration of c(t) and define

δy(t) = y(t)−H(t)cb(t),

where H(t) is a nonlinear forward observation operator mapping the model space to the ob-

servation space. Then by linearising the nonlinear operator H as H , the linearised model

equivalents of observation configurations can be presented as

δy(t) = H(t)δc(t) + ν(t),

where δy(t) ∈ R
m(t), m(t) the dimension of the phase space of observation configurations at

time t. ν(t) is the observation error at time t of the Gaussian distribution with zero mean and

variance R(t) ∈ R
m(t)×m(t) .

It is feasible to apply the Kalman filter and smoother into the model without any extension

if the emission rates are accurate, which implies the initial state of concentration is the only

parameter to be optimized. However, if the emission rates are poorly known, they should be

combined into the state vector so that both of them can be updated by a smoother application.

To establish the model with a new combination of the initial state and emissions, let us rewrite

the background of emission rates into the dynamic form

eb(t) = Me(t, s)eb(s),

where eb(·) is a n-dimensional vector of which the ith element is denoted by eib(·) and Me(t, s)
is the diagonal matrix defined as

Me(t, s) =

















e1
b
(t)

e1
b
(s)

e2
b
(t)

e2
b
(s)

. . .
en
b
(t)

en
b
(s)

















.

Since emission rates follow the diurnal variation, by taking the diurnal profile of emission

rates as a constraint, the amplitude of emission rates can be estimated by constant emission

factors ([11]). We reconstruct the dynamic model of emission rate perturbation as

δe(t) = Me(t, s)δe(s). (3)

Then, (2) can be written as

δc(t) = M(t, t0)δc(t0) +

∫ t

t0

M(t, s)Me(s, t0)δe(t0)ds. (4)

Hence, we obtain the extended model with emission rates

(

δc(t)
δe(t)

)

=

(

M(t, t0)
∫ t

t0
M(t, s)Me(s, t0)ds

0 Me(t, t0)

)(

δc(t0)
δe(t0)

)

. (5)
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Typically, there is no direct observation for emissions. Therefore, we reconstruct the ob-

servation mapping as

δy(t) = [H(t), 0n×n]

(

δc(t)
δe(t)

)

+ ν(t),

where 0n×n is a n× n matrix with zero elements.

It is clear now that both concentrations and emission rates are included into the state vector

of the block extended model (5), such that the Kalman smoother in a fixed time interval [t0, tN ]
can be applied to optimize both of them. In our approach (3), the dynamic model of emission

rates is forced to follow the background evolution of emission rates. In fact, it was stated

in several studies ([7], [13]) that the best linear unbiased estimation (BLUE) of a random

variable x, which implies this estimation, can minimise its variance. The estimate via fix-

interval Kalman smoother is the BLUE depending on all observation configurations in time

interval [t0, tN ]. In our case of emission rates, the estimation of e(t) by Kalman smoother on

[t0, tN ] can be represented generally as the conditional expectation E[e(t)|{y(t), t ∈ [t0, tN ]}].
By the linear property of conditional expectation,

E[e(t)|{y(t), t ∈ [t0, tN ]}]
= E[Me(t, s)e(s)|{y(t), t ∈ [t0, tN ]}] = Me(t, s)E[e(s)|{y(t), t ∈ [t0, tN ]}],

which implies the dynamic model of emission rates (3) satisfies the constraint of the diurnal

shape of emission rates if [t0, tN ] covers 24 hours.

3 Efficiency of observation networks of atmospheric inverse mod-

elling with emission rates

As mentioned before, the observational network configurations cannot necessarily help im-

proving the initial state and emission rates in a balanced way. If the estimation of both initial

state and emission rates can be improved significantly, we call the corresponding observation

configurations as efficient or of high efficiency for both. Otherwise, the observation config-

urations are only efficient to initial state or emission rates. However, it is usually difficult to

foresee the efficiency of observation configurations. Hence, the lack of the knowledge of the

efficiency of observations may lead us to give the poor initial guesses and waste computational

resource. In this section, we will introduce the theoretical approach to determine the efficiency

of observations via the Kalman filter and smoother in a finite-time interval.

3.1 Theoretical analysis for the general discrete-time system

For the application in atmospheric chemistry, let us consider the discrete-time system first.

Generalizing the extended atmospheric transport model with emission rates in a discrete

time internal [t0, t1, · · · , tN ] to the following abstract linear system:

x(tk+1) = M(tk+1, tk)x(tk) + ε(tk), (6)

y(tk) = H(tk)x(tk) + ν(tk), (7)

5



where x(·) ∈ R
n is the state variable, y(tk) ∈ R

m(tk) is the observation vector at time tk, the

model error ε(tk) and the observation error ν(tk), k = 1, · · · , N follow Gaussian distribution

with zero mean and Q(tk) and R(tk) are their covariance matrices respectively.

Denote the estimation of x(tk) based on {y(t0), · · · , y(tk)} by x̂(tk|tk), termed as the anal-

ysis estimation, the estimation of x(tk) based on {y(t0), · · · , y(tk−1)} by x̂(tk|tk−1), termed

as forecast estimation. Correspondingly, P (tk|tk) and P (tk|tk−1) are the analysis error and

forecast error covariance matrices of x̂(tk|tk) and x̂(tk|tk−1) respectively. For convenience,

the main results of the discrete-time Kalman filter can be summarised as follows:

(1) Analysis step:

K(tk) = P (tk|tk−1)H
T (tk)(H(tk)P (tk|tk−1)H

T (tk) +R(tk))
−1;

x̂(tk|tk) = x̂(tk|tk−1) +K(tk)(y(tk)−H(tk)x̂(tk|tk−1));

P (tk|tk) = (I −K(tk)H(tk))P (tk|tk−1);

(2) Forecasting step:

x̂(tk+1|tk) = M(tk+1, tk)x̂(tk|tk);
P (tk+1|tk) = M(tk+1, tk)P (tk|tk)MT (tk+1, tk) +Q(tk),

where for any matrix M , MT is the adjoint of M and M−1 is the inverse of M .

Denote the first guess of initial variance as P (t0|t−1) and select P (t0|t−1) and R(tk) to be

symmetric and positive definite. Then we can rewrite

P (tk|tk) = P (tk|tk−1)

− P (tk|tk−1)H
T (tk)(H(tk)P (tk|tk−1)H

T (tk) +R(tk))
−1H(tk)P (tk|tk−1),

and by the matrix inverse lemma ([24]), we have

P−1(tk|tk) = P−1(tk|tk−1) +H(tk)
TR−1(tk)H(tk). (8)

Further, assume the model error, which is usually unknown, is negligible. Then, we obtain

P−1(tk+1|tk) = M−T (tk+1, tk)P (tk|tk)−1M−1(tk+1, tk). (9)

Hence, by the deduction based on (8) and (9), we have

P−1(tk+1|tk)
= M−T (tk+1, tk)P

−1(tk|tk−1)M
−1(tk+1, tk)

+M−T (tk+1, tk)H
T (tk)R

−1(tk)H(tk)M
−1(tk+1, tk)

= M−T (tk+1, tk−1)P
−1(tk−1|tk−2)M

−1(tk+1, tk−1)

+M−T (tk+1, tk−1)H
T (tk−1)R

−1(tk−1)H(tk−1)M
−1(tk+1, tk−1)

+M−T (tk+1, tk)H
T (tk)R

−1(tk)H(tk)M
−1(tk+1, tk)

= M−T (tk+1, t0)P
−1(t0|t−1)M

−1(tk+1, t0)

+

k
∑

i=0

M−T (tk+1, ti)H
T (ti)R

−1(ti)H(ti)M
−1(tk+1, ti).
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Define x̂(t0|tk) = E[x(t0)|y(t0), . . . , y(tk)] and denote its covariance matrix as

P (t0|tk) = E[(x(t0)− x̂(t0|tk))(x(t0)− x̂(t0|tk))T ],

which, according to the definition of x̂(t0|tk), is the covariance of the estimate of the state from

the fixed-interval Kalman smoother. Then

P−1(t0|tk) (10)

= E[M−1(tk+1, t0)(x(tk+1)− x̂(tk+1|tk))(x(t0)− x̂(tk+1|tk))TM−T (tk+1, t0)]
−1

= MT (tk+1, t0)P
−1(tk+1|tk)M(tk+1, t0)

= P−1(t0|t−1) +
k

∑

i=0

MT (ti, t0)H
T (ti)R

−1(ti)H(ti)M(ti, t0).

In particular, for k = N , taking the observations in the entire time interval into account,

we have

P−1(t0|tN ) = P−1(t0|t−1) +

N
∑

i=0

MT (ti, t0)H
T (ti)R

−1(ti)H(ti)M(ti, t0). (11)

It is clear that (11) includes all known information of the model with initial variance and

observation configurations before any data assimilation procedure. At the same time, it is

independent of any specific data and states. Actually, if we define

G =











H(t0)M(t0, t0)
H(t1)M(t1, t0)

...

H(tN )M(tN , t0)











(12)

and

R−1 =











R−1(t0)
R−1(t1)

. . .

R−1(tN )











,

(11) can be written as

P−1(t0|tN ) = P−1(t0|t−1) + GTR−1G, (13)

where GTR−1G equals the observability Gramian with R−1 from control theory, which is

appropriate for how well states of a model can be inferred by the external observations.

Though (13) meets the demand to represent the covariance by all known information before

starting the data assimilation procedure, the statistic interpretation of the inverse of covariance

is still blurred to the application. Therefore, for evaluating the improvement of the estimation

with the initial variance P (t0|t−1), we define relative improvement covariance as

P− 1

2 (t0|t−1)(P (t0|t−1)−P (t0|tN ))P− 1

2 (t0|t−1) = I −P− 1

2 (t0|t−1)P (t0|tN )P− 1

2 (t0|t−1),
(14)
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where I is the identity matrix.

The above improvement covariance is a normalised matrix of the difference between the

initial variance P (t0|t−1) and the covariance matrix P (t0|tN ) from Kalman smoother. Espe-

cially, P− 1

2 (t0|t−1)P (t0|tN )P− 1

2 (t0|t−1) can be understood as the covariance matrix from the

fixed-interval Kalman smoother normalised by the initial variance. The symmetric normalised

matrix guarantees the improvement covariance to be positive-definite. Further, its singular val-

ues or the eigenvalues are bounded since the sum of the eigenvalues of a matrix is equal to its

trace. In fact, from (14), we have

0 6 P− 1

2 (t0|t−1)(P (t0|t−1)− P (t0|tN ))P− 1

2 (t0|t−1) < I,

which implies that its trace is always less than the dimension of the state vector of the model.

Since P (t0|tN ) is unknown before the data assimilation procedure is finished, we rewrite

the relative improvement covariance as

P− 1

2 (t0|t−1)(P (t0|t−1)− P (t0|tN ))P− 1

2 (t0|t−1)

= P− 1

2 (t0|t−1)(P (t0|t−1)− (P−1(t0|t−1) + GTR−1G)−1)P− 1

2 (t0|t−1)

= I − P− 1

2 (t0|t−1)(P
−1(t0|t−1) + GTR−1G)−1P− 1

2 (t0|t−1)

= I − (I + P
1

2 (t0|t−1)GTR−1GP 1

2 (t0|t−1))
−1. (15)

It is clear to see from (15) the improvement covariance defined in (14) that even without ob-

servability of the system, which means GTG is not full-rank, I+P
1

2 (t0|t−1)GTR−1GP 1

2 (t0|t−1)
is still invertible. However, it is not easy to calculate (15) directly. Hence, by singular value

decomposition,

P
1

2 (t0|t−1)GTR− 1

2 = V SUT ,

where V and U are unitary matrices consisted of the left and right singular vectors, S is the

rectangular diagonal matrix consisting of the singular values.

We can simplify (15) as

P− 1

2 (t0|t−1)(P (t0|t−1)− P− 1

2 (t0|tN ))P (t0|t−1)

= I − (I + P
1

2 (t0|t−1)GTR−1GP 1

2 (t0|t−1))
−1

= I − (I + V SSTV T )−1

= V V T − (V V T + V SSTV T )−1

= V V T − (V (I + SST )V T )−1

= V (I − (I + SST )−1)V T

=
r

∑

i=1

s2i
1 + s2i

viv
T
i , (16)

where r is the rank of (15) and vi is the ith left singular vector in V related to the singular value

si, which is the ith element on the diagonal of S.
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Let us consider the improvement of each element in the state vector as the corresponding

value in the diagonal of the relative improvement covariance. From (16), we denote the relative

improvement of jth element in x(t0) as P̃j , then,

P̃j =

r
∑

i=1

s2i
1 + s2i

(vij)
2,

where vij is the jth element of vi.
Get a deeper insight into the capacity of the observation networks to improve the estimation

of all states of the model, some important indices need to be considered. In fact, in order to

evaluate the total improvement of the model, the nuclear norm for matrices, or equivalently,

the 1-norm is appropriate, which is defined as

‖M‖1 = tr(
√
MTM),

where M is any matrix and tr(·) denote the trace of the matrix.

For (16), we denote

P̃ = P− 1

2 (t0|t−1)(P (t0|t−1)− P (t0|tN ))P− 1

2 (t0|t−1), (17)

according to (16),

‖P̃‖1 =
r

∑

i=1

s2i
1 + s2i

,

which is called the total improvement value.

As we mentioned before, ‖P̃‖1 < ‖I‖1 = n, where n can be considered as the total

improvement value, if the system is fully known, which implies the optimal estimation is the

value of state. Thus, if we consider the ratio

p̃ =
‖P̃‖1
‖I‖1

=
‖P̃‖1
n

∈ [0, 1), (18)

the percentage of the total improvement of the model is obtained, which is called the relative

improvement degree.

3.2 Application to the extended atmospheric transport model with emissions

For the atmospheric transport model extended with emissions, composing the dimension of the

original state c ∈ R
n and emission rates e ∈ R

n respectively, we divide (17) into a block

matrix

P̃ =

(

P̃ c P̃ ce

P̃ ec P̃ e

)

=

2n
∑

i=1

s2i
1 + s2i

(

vci
vei

)

(vc
T

i , ve
T

i ) ∈ R
2n×2n,

where P c is the relative improvement covariance of the state c(t0), P
e is the relative improve-

ment covariance of the emission rates e(t0), P
ce = (P ec)T is the relative improvement covari-

ance between c(t0) and e(t0) and (vc
T

i , ve
T

i )T = vi.
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Then, it is easy to calculate

P̃ c =

2n
∑

i=1

s2i
1 + s2i

vci v
cT

i , P̃ e =

2n
∑

i=1

s2i
1 + s2i

vei v
eT

i .

Further, the relative improvements of jth element in c(t0) and e(t0) are

P̃ c
j =

2n
∑

i=1

s2i
1 + s2i

(vcij)
2, P̃ e

j =
2n
∑

i=1

s2i
1 + s2i

(veij)
2,

where vcij and veij are respectively the jth element of vci and vei .

Moreover, the total improvement values of concentration and emission rates are

‖P̃ c‖1 =
2n
∑

i=1

s2i
1 + s2i

tr(vci v
cT

i ), ‖P̃ e‖1 =
2n
∑

i=1

s2i
1 + s2i

tr(vei v
eT

i ).

It is worth noting that

P̃ c = (P c(t0|t−1))
− 1

2 (P c(t0|t−1)− P c(t0|tN ))(P c(t0|t−1))
− 1

2

and

P̃ e = (P e(t0|t−1))
− 1

2 (P e(t0|t−1)− P e(t0|tN ))(P e(t0|t−1))
− 1

2

if and only if there is no correlation between the initial concentration and emission rates. In

fact, if we assume P ce(t0|t−1) = 0n×n, the corresponding relative improvement degrees of

concentration and emission rates are defined as

p̃c =
‖P̃ c‖1

n
, p̃e =

‖P̃ e‖1
n

.

According to (18), it is obvious that p̃c ∈ [0, 1) and p̃e ∈ [0, 1) show the percentages of the

relative improvements of concentration and emission rates, respectively. However, since

‖P̃ c‖1
n

+
‖P̃ e‖1

n
> 1,

which indicates the normalisation is just with respect to the extended covariance matrix rather

than specified to the state c and emission rates e. The relative improvement degree cannot serve

our objective to distinguish the observability of concentration and emission rates and balance

them quantitatively. However, by observing the block form of P̃ , it is easy to obtain

‖P̃ c‖1 + ‖P̃ e‖1 = ‖P̃‖1.

For comparing the improvement of the concentration and emission rates, we define relative

improvement ratios for the state or the emission rates as

p̃c =
‖P̃ c‖1
‖P̃‖1

, p̃e =
‖P̃ e‖1
‖P̃‖1

, p̃e + p̃c ≡ 1.
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In a sum, if the total improvement value or relative improvement degree of the model is

almost zero, the relative improvement ratios do not need to be considered since no state of

the model is improved. Otherwise, {P̃ c
j }nj=1 and {P̃ e

j }nj=1, which show the improvement of

each parameter j of concentrations and emission rates respectively, can help us determining

which parameters can be optimized by the existing observation configurations. By comparing

p̃c with p̃e, it is clear that the estimation of the one with the larger ratio (larger magnitude

of the improvement covariance) can be improved more efficiently by the existing observation

configurations. In other words, if p̃c > p̃e, the existing observation configurations are more

sensible to the initial values of concentration. Conversely, if p̃c < p̃e, the observation config-

urations can help improving the estimation of emission rates more. According to p̃c and p̃e,

the ’weight’ between the concentrations and emission rates can be decided quantitatively. In a

data assimilation context, where observations are in a weighted relation to the background, the

BLUE favours the more sensitive parameters.

In a special case that p̃e is very close to zero, the emission rates can be viewed as the input

in the model without any optimization when the data assimilation procedure is started.

For the completion of the theorem and wider application, the generalisation of the above

method for the continuous-time system is introduced in Appendix A. While the derivation is

totally different from the discrete-time system, it can be shown that the theoretical analysis still

holds for the continuous-time system.

4 Application to the ensemble Kalman filter and smoother

In practice, the standard Kalman filter and smoother cannot be applied directly to transport

modells due to their computational complexity. The ensemble Kalman filter (EnKF) and

smoother (EnKS), as a Monte Carlo implementation originating from Kalman filter and smoother,

are suitable for problems with a large number of control variables and are an important tool in

the field of data assimilation ([12]). In this section, we will introduce how to apply the above

method if an Ensemble Kalman filer and smoother are applied as the data assimilation method.

For the abstract discrete-time system (6), we denote the ensemble samples of x̂(ti|ti−1)
and x̂(ti|ti) , i = 1, · · · , N respectively by

X(ti|ti−1) = (x̂1(ti|ti−1), x̂2(ti|ti−1), · · · , x̂q(ti|ti−1)),

X(ti|ti) = (x̂1(ti|ti), x̂2(ti|ti), · · · , x̂q(ti|ti)),

where q is the number of ensemble members.

Correspondingly, their ensemble means are

x̄(ti|ti−1) =
1

q

q
∑

k=1

x̂k(ti|ti−1) =
1

q
X(ti|ti−1)1q×1,

x̄(ti|ti) =
1

q

q
∑

k=1

x̂k(ti|ti) =
1

q
X(ti|ti)1q×1,

where 1i×j is a i× j matrix where each element is equal to 1.
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Note the ensemble perturbation matrix consist of the perturbation of each sampling by

X̃(ti|ti−1) = X(ti|ti−1)−
1

q
X(ti|ti−1)1q×q.

Then the ensemble covariance is

P̄ (ti|ti−1) =
1

q − 1
X̃(ti|ti−1)X̃

T (ti|ti−1), P̄ (ti|ti) =
1

q − 1
X̃(ti|ti)X̃T (ti|ti). (19)

Further, we define the ensemble observation equivalent in the entire time interval in obser-

vation space as

yfk = Gx̂k(t0|t−1), k = 1, · · · , q
and denote the ensemble mean and the forecast error covariance matrix in observation space

by

ȳf =
1

q

q
∑

k=1

yfk , P̄ f
yy =

1

q − 1

q
∑

k=1

(ŷfk − ȳf )(ŷfk − ȳf )T = GP̄ (t0|t−1)GT .

Similarly, we denote the ensemble covariance between the initial states and the forecasting

observations by

P̄ f
xy =

1

q − 1

q
∑

k=1

(x̂k(t0|t−1)− x̄(t0|t−1))(ŷ
f
k − ȳf )T = P̄ (t0|t−1)GT .

In addition, we define the ensemble observations as

ŷk(ti) = y(ti) + νk(ti), k = 1, · · · , q, i = 1, · · · , N

and assume ν̄(ti) =
1
q

∑q
k=1 νk(ti) = 0. Denote the ensemble covariance of observation errors

by R̄(ti) =
1

q−1

∑q
k=1 νk(ti)ν

T
k (ti). Further, we assume

R̄−1 =











R̄−1(t0)
R̄−1(t1)

. . .

R̄−1(tN )











.

It is shown by Evensen ([12]) that the ensemble forecasting and analysis covariances have

the same form with the covariances in the standard Kalman filter. It indicates that (8) and (9)

are also true for P̄ (ti|ti) and P̄ (ti|ti−1). So upon substituting P̄ (t0|t−1) into P (t0|t−1) in (13),

according to matrix inversion lemma, we obtain

P̄ (t0|tN )

= P̄ (t0|t−1)− P̄ (t0|t−1)GTR− 1

2 (I +R− 1

2GP̄ (t0|t−1)GTR− 1

2 )−1R− 1

2GP̄ (t0|t−1)

= P̄ (t0|t−1)− P̄ f
xyR− 1

2 (I +R− 1

2 P̄ f
yyR− 1

2 )−1R− 1

2 (P̄ f
xy)

T . (20)
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Then,

P̄− 1

2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄− 1

2 (t0|t−1)

= P̄− 1

2 (t0|t−1)P̄
f
xyR− 1

2 (I +R− 1

2 P̄ f
yyR− 1

2 )−1R− 1

2 (P̄ f
xy)

T P̄− 1

2 (t0|t−1). (21)

To simplify (21), let
∑N

i=1 m(ti) = m, by singular value decomposition, we have

P̄− 1

2 (t0|t−1)P̄
f
xyR− 1

2 = V SUT ∈ R
n×m (22)

where U ∈ R
m×m consists of the eigenvectors of R− 1

2GP̄ (t0|t−1)GTR− 1

2 , V ∈ R
n×n con-

sists of the eigenvectors of P̄
1

2 (t0|t−1)GTR−1GP̄ 1

2 (t0|t−1), S ∈ R
n×m consists of the singu-

lar values.

Let r be the rank of (22), the ensemble relative improvement covariance is defined as

P̄− 1

2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄− 1

2 (t0|t−1)

= V STUT (UUT + U(SST )UT )−1USV T

= V ST (I + STS)−1SV T

=

r
∑

i=1

s2i
1 + s2i

viv
T
i (23)

and its diagonal shows ensemble relative improvements of states.

Obviously, (23) has the same form as (16). In fact, for the linear dynamic model, we have

P̄− 1

2 (t0|t−1)P̄
f
xyR̄− 1

2 = P̄
1

2 (t0|t−1)GT R̄− 1

2 , (24)

which implies if we just substitute R and P (t0|t−1) in (16) by R̄ and P̄ (t0|t−1), the final results

of (16) and (23) are equivalent. However, it is much more efficient to calculate practically the

singular values and vectors of the left-side matrix of (24) than to calculate the singular values

and vectors of the right-side matrix of (24), since the explicit calculation of G is not necessary.

Further on, it is worth noticing that if the ensemble size q is less than the dimension of the

model n, the initial ensemble covariance P̄ (t0|t−1) is not invertible. In this case, it is reason-

able to replace P̄− 1

2 (t0|t−1) by the pseudo inverse of P̄
1

2 (t0|t−1), denoted by P̄ † 1

2 (t0|t−1),
and calculate it by singular value decomposition. In fact, according to (19), we have

P̄ (t0|t−1) =
1

q − 1
X̃(t0|t−1)X̃

T (t0|t−1). (25)

Then, by singular value decomposition,

1√
q − 1

X̃(t0|t−1) = V0S0U
T
0 , (26)

where V0 ∈ R
n×n and U0 ∈ R

q×q consist of the left and right singular vectors, S0 ∈ R
n×q is

a rectangular diagonal matrix with singular values {s0i|s0i > 0}qi=1 on the diagonal. Thus,

P̄ (t0|t−1) = V0S0U
T
0 U0S

T
0 V

T
0 = V0S0S

T
0 V

T
0 = V0Ŝ

2
0V

T
0 , (27)
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where Ŝ2
0 = S0S

T
0 ∈ R

n×n is a block diagonal matrix with the rank r0 and the diagonal

(s201, · · · , s20r0 , 01×(n−r0)). Hence,

P̄ † 1

2 (t0|t−1) = V0Ŝ
†
0V

T
0 ,

where Ŝ†
0 is the pseudo inverse of Ŝ0 with the diagonal (1/s01, · · · , 1/s0r0 , 01×(n−r0)). Then,

the ensemble relative improvement covariance can be rewritten as

P̄ † 1

2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ † 1

2 (t0|t−1)

= P̄ † 1

2 (t0|t−1)P̄ (t0|t−1)P̄
† 1

2 (t0|t−1)− P̄ † 1

2 (t0|t−1)P̄ (t0|tN )P̄ † 1

2 (t0|t−1)

= V0Ŝ
†
0V

T
0 (V0Ŝ

2
0V

T
0 )V0Ŝ

†
0V

T
0 − P̄ † 1

2 (t0|t−1)P̄ (t0|tN )P̄ † 1

2 (t0|t−1)

= V0Ir0V
T
0 − P̄ † 1

2 (t0|t−1)P̄ (t0|tN )P̄ † 1

2 (t0|t−1),

where Ir0 is the diagonal matrix with the diagonal (11×r0 , 01×(n−r0)).

It is clear from (20) that P̄ † 1

2 (t0|t−1)P̄ (t0|tN )P̄ † 1

2 (t0|t−1) is still nonnegative definite

while P̄ (t0|t−1) is not with full rank, so if we use the same notation of standard Kalman

filter and smoother to denote the ensemble relative improvement covariance, which means

P̃ = P̄ † 1

2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ † 1

2 (t0|t−1),

then, 0n×n 6 P̃ < Ir0 . Further, the ensemble relative improvement degree is

p̃ =
‖P̃‖1
‖Ir0‖1

=
‖P̃‖1
r0

∈ [0, 1). (28)

As to the atmospheric transport model extended with emissions, for the distinction of the

improvements for concentrations and emission rates, the ensemble relative ratios are still

p̃c =
‖P̃ c‖1
‖P̃‖1

, p̃e =
‖P̃ e‖1
‖P̃‖1

.

If we further consider the nonlinear dynamic model, we can renew the definition of the

forecasting observation configurations as

yfk = G(x̂fk(t0)), k = 1, · · · , q,

such that it can fully follow the nonlinear model, where G is a nonlinear operator.

Correspondingly, its ensemble mean and covariance are

ȳf =
1

q

q
∑

k=1

yfk , P̄ f
yy =

1

q − 1

q
∑

k=1

(ŷfk − ȳf )(ŷfk − ȳf )T .

Thus, for a nonlinear dynamic model, the extended ensemble Kalman filter to the theoreti-

cal approach in Section 3, the only approximation is the limited size of the ensemble.

Hence, for the extended atmospheric transport model with emission rates, the analysis is

similarto the analysis in Section 3.2.
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4.1 Example

Consider a linear advection-diffusion model with periodic horizontal boundary condition and

Neumann boundary condition in the vertical direction on the domain [0, 14] × [0, 14] × [0, 4],

∂δc

∂t
= −vx

∂δc

∂x
− vy

∂δc

∂y
+

∂

∂z
(K(z)

∂δc

∂z
) + δe− δd,

where δc, δe and δd are the perturbations of the concentration, the emission rate and deposition

rate of a species respectively. vx and vy are constants and K(z) is a differentiable function of

height z.

Assume △t = 0.5, the numerical solution is based on the symmetric operator splitting

technique ([25]) with the following operator sequence

δc(t+△t) = TxTyDzADzTyTxδc(t),

where Tx and Ty are transport operators in horizontal directions (x, y), Dz is the diffusion op-

erator in vertical direction (z). The parameters of emission and deposition rates are included

in A. The Lax-Wendroff algorithm is chosen as the discretization method for horizontal advec-

tion with △x = △y = 1. The vertical diffusion is discretized by Crank-Nicolson discretisation

with the Thomas algorithm as solver. The horizontal domain is [0, 14] × [0, 14] with the hor-

izontal space discretization interval, while the vertical domain is [0, 4] with △z = 1. So the

number of the grid points Ng = Nx ×Ny ×Nz = 1125, where Nx = 15, Ny = 15, Nz = 5.

In addition, we choose Me(t, t0), a continuous function in time t, to formulate the temporal

background evolution profile shape of the emission rate as

eb(t) = Me(t, t0)eb(t0),

where eb(t0) is the initial value of emission rate.

With the same assumptions of △t and grid points in the 3D domain, the discrete dynamic

model of emission rates is

δe(t +△t, i, j, l) = Me(t+△t, t)δe(t, i, j, l),

where {(i, j, l), i, j ∈ {0, · · · , 14}, l ∈ {0, · · · , 4}} are the coordinates of grid points and

Me(t+△t, t) = eb(t+△t)/eb(t).

For expository reasons the background assumption of δd is denoted by δdb, which is kept

fixed.

According to the discretization of the phase space, we always assume there is only one fixed

observation configuration in this example. It indicates that the observation operator mapping

the state space to the observation space is a 1× 2Ng time-invariant matrix.

Set 500 (the ensemble number N ) samplings for the initial concentration and emission rate

respectively by pseudo independent random numbers and make the states correlated by moving

average technique.
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Advection test: For the advection test (Fig. 1 to Fig. 6), we assume the model with a weak

diffusion process (K(z) = 0.5e−z2) and there is one single observation configuration of the

concentration in the lowest layer at each time step, denoted by ’Obs-cfg of conc’ in figures.

Besides, the emission source is assumed mainly from the location shown by the blue point in

figures, named ’Emss-source’.

If we set the data assimilation window to 10△t and the wind is from southwest, the left-side

subplot in Fig. 1 shows the estimation of the concentration is probably improved at the field

around the observation under the small assimilation window. Meanwhile, though the right-side

subplot in Fig. 1 shows hardly improvement of the emission rate, we can see from the first line

of Table 1 is feasible only for the concentration, for the simple reason that the single observation

configuration cannot detect the emission within the corresponding assimilation window.

If we consider the same case as Fig. 1, but now extending the data assimilation window

to 35△t, Fig. 2 shows the field where the concentration is potentially improved is enlarged

since the states are more correlated with the extension of assimilation window and the esti-

mation of the emission surrounding the emission source is improved, compared to the Fig. 1.

The quantitative balance between the concentration and the emission is shown by the relative

improvement ratios in the second line of Table 1.

If we further extend the data assimilation window to 48△t, it is clear to see from Fig. 3

and the third line of Table 1 that the states are more correlated such that more areas can be

analysed and improved by the single observation configuration. Meanwhile, the improvement

of the emission is dominant with increasing time.

Fig. 4 to Fig. 6 show the relative improvements of the concentration and emission rate,

when the model domain is under a northeasterly wind regime, and assimilation windows of

with the data assimilation windows 10△t, 35△t and 48△t respectively. It is easy to imagine

that with northeasterly winds, whatever the duration of the assimilation window is, the emission

is not detectable and improveable by the single observation configuration. This hypothesis is

successfully tested by our approach, the results of which are clearly visible in Fig. 4 to Fig. 6

and Table 2.

Emission signal test: The purpose of emission signal test (Fig. 7 and Fig. 8) is to show the

approach is also sensitive to the different background profile of the emission rate evolution.

Hence, the only distinction between the situations in Fig. 7 and Fig. 8 is the background profile

of the emission rate during the assimilation window 48△t. Actually, Fig. 8 is the same case

as Fig. 3. Thus, the result of the approach is clearly shown in Table 3 that the strong emission

signal or the distinct variation of the emission rate during the data assimilation window is

significant to the model to recognize the source of the changes of the concentration and improve

the estimation of the states.

Diffusion test: The diffusion test (Fig. 9 and Fig. 10) aims to test the approach via com-

paring the ensemble relative improvements of the concentration and the emission rate of the

model with a weak diffusion process and a strong diffusion process. For the case in Fig. 9, all

assumptions are same with the situation in Fig. 2 except that the single observation configu-

ration is at the top layer instead. The only difference of the assumptions between Fig. 9 and

Fig. 10 is that K(z) = 0.5e−z2 in Fig. 9 and K(z) = 0.5e−z2 + 1 in Fig. 10.

Comparing Fig. 2 with Fig. 9, it is obvious that the different observation location influence

on the distribution of the relative improvements of the concentration greatly. From Table 5, the
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Figure 1: Advection test with data assimilation (DA) window 10△t and southwest wind. Iso-

pleths of ensemble relative improvements of the concentration and emission rate are shown in

the leftside and rightside figures respectively.
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Figure 2: Advection test with DA window 35△t and southwest wind. Plotting conventions are

as in Fig. 1.

total improvement value of the concentration in the lowest layer for Fig. 2 is shown to be larger

than the one for Fig. 9. Besides, it can be seen in Table 4 that the observation configuration

in the top layer cannot detect the emission with such weak diffusion under the assimilation

window 35△.

If we compare Fig. 9 with Fig. 10, it is shown in Table 5 that both the total improvement

value of the concentration in the lowest layer for Fig. 10 and the weight of the emission rate in-

crease, which implies that the observation configuration is more efficient to detect the emission

and improve the estimation of the state of the model with the strong diffusion in Fig. 10.
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Figure 3: Advection test with DA window 48△t and southwest wind. Plotting conventions are

as in Fig. 1.
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Figure 4: Advection test with DA window 10△t and northeast wind. Plotting conventions are

as in Fig. 1.
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Figure 5: Advection test with DA window 35△t and northeast wind. Plotting conventions are

as in Fig. 1.
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Figure 6: Advection test with DA window 48△t and northeast wind. Plotting conventions are

as in Fig. 1.
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Figure 7: Emission signal test (weak) with DA window 35△t and southwest wind. Plotting

conventions are as in Fig. 1.
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Figure 8: Emission signal test (strong) with DA window 35△t and southwest wind. Plotting

conventions are as in Fig. 1.
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Figure 9: Diffusion test (weak) with DA window 35△t and southwest wind. Plotting conven-

tions are as in Fig. 1.
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Figure 10: Diffusion test (strong) with DA window 35△t and southwest wind. Plotting con-

ventions are as in Fig. 1.

p̃c p̃e

Fig. 1 0.9979 0.0021

Fig. 2 0.5107 0.4893

Fig. 3 0.0345 0.9655

Table 1:

p̃c p̃e

Fig. 4 0.9977 0.0023

Fig. 5 0.9974 0.0026

Fig. 6 0.9974 0.0026

Table 2:

5 Sensitivity of observation networks to the initial state and emis-

sion rates

From the above discussion, we can determine the efficiency of the observation network by

evaluating the improvement of estimation of initial state and emission rates separately, before

we run the data assimilation by Kalman filer and smoother. However, it does not provide the

information about the improved configurations of observations which can help improving the

estimations. In this section, independent of any concrete data assimilation method, we will

introduce the singular vector approach to identify the sensitive directions of observations to the

initial state and emission rates.

Consider the generalized discrete-time linear system:

δx(tk+1) = M(tk+1, tk)δx(tk),

where δx(t0) = x(t0)− x̂(t0), x̂(t0) is any estimate of x(t0).
Assume the observation mapping is accurate, which implies the data is the only source of

observation errors, we have

δy(tk) = H(tk)δx(tk).

Define the magnitude of the perturbation of the initial state by the norm in the state space

with respect to a positive definite matrix W0

‖δx(t0)‖2W0
= 〈δx(t0),W0δx(t0)〉.
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p̃c p̃e

Fig. 7 0.6811 0.3189

Fig. 8 0.5107 0.4893

Table 3:

p̃c p̃e

Fig. 9 0.9977 0.0023

Fig. 10 0.7755 0.2245

Table 4:

P̃ c

low P̃ e

low

Fig. 2 2.8435 × 10
−6

2.3530 × 10
−6

Fig. 9 2.3850 × 10
−7

2.1627 × 10
−8

Fig. 10 7.8820 × 10
−7

1.5946 × 10
−6

Table 5: P̃ c
low and P̃ e

low are respectively the total improvement values of the concentration and

emission rates in the lowest layer

Similarly, we define the magnitude of the related observations perturbation in the time interval

[t0, · · · , tN ] by the norm with respect to a sequence of positive definite matrix {W (tk)}Nk=1

‖δy‖2{W (tk)}
=

N
∑

k=0

〈δy(tk),W (tk)δy(tk)〉,

where δy(tk) = H(tk)δx(tk).
In order to find the direction of observation configuration which can minimize the pertur-

bation of the initial states, the ratio

‖δx(t0)‖2W0

‖δy‖2{W (tk)}

, δy 6= 0

should be minimized. It is equivalent to maximize the ratio of the magnitude of observation

perturbation and the initial perturbation

‖δy‖2{W (tk)}

‖δx(t0)‖2W0

, δx(t0) 6= 0.

Thus, we define the measure the perturbation growth as

g2 =
‖δy‖2{W (tk)}

‖δx(t0)‖2W0

(29)

=

N
∑

k=0

〈δy(tk),W (tk)δy(tk)〉
〈δx(t0),W0δx(t0)〉

=

N
∑

k=0

〈H(tk)δx(tk),W (tk)H(tk)δx(tk)〉
〈δx(t0),W0δx(t0)〉

=
N
∑

k=0

〈δx(tk),H(tk)
TW (tk)H(tk)δx(tk)〉

〈δx(t0),W0δx(t0)〉
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=

N
∑

k=0

〈δx(t0),M(tk, t0)
TH(tk)W (tk)H(tk)M(tk, t0)δx(t0)〉
〈δx(t0),W0δx(t0)〉

=
〈δx(t0),

∑N
k=0M(tk, t0)

TH(tk)
TW (tk)H(tk)M(tk, t0)δx(t0)〉

〈δx(t0),W0δx(t0)〉
.

According to Liao and Sandu ([18]), singular vectors refer to the directions of the error

growth in a descend sequence with respect to the descent singular values. Hence, in order to

search the maximal directions of

g2 =
〈δx(t0),GTWGδx(t0)〉
〈δx(t0),W0δx(t0)〉

, δx(t0) 6= 0,

where W = diag(W (t0), · · · ,W (tN )), G and R−1 have the same definitions with those in

Section 3, we need to find out the solutions of the singular value problem:

W
− 1

2

0 GTWGW− 1

2

0 vk = s2kvk, GW0GTuk = s2kuk,

where s1 > s2 > · · · > sn > 0, {vk}ni=1 and {uk}ni=1 are the corresponding orthogonal

singular vectors. Then, maxδx(t0)6=0 g
2 = s21.

Especially, if the perturbation norms are provided by the choice W0 = P−1(t0|t−1) and

W = R−1 defined in Section 3,

g2 =
〈δx(t0),GTR−1Gδx(t0)〉

〈δx(t0), P−1(t0|t−1)δx(t0)〉
, δx(t0) 6= 0.

We need to search the directions of

P
1

2 (t0|t−1)GTR−1GP 1

2 (t0|t−1)vk = s2kvk; (30)

GP−1(t0|t−1)GTuk = s2kuk, k = 1, · · · , n.
Associated with (16), it is easy to find that the singular vector vk in (30), which is the direc-

tion of kth-fast growth of the perturbation of observations evolved from the initial perturbation,

is also the kth direction which maximize the improvement of estimation by Kalman filter and

smoother (16), though the exact value of the eigenvalue of (16) related to vk is
s2
k

1+s2
k

rather than

the eigenvalue s2k of (30). Meanwhile, we can find that the leading singular value s1 is related

to the operator norm of P̃ as

‖P̃‖ = max
‖x‖=1

‖P̃ x‖ =
s21

1 + s21
.

In addition, the similar analysis for the continuous-time system is presented in the appendix B.
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6 Discussion

In the present work, approaches for determining the efficiency and sensitivity of observation

configurations for the initial state and emission rates are established. Actually, to deal with

the specific questions in atmospheric chemistry, some special operators are usually applied.

For example, in order to consider the efficiency and sensitivity of observations in some certain

locations, the local projection operator introduced by Buizza et al. ([4]) can be applied into

approaches in Section 4 and Section 5.

Let L be the 0− 1 diagonal matrix defined as

Lii = { 1, li ∈ La,
0, otherwise.

where La is a fixed area and li is the coordinate of ith grid point.

To test the efficiency and sensitivity of observation configurations in a special area, by

rearranging the observations y according to the locations, G in (12) should be defined as

G =











LH(t0)M(t0, t0)
LH(t1)M(t1, t0)

...

LH(tN )M(tN , t0)











. (31)

If LH(·) is considered as the observation mapping, approaches in Section 3 and 5 can be

applied.

In addition, if there is a multiplication of emission rates in the following model

dδc

dt
= Aδc+B(t)δe(t),

then all approaches can also be applied into the extended model

(

δc(t)
δe(t)

)

=

(

M(t, t0)
∫ t

t0
M(t, s)B(s)Me(s, t0)ds

0 Me(t, t0)

)(

δc(t0)
δe(t0)

)

.

A The efficiency of observation networks for continuous-time sys-

tems

Consider the abstract continuous-time system

x(t) = M(t, t0)x(t0) + ε(t),

y(t) = H(t)x(t) + ν(t),

where x ∈ R
n is the state variable, y ∈ R

m is observation vector at time t, the model error

ε(t) and the observation error ν(t), t ∈ [t0, tN ] follow Gaussian distribution with zero mean,

while Q(t) and R(t) are their covariance matrices respectively.
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As in Section 3, we ignore the model error. It is well known that for the continuous Kalman

filter, the covariance P (t) of the optimal estimation of the state at time t satisfies the integral

Riccati equation

P (t|t) = MK(t, t0)P (t0|t−1)M
T
K(t, t0) +

∫ t

t0

MK(t, s)K(s)R(s)KT (s)MT
K(t, s)ds,

where K(t) = P (t|t)H(t)R−1(t) and MK(t, t0) = M(t, t0)−
∫ t

t0
M(t, s)K(s)H(s)MK(s, t0)ds.

On one hand,

MK(t, t0)P (t0|t−1)M
T
K(t, t0)

= M(t, t0)P (t0|t−1)M
T
K(t, t0)−

∫ t

t0

M(t, s)K(s)H(s)MK(s, t0)P (t0|t−1)M
T
K(t, t0)ds

= M(t, t0)P (t0|t−1)M
T
K(t, t0)−

∫ t

t0

M(t, s)K(s)H(s)P (s|s)MT
K(t, s)ds

+

∫ t

t0

∫ s

t0

M(t, s)K(s)H(s)MK(s, η)K(η)R(η)KT (η)MT
K(t, η)dηds.

On the other hand,

∫ t

t0

MK(t, s)K(s)R(s)KT (s)MT
K(t, s)ds

=

∫ t

t0

[M(t, s)−
∫ t

s

M(t, η)K(η)H(η)MK (η, s)dη]K(s)R(s)KT (s)MT
K(t, s)ds

=

∫ t

t0

M(t, s)K(s)R(s)KT (s)MT
K(t, s)ds

−
∫ t

t0

∫ η

0
M(t, η)K(η)H(η)MK (η, s)K(s)R(s)KT (s)MT

K(t, s)dsdη

=

∫ t

t0

M(t, s)K(s)R(s)KT (s)MT
K(t, s)ds

−
∫ t

t0

∫ s

0
M(t, s)K(s)H(s)MK(s, η)K(η)R(η)KT (η)MT

K(t, η)dηds.

Therefore, P (t|t) = M(t, t0)P (t0|t−1)M
T
K(t, t0).

Since

M−1(t, t0) = M−1
K (t, t0)MK(t, t0)M

−1(t, t0)

= M−1
K (t, t0)[M(t, t0)−

∫ t

t0

MK(t, s)K(s)H(s)M(s, t0)ds]M
−1(t, t0)

= M−1
K (t, t0)−

∫ t

t0

M−1
K (s, t0)L(s)H(s)M(t, s)ds,
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we obtain M−1
K (t, t0) = M−1(t, t0) +

∫ t

t0
M−1

K (s, t0)K(s)H(s)M−1(t, s)ds.

Define x̂(t0|t) = E[x(t0)|y(s), s ∈ [t0, t]] and denote its covariance matrix as

P (t0|t) = E[(x(t0)− x̂(t0|t))(x(t0)− x̂(t0|t))T ],

Hence,

P−1(t0|t)
= [M−1(t, t0)P (t|t)M−T (t, t0)]

−1

= [P (t0|t−1)M
T
K(t, t0)M

−T (t, t0)]
−1

= MT (t, t0)[M
−T (t, t0) +

∫ t

t0

M−T (t, s)HT (s)KT (s)M−T
K (s, t0)ds]P (t0|t−1)

−1

= P−1(t0|t−1) +

∫ t

t0

MT (s, t0)H
T (s)R−1(s)H(s)M(s, t0)ds.

Let t = tN and define the observability mapping G : Rn → L2([t0, tN ];Rm) as

Gf := H(·)M(·, t0)f, f ∈ R
n,

its adjoint operator G∗ is

G∗f = −
∫ t0

tN

MT (s, t0)H
T (s)f(s)ds, f ∈ L2([t0, tN ];Rm).

Further, we define R−1 : L2([t0, tN ];Rm) → L2([t0, tN ];Rm),

R−1f := R−1(·)f(·), f ∈ L2([t0, tN ];Rm).

Thus,

P−1(t0|tN ) = P−1(t0|t−1) + G∗R−1G, (32)

where G∗R−1G is the observability Gramian of continuous-time systems.

Obviously, (32) has the same pattern as (11), so

P− 1

2 (t0|t−1)(P (t0|t−1)− P (t0|tN ))P− 1

2 (t0|t−1)

= I − (I + P
1

2 (t0|t−1)GTR−1GP 1

2 (t0|t−1))
−1

= V (I − (I + S2)−1)V T , (33)

where V S2V T is the singular value decomposition of P (t0|t−1)
1

2GTR−1GP (t0|t−1)
1

2 .

Then, following the same steps as in Section 3, we can obtain the efficiency of observation

configurations for continuous-time systems.
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B The sensitivity of observation networks for continuous-time sys-

tems

Consider the generalized continuous-time linear system:

δx(t) = M(t, t0)δx(t0),

with the corresponding forecast perturbation of observations evolving from δx(t0)

δy(t) = H(t)δx(t).

To be brief, let W0 = P−1(t0|t−1) and W(t) = R−1(t) (see Appendix A), and define the

magnitude of the perturbation of the initial state and observations respectively by

‖δx(t0)‖2P−1(t0|t−1)
= 〈δx(t0), P−1(t0|t−1)δx(t0)〉,

‖δy‖2{R−1(t)} =

∫ tN

t0

〈δy(t), R−1(t)δy(t)〉dt.

Thus, the perturbation growth for continuous-time system can be measured by

g2 =
‖δy‖2{R−1(t))}

‖δx(t0)‖2P−1(t0|t−1)

=

∫ tN
t0

〈H(t)δx(t), R−1(t)H(t)δx(t)〉dt
〈δx(t0), P−1(t0|t−1)δx(t0)〉

=
〈δx(t0),

∫ tN
t0

M(t, t0)
TH(t)TR−1(t)H(t)M(t, t0)δx(t0)dt〉

〈δx(t0), P−1(t0|t−1)δx(t0)〉

=
〈δx(t0),G∗R−1Gδx(t0)〉

〈δx(t0), P−1(t0|t−1)δx(t0)〉
, δx(t0) 6= 0,

where G and R−1 are defined in Appendix A.

To find the directions maximizing the ratio, we need to find the solutions of the singular

value problem:

P
1

2 (t0|t−1)GTR−1GP 1

2 (t0|t−1)vk = s2kvk, (34)

GP−1(t0|t−1)GTuk = s2kuk. (35)

where s1 > s2 > · · · > sn > 0, {vk}ni=1 and {uk}ni=1 are orthogonal singular vectors.

Compared (34) with (33) in Appendix A, similar analysis and conclusions as Section 5 can

be extended to continuous-time systems.
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