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Abstract

We present a high-order compact finite difference approach for a class of parabolic partial
differential equations with time and space dependent coefficients as well as with mixed
second-order derivative terms in n spatial dimensions. Problems of this type arise frequently
in computational fluid dynamics and computational finance. We derive general conditions
on the coefficients which allow us to obtain a high-order compact scheme which is fourth-
order accurate in space and second-order accurate in time. Moreover, we perform a thorough
von Neumann stability analysis of the Cauchy problem in two and three spatial dimensions
for vanishing mixed derivative terms, and also give partial results for the general case. The
results suggest unconditional stability of the scheme. As an application example we consider
the pricing of European Power Put Options in the multidimensional Black-Scholes model
for two and three underlying assets. Due to the low regularity of typical initial conditions
we employ the smoothing operators of Kreiss et al. to ensure high-order convergence of the
approximations of the smoothed problem to the true solution.

1 Introduction

In the last decades, starting from early efforts of Gupta et al. [9, 10], high-order compact finite
difference schemes were proposed for the numerical approximation of solutions to elliptic [19,
1] and parabolic [20, 12] partial differential equations. These schemes are able to exploit the
smoothness of solutions to such problems and allow to achieve high-order numerical convergence
rates (typically strictly larger than two in the spatial discretisation parameter) while generally
having good stability properties. Compared to finite element approaches the high-order compact
schemes are parsimonious and memory-efficient to implement and hence prove to be a viable
alternative if the complexity of the computational domain is not an issue. It would be possible to
achieve higher-order approximations also by increasing the computational stencil but this leads
to increased bandwidth of the discretisation matrices and complicates formulations of boundary
conditions. Moreover, such approaches sometimes suffer from restrictive stability conditions and
spurious numerical oscillations. These problems do not arise when using a compact stencil.
Although applied successfully to many important applications, e.g. in computational fluid
dynamics [18, 16, 15, 8] and computational finance [5, 6, 22, 2, 4], an even wider breakthrough
of the high-order compact methodology has been hampered by the algebraic complexity that
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is inherent to this approach. The derivation of high-order compact schemes is algebraically
demanding, hence these schemes are often taylor-made for a specific application or a rather
smaller class of problems (with some notable exceptions as, for example Lele’s paper [14]). The
algebraic complexity is even higher in the numerical stability analysis of these schemes. Unlike
for standard second-order schemes, the established stability notions imply formidable algebraic
problems for high-order compact schemes. As a result, there are relatively few stability results
for high-order compact schemes in the literature. This is even more pronounced in higher spatial
dimension, as most of the existing studies with analytical stability results for high-order compact
schemes are limited to a one-dimensional setting.

Most works focus on the isotropic case where the main part of the differential operator is given
by the Laplacian. Another layer of complexity is added when the anisotropic case is considered
and mixed second-order derivative terms are present in the operator. Few works on high-order
compact schemes address this problem, and either study constant coefficient problems [7] or
specific equations [2].

Consequently, our aim in the present paper is to establish a high-order compact methodology
for a class of parabolic partial differential equations with time and space dependent coefficients
and mixed second-order derivative terms in arbitrary spatial dimension. We derive general condi-
tions on the coefficients which allow to obtain a high-order compact scheme which is fourth-order
accurate in space and second-order accurate in time. Moreover, we perform a von Neumann sta-
bility analysis of the Cauchy problem in two and three spatial dimensions for vanishing mixed
derivative terms, and also give partial results for the general case. As an application example
we consider the pricing of European Power Put Basket options with two and three underlying
assets in the multidimensional Black-Scholes model. The partial differential equation features
second-order mixed derivative terms and, as an additional difficulty, is supplemented by an initial
condition with low regularity. We use the smoothing operators of Kreiss et al. [13] to restore
high-order convergence.

The rest of this paper is organised as follows. In the next section, we state the general
parabolic partial differential equation in n spatial dimensions and give the central difference
approximation for the associated elliptic problem. We then derive auxiliary relations for the
higher-order derivatives appearing in the truncation error of the central difference approxima-
tion in Section 3. In Section 4 we give conditions on the coefficients of the partial differential
equation under which a high-order compact scheme is obtainable. Semi-discrete high-order com-
pact schemes in n = 2 and n = 3 space dimensions are derived in Section 5. Section 6 discusses
the time discretisation. A thorough von Neumann stability analysis of the Cauchy problem in
n = 2 and n = 3 space dimensions is performed in Section 7. In Section 8 we apply the schemes
to option pricing problems for European Basket Power Put options and report results of our
numerical experiments in Section 9. Section 10 concludes.

2 Parabolic problem and its central difference approxima-
tion

We consider the following parabolic partial differential equation with mixed derivative terms in
n spatial dimensions for u = u(x1,..., &y, T),

(1) UT+izzlazag+szJa (91' +;Cz i:g in QxQ,

i<j



with initial condition ug = wu(x1,...z,,0) and suitable boundary conditions, with space- and
time-dependent coefficients a; = a;(z1,...2n,7) <0, bjj = bij(1,... 20, 7), ¢; = ci(x1, ... Tpn,T)
and g = g(x1,...2Zn, 7). In Section 4 we derive conditions on these coefficients such that a high-
order compact scheme is possible. The spatial domain 2 C R"™ is of n-dimensional rectangular
shape with © = Q1 x ... x Q, and 2; € Q; = [¢0) | a(hy] with ) < 2{ for i € {1,...,n}.
The temporal domain is given by Q, = |0, Timax] With 7iax > 0. The functions a(-, 1), b(-, 7),
c(+,7) and g(-,7) are assumed to be in C?(Q) for any 7 € Q., u(-,7) € C%(Q) and u is assumed
to be differentiable with respect to 7. Introducing f := —u, + g we can rewrite (1) as

2 i b i = I.
@ ;“ +”Z_ Ja o T2y,
1<J

We start by defining a grid on €,

(3) G™ ::{(xgll),..., Z(n))GQ|:c = gnl)n+zkAxk,0<zk<Nk,kf1 },

where Az = (:nggx — zgfl)n)/Nk > 0 are the step sizes in the k-th direction with Ny € N for
k=1,...,n. We use G ) for the interior of G(™). On this grid we denote by Ui,,...i, the
discrete approximation of the continuous solution u at the point (z (1), ceey zz ) e G and time

7 € ;. Using the central difference operator Dy and the standard second order central difference
operator D3 in xj-direction we get

0%u (Azy)? 0*u
ou . (Azy)? 33 4
(4) a—l'k kau — 6 a—l'k + O ((A:L'k) ) ,
0%u e (Azg)?  0*u (Az,)? 0w
—D¢DCy — _ p A 4
Oz 0x) KEpY 6 Ox}dxy 6 OOz +0 (( k) )

+ O ((Azg)*(Azy)?) + O ((Azy)") + O ((AAx;P)G) ’

for k,p € {1,2,...,n} and k # p, evaluated at the grid points (xl(ll), e ,xl(.:)) € é(n). Using the
approximations (4) in (2) gives

3,7=1 =1
i<j

() n

(Az;)? 0t (Az;)? ci(Az;)® Aml
- § bz] 3 + a3 + g,
6  Ozj0x; 6 8:01[% ,
4,J=1 o i=1 z
i<j

where e € O (h4) if Aw; € O(h) fori=1,...,n for a step size h > 0. If the consistency error
is in O (h4), we call the scheme high-order. In order to achieve a high-order scheme we need
to find second-order approximations of the derivatives 2%, 2% and axg 6 - fori,j € {1,...,n}
with 4 # j. We call the scheme high-order compact, if we can achieve this usmg only pomts from
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a compact computational stencil for x = (z o (n)) € G . We have

(6) U (@) = {(@iy4hys - Tipthn) € G™ | kp € {—1,0,1} form=1,... ,n}

)

forz = (z;7,...,

as the compact computational stencil and define U, .. ;, =~

.....

3 Auxiliary relations for higher derivatives

In this section we calculate auxiliary relations for the higher derivatives appearing in (5). These
relations for the higher derivatives can be calculated by differentiating (2). In doing so no
additional error is introduced. Differentiating equation (2) with respect to zj and then solving
for 2 T leads to

n

A3y . " 1 da; B*u 1 Oay 8%u bi; A3y
o = Z e ar e ar e 2 o Grom,om

i#k i<j
1 9b; B%u "¢ A "1 9¢; Ou 1 0
) fz YTy e,
ay Oxy, 0z;0x; ~ ay 0x;0xy ~ ay oxy Ox;  ay 8mk
<
for K = 1,...,n. The relation for Ay can be approximated with consistency order two on the

compact stencil (6) using the central difference operator, as all derivatives of u in the above
equation are only differentiated up to twice in each direction.
When we differentiate (2) twice with respect to z, then write the resulting equation in respect

4 .
to gTﬁf we obtain
k

0*u 772”: [ai &u 2 da; O%u 1 0%a; 9%u } 2 day O3u

a—ac;‘; - P a_kaxfaxi a_ka—xkaxfaxk ap 0xi Ox? 7a_k8—m8—x,3;
ik
_i(’)Qak 62 _ zn: bﬂ 54u iabij 63u iaQbi]‘ 82u
ak 8:Ek &’ck ak 8xi8:cj8zi a Ozy Ox;0x;0T)  ay 8:0% 0z;0x;
72@,@ fi 2 0b _Ou_ 1Py 0u
ag axzaxk —~ | ay, Oz, Ox;0x3  ar Ox? Ox;0xy
~ bkj 6 u 2 |:2 abkj 63u 1 GQka aQU :|
8 - g _TH 20 T84 2
(8) j:zk;_l ak 8:@8:0% j:zk-:i-l ar Oz 8:@8:0% ak 8:Ek Ox 0y,

i Ci dBu 2 dc;  0%u 1 9%¢; du 1 0%f
— lak &Tzazk ap Oz, Ox; 0z, ag 8:0% ox; ak 8:6%
k—1 n
bik (9411, bk]‘ 84u
—B, = S 2k - 2kj .
i Z aj 0x;0x3} Z aj Ox;0x}
=1 j=k+1

We can approximate By with second order consistency on the compact stencil (6), when us-
ing the central difference operator and the auxiliary relations for Ay in (7) for k = 1,...,n




Differentiating equation (2) once with respect to xj and once with respect to z, leads to

a 0t ta ot

O}z, " Oxp0x3
- o*u Oa; Ou da; O3u 0%a; 0%u da, u
T ; {ai 0220z 0y * Oy, 02201, * O, 0220y, * Oz, 0z, 6—30?] Oz, 83@3

i#k,p

_ Oap Pu ?ay, @7% Du 7%@7 82%@
Oz, 6x26xk axkﬁxp dx2 Oy 0x;0r, Oy O0x}  Ox10x) O}

_ Z [ % 63u 6bij 63u + 62bij 82u ]
bt “ 3z18z]8xk8zp Oxy Ox;0xj0x,  Oxp Oxi0x;0x);  O0x10xy 00T,
1<J

dc;  0? dc;  0? 9%¢; Ou 0% f
- Z + + - + 2 = Clyp,
8:@8%8% Oxy 0x;0x,  Oxp Oxi0x)  Ox10xp O34 O0z0x)

where Cjy, can be approximated on the compact stencil (6) using A and A,, as defined in
equation (7), and the central difference operator for k,p = 1,...,n with k # p. This can be
written as

v Crp ap 0

8zz8:cp ak ag 8zk8xg

(9)

4 Conditions for obtaining a high-order compact scheme

In this section we derive conditions on the coefficients of the partial differential equation (1)
under which it is possible to obtain a high-order compact scheme, i.e. only using points of the
n-dimensional compact stencil (6) for discretisation and receiving a fourth-order scheme with
Ax; € O(h) for j =1,...,n for a given step size h > 0. Using equations (7) and (8) and then
(9) in (5) leads to

Za1D2u+ Z bngcDCU‘i‘ZCZDC i%f&ﬁ_&-

i,j=1 i=1
i<j
Ax bi; i (Az;) - i Ax
z_] z 1] 2 2 T z z
o) -y tlBeC Z » azzax [@%) } >
,j=1 i=1
1J<J z<]

Where e € O(h'), if Az; € O(h) for i = 1,...,n. The leading error terms are given by

s [(ij) M} for i,j € {1,...,n} with i # j. If the conditions

(Az;)? _ay
11 b = 0 _ %
( ) J or (A:L'Z)2 a;
are fulfilled for all 4,5 € {1,...,n} with ¢ # j these second order terms vanish and the resulting
error term is of fourth order. Hence, for any partial differential equation (1) which satisfies
(11) we obtain a high-order compact scheme. In the case b;; = 0 for all 4,5 € 1,...,n, it is

possible to choose Az; > 0 freely for each spatial direction, whereas in other possible cases there



are interdependencies for at least some of the step sizes. For each pair (4, j) with b;; # 0 the

Eﬁi? 32 = 2 has to hold for all values of x; and x;. This means % has to be constant

condition

N2
as Eﬁ?_;z is constant, see (3).

5 Semi-discrete high-order compact schemes

In this section we present the semi-discrete high-order compact schemes in spatial dimensions
n = 2,3. We consider the case where the cross derivatives do not vanish, hence we assume, for
simplicity, a; = a in combination with Az; = h > 0 for ¢ = 1,...n to satisfy condition (11). Our
aim in this section is to derive a semi-discrete schemes of the form

(12) > IMy(&,7)0: Uiy, i (7) + K (8, 1)U, i, (7)) =3(2,7)
2eGm)

at each point = € é(n) with Az; = h > 0 for i =

o(n)

1,...,n and time 7, where the function
g: G~ xQ; = R depends on the function g given in (1

).
5.1 Semi-discrete two-dimensional scheme

In this section we derive the high-order compact discretisation of (1) in spatial dimension n = 2.

o(2
Considering the grid point (zz(-ll), xg)) S G( ) with Az1 = Azs = h > 0 and time 7 € ), we are
able to obtain the coefficients IA(l,m of Uy, (1) forl € {i1—1,41,41+1} and m € {ia—1,42,i2+1} on
the compact stencil by employing the central difference operator in (10). To streamline notation
we denote by [-]x the first derivative with respect to zy and by [-]x, the second derivative, once

in x- and once in x,-direction with k,p € {1,2}. Note that in the following the functions a,

2
bi1,2, c1, c2 and g are evaluated at (zz(ll),xg)) S é( ) and 7 € 2,. We omit these arguments for

the sake of readability. The coefficients are given by:

[ bizlaliz  bizfeo]i | bizfalacr | 2bi2[alifalz  [a]l22 i 2[a]}
2 3a 6a 6a2 3a? 3 6a 3a
Clalin 10 [e2]2 [eii bizfer]e 2[al3 _ | bl n biz[alica
3 3h2 3 3 6a 3a 6a  3ah? 6a2 '’
i - _cala)2 B bia biz2]a)i2 B cilali _ hbizlalz[ei]r _ hbizlalifei]2 | hlei]in
nEL2 00" T Gah? 12a 12a 24a2 24a2 24
n hlci)a2 i heifed]s _ hlafifer]r | hbizlei]iz bizalzer | healer]n
24 12a 24a 12a 24a 12a2 24a
hlal2ler]s | el [alf  [a] | [a]e2 | [a]in _ cobiz _ biz[bio)y
T2 "6 " 6a 6a 1z 12 T 6ah T 12ah
bialeil2 . 2a  biafalifale | bizlala _ [bi2]a | bisali | o
T e T 62 T Gah T 6h T 12a%h T 3h°
R czlalz b3, biz[e2]1  bizlaliz  cifalr _ hbiza)a2]cz]i | [e2)2
RE T T 00 T Gah? 12a 12a 12a 24a2 6
hbizlali[co]e  [a]?  [a]3 c [al22 | [a]i1 __ biz[biz]z | hlc2]a2
242 6a 6a + 12a + 12 + 12 + 12ah + 24
hle2]i1 2a | heie2]r _ hlali[e2]r bizlalifa)z | hbizlcz]iz | c2
+ 24 3h? + 24a 12a 6a2 + 24a + 3h
_ bizlalico __ hlaafea]2 | healea]2 " bislala | bizlali _ eibiz _ [biz]s
12a2 12a 24a 12a2h 6ah 6ah 6h ’



. b2, cica [a]2¢1 - biz[cz]2 n [a]2[bi2]2 " [a]icz n [a]1[b12]1

Kiri-1 =15005 F 55, F g 48a 24a 24a 24a
cilbi2)1 __ bizlei]n _ calbiz]e _ biz[biz]iz __ [ei]e _ [e2]1 _ [bi2]1:
48a 48a 48a 48a 24 24 48
[bi2]22 _ bialbi2]e | cabiz | bialbi2]i | bizlal2[biz]1 | bi2lalic:
T8 T odah T 12ah T 24ah T asa® T 48a? W
b2, ]a)e " bizlalaca n bizlali _ biz[alz  cibiz " bizla]i[biz]2  [bi2]s
24a2h 48a? 12ah 12ah 12ah 48a? 12h
[bi2]2 _ bis[a)y bi2 c2 c1
12 T 24a2h T 4R 12k T 12R°
Roowr = bis cicz _ lalacr | bizlea]2 _ [a]a[bi2]2 __ [alice _ [a]1[bi2]a
AELRTL T 00k T 240 T 24a 48a 24a 24a 24a
cifbiz]i | biz[ei]r | calbiz]2 | biz[bi2iz | [ei]2 |, [e2]1 | [bi2]11
T TU8a T 48a T 48a T d8a T 24 T 24 T 48
n [b12]22 n biz[bi2]2 | c2biz | biz[bi2): - biz2[a]2[b12]1 + bizlalica a
48 24ah 12ah 24ah 48a? 48a? 6h2
bislalz _ bizlalacz  biz[ali _ bizlals cibiz _ bizfali[biz]e  [b12]1
 24a?h 48¢2  12ah  12ah ' 12ah 4842 12h
[b12]2 bis[a) :tbi_’__:tc_l.

12h 24a%h ~ 4h% 12k T 12h

Analogously, we obtain the coefficients M, of 6 Ui (1) for i € {i1 — 1,i1,i1 + 1} and m €
{ia — 1,142,125 + 1} at each point ( a ) (2)) € G and time 7 € Q.

’ ’ b1z - 1 _ hlalz _ bizhla]1 | c2h
Mistimer =My 131 = T2 My i1 = < buhlah | b
phLaEL TR LT T g, v T 9 T 100 T 242 T 244
~ 1 blgh[a]Q hCl h[a]1 ~ 2
M’L i — e a1 o :l: a1 Ha_ ) MZ 2 — o
Fe T T g2 T 240 T 124 vz T 3

where Az, = Azy = h > 0. Additionally, for 7 € G, 7 € Q.

- (h2a201 — 2h2a2[a]1 — b12h2[a]ga) [9]1 n h2[g]11 + b12h2[g]12

g(x,7) = 1243 12 12a
. (h2a262 — byoh? [alia — 2h%a? [0]2) (9], n h2[9]22 +
1243 2

holds, where Az; = Azs = h > 0 was used. We have K, (xnl), x%), 7) = Ky, .0y, and M, (x%l), x%),
My, ny in (12) with ny € {iy —1,i1,i1 + 1} and ng € {ip — 1,4g,i2+ 1} for z = (z ™ ) € G

21
and 7 € Q,. K, and M, are zero otherwise and the approximation only uses pomts of the

compact stencil.

5.2 Semi-discrete three-dimensional scheme

In this section we derive the high-order compact discretisation of (1) in spatial dimension n = 3.
Considering the conditions in (11) we observe that in the three-dimensional case we have three
different possibilities to satisfy the conditions and thus obtain a high-order compact scheme. We
focus on the case a = a1 = (12 = a3 and set h = Az; = Azs = Axs. Considering an interior

grid point ( 51), ch), ) S G and time 7 € 2, we are able to produce the coefficients IA(;CJ,m

of Uk,i,m (1) for k € {11 — 1,419,410 + 1}, 1 € {ia — L,i9,92 + 1} and m € {i3 — 1,43,4i3 + 1} by
employing the central difference operator in (10). Again, to streamline the notation we denote

T) =



by [-]x and [-]xp the first and second derivative of the coefficients with respect to zj, and with
respect to z and x,, respectively. Note again that in the following a, bi2, b13, b2s, c1,c2,c3 and g

o(3
11),z§22),x53)) € G( ) and 7 € Q,, where Az; = h > 0 for i = 1,2,3. We omit

these arguments for the sake of readability. The coefficient f(il,iz,is is given by

are evaluated at (zg

7 _bazla)acz | bizalics B [es]s B ffi o [a]11 B [a]22 B [a]s3 n bisla]sci
Rt T g2 6a2 3 6a 6a 2 2 2 6a2
n bizlalzer 4a | bislals[a]s n baslalslalz . baslalsca n bi2[al1[a]2
6a? h? a? a? 6a? a?
bizlalica  bisles]i  alalr b33 bizlaliz  c2lal2 bis bis
* 6a? 6a 6a JrSah2 2a 6a Jr3ah2+ 3ah?
_cslals  bislaliz  bosfco]s  bizfco]i  bosfalas  bisfer]s  beses]e
6a 2a 6a 6a 2a 6a 6a
Cbulels &, ot B | oF el el
6a 6a a a a 3 3

A complete list of the coefficient expressions K| k,1,m is given in Appendix A.
In a similar way we define Mk,l,m as the coefficient of 0; U 1.m (T) for
ke {Zl —1,41,%1 + 1}, l e {’LQ — 1,492,729 + 1} and m € {’Lg — 1,143,713 + 1} by

Mililvirlvis :Mi1¥17i2+1,z'3 = :F%, Ail,iQ,ig = %7

Mililﬁizyisfl :Mi1$1,i2,i3+1 = ?%, Mil,@ﬂ,igﬂ = Mil,izzFl,iSH = ?%,
e
Vininiost =73 F g aan + gy F o

M 4160 —1,05—1 =M +1,i041,i5—1 = Miy+1,50—1,i54+1 = Miy+1,i041,i5+1 = 0.

o (3
For the right hand side of (12) we have for x = (ac(l) 22 x(g)) € G( ), T €y,

11 2 Vi3

. (CthG — 2h%[a]ia — bi2h?[a]2 — bigh? [0]3) [9]1 . bish?(gl13

glw,m) = 1242 124
n (CthG — 2h?[a)sa — bi2h?[a]; — b23h2[a]3) [9]2 n bash?[g]2s
12a2 12a
n (csh®a — 2h2[a]sa — bizh?[a]y — bash?[al2) [g]3 n h2[g)11
12a2 12
bioh?[gliz | h[glss | hZ[g]ae
T e T T 12 12 Y

We define K, (m%ll), x%),x%?, T)= IA(m,m’nS and Mz(:cglll),x%),x%), T)= Mnl,m,m for each point

o(3
T = (xl(ll),xg),zz(-f)) € G( ) and 7 € Q,, where n; € {i; — 1,4;,i; + 1} with j = 1,2,3. K, and

M, are zero otherwise. Hence, the approximation only uses points of the compact stencil (6).



6 Fully discrete scheme

The semi-discrete scheme presented in the previous sections can be extended to a fully discrete
scheme for the parabolic problem (1) by additionally discretising in time. Any time integrator
can be implemented to solve the problem as in [20]. Here we consider a Crank-Nicolson type
time-discretisation with constant time step A7 to obtain a fully discrete scheme. Let

. Al AT . . Al AT .
Am(xaTk-i-l) - MI (:L'aTk) + TKm (:C)Tk-i-l)a Bm(:C)Tk) = MI (:L'aTk) - _KZ (:C)Tk)a

where M, (2, 7) = (Mg (&,73) + My (&,7541)) /2. K, (&,7) and M, (2,7) are defined through
a semi-discrete finite difference scheme with fourth-order consistency using only points of the
compact stencil (6). Then, a fully discrete high-order compact finite difference scheme for (1)
with n € N on the time grid 7, = kA, for kK =0,..., N, and Az; = h for all 7 is given at each

point x = (zz(-ll), . ,xl(.:)) € é(n) by
(13) Z A (i Tk+1)Uk+1 = Z B (i Tk) Uk + Eg (ZL' Tk Tk+1)
- X ) I1,eo0ln _ x ) l1,..., ln 9 ) ’ )
2eU () 2eU(x)
where § (2, Tk, Tk+1) = g (2, 7%) + § (2, Tk41) and & = (xl(ll),...,xl(:)) € U(ac) This scheme

is second-order consistent in time and fourth-order consistent in space. We have fourth-order
consistency in terms of h for A7 € O(h?) while only using the compact stencil. Note that up to
this point only the spatial interior is discussed. The applied boundary conditions may still have
an effect the above numerical scheme.

7 Stability analysis for the Cauchy problem in dimensions
n=23

In this section we consider the stability analysis of the high-order compact scheme for the Cauchy
problem associated with (1) in the case n = 2,3. The coefficients of the semi-discrete scheme are
given in Section 5.1 for two spatial dimensions and in Section 5.2, when three spatial dimensions
occur. Those coefficients are non-constant, as the coefficients of the parabolic partial differential
equation (1) are non-constant.

We consider a von Neumann stability analysis. Other approaches which take into account
boundary conditions like normal mode analysis [11] are beyond the scope of the present paper. For
both n = 2 and n = 3, we give a proof of stability in the case of vanishing cross derivative terms
and frozen coefficients in time and space, which means that all possible values for the coefficients
are considered, but as constants, hence the derivatives of the coefficients of the partial differential
equation appearing in the discrete schemes are set to zero. This approach has been used as well
in [11, 21] and gives a necessary stability condition, whereas slightly stronger conditions are
sufficient to ensure overall stability [17]. This approach is extensively used in the literature and
yields good criteria on the robustness of the scheme. In (13) we use

n
U;Cl i = gkels”' with S, = Z TmZm

.....

m=1

for jum € {im—1,4m,im+1}, where I is the imaginary unit, g* is the amplitude at time level k£ and
Zm = 27h/\,, for the wavelength A, € [0, 27| for m = 1,...,n. Then the fully discrete scheme



satisfies the necessary von Neumann stability condition for all z1,z2, when the amplification
factor G = gF*1/g* satisfies

(14) |G|? —1<0.

7.1 Stability analysis for the two-dimensional case

In this section we perform the von Neumann stability analysis for the two-dimensional high-
order compact scheme of Section 5.1. The analysis of the case with vanishing cross-derivative
and frozen coefficients are carried out in detail. In the case of non-vanishing mixed derivatives
partial results are given for frozen coefficients.

Theorem 1:

Fora=a; =a2 <0, b2 =0 and Az; = Az = h > 0, the fully discrete high-order compact
finite difference scheme given in (13) with n = 2, with coefficients defined in Section 5.1, satisfies
(for frozen coefficients) the necessary stability condition (14).

Proof. Let & = cos(z1/2), & = cos(z2/2), m1 = sin(z1/2) and 72 = sin(z2/2). The stability
condition (14) for the fully discrete scheme (13) using the coefficients defined in Section 5.1
yields |G|?> — 1 = Ng/D¢ (explicit expressions for Ng, D¢ are given below). We discuss the
numerator Ng and the denominator D¢ separately in the following.

The numerator can be written as Ng = 8ka (n4h4 + n2h2) where the polynomials

ny =8a’f1 (&1,&) f2 (&1,&) and ny = f3(&1) fa(61,&2) G + f3 (&) fa(&2,61) ¢

are non-negative, since

1 2
fl(zay):z2+y2+1zoa f2(z,y):27x(y2+5)7%207
f3 (1') :1‘271 Sov f4 (Z',y) :21'2y271'271§0,

for z,y € [—1,1]. Hence, we observe that N < 0 holds, as &1,& € [—1,1].
Now we consider the denominator D¢, which can be written as

D¢ = dgh® + (daok® + daak + dao) B* + (deok® + dok)h* + do,
where
dy =16a*k? (26363 + €2 + €3 —4)° >0, doy = 16a>f1 (€1,E2) f5 (1,&) > 0,

dp 2 =4a [9 (Gimer + &amaca)” + 25 (§1) fo (61,62) & + 25 (€2) fo (€2, €1) 03} ,

dyo =4a>fy (51,52)2 >0, d41 = —4ang >0,

dao = [f3(&1)e] — 2mmpéa&ocico + f3(§2)03]2 >0, dg=(Eimer + Eampez)® >0,
because a < 0 and where

f5 (zy) =22%y° +2® +y* —4 <0, fo(z,y) = 22%y* —52® —y* +4

with z,y € [—1,1]. We observe that fs(x,y) changes sign, as, for example f5(0,0) = 4 and
f6 (1,0) = —1. Hence, we cannot determine the sign of da 2 directly.
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If ¢; = co = 0, we have dz 2 = 0 and hence Dg > 0. Since dp 2 is symmetric, we can say
without loss of generality that ¢; # 0 in the following. Furthermore, as both ¢; and ¢y are frozen
coefficients, we set m = cz/c;, which leads to

doo =4a*cF[9(E1m1 + Eamam)® + 2f3(€1) fo (€1, &) + 2f3(&2) fo (&2, &1)m?] =: da’cig(m).

The function g (m) can be rewritten as

g (m) =n3 fr (&1, &) m? + 18&&ammam + 03 f1 (€2,&1)

with f7 (z,y) = 4a*y? — 222 — y? +8 > —22% — 2 + 8 > 5. In the case n; = 0 we have g(m) =
n3 fr (€2,&1) > 0 and thus doo > 0 and Dg > 0. In the case i1 # 0 we have n? f7(£1,&2) > 0,
hence the function g (m) has a global minimum. This minimum is located at

—9818212 201 f5 (€1, €2) fs
mfr (&1, &)’ fr(&,&)

where fs = 66363 + &2 + € — 2616303 — 263n3¢d — 8 < 0. Since f3 (€1, &) < 0 we have g(m) >
0 for all m € R, and thus we have Dg > 0 for all cases as a < 0.

We still need to show that Dg > 0 for all £,& € [—1,1]. It holds dy > 0 for all (£,&) €
[-1,1]2\ {-1,1}? as a < 0 and k > 0. This leads to Dg > 0 in these cases. For the case
(&1,&) € {—1,1}? it holds fi (&1,&2) = 3, which leads to dyo = 36a? > 0 and Dg > 0.
Therefore, we have D¢ > 0 for all (¢1,&2) € [—1,1]% and condition (14) is satisfied. O

m= which leads to g () =

For by 2 # 0 the situation becomes much more involved. Many additional terms appear in the
expression for the amplification factor G and we face an additional degree of freedom through
b1,2. Since we have proven condition (14) holds for bi1,2 = 0 it seems reasonable to assume it
also holds at least for values of b; » close to zero. In von Neumann stability analysis it is often
most difficult to guarantee that stability condition (14) holds for extreme values of 11, 12, &
and &. We have the following partial result which holds in the case of frozen coefficients and
non-vanishing coefficient of the mixed derivative, i.e. by 2 # 0.

Lemma 1:

For a = a1 = a2 < 0, arbitrary b1 2 and Azy = Az = h > 0, the high-order compact scheme
(13) with the coefficients for the two-dimensional case defined in Section 5.1 satisfies (for frozen
coefficients) the stability condition (14) at the corner points & = +1 and & = £1.

Proof. Using m1 = sin(21/2) = /1 — &7 =0 for & = £1 and 72 = sin (22/2) = /1 — &2 =0 for
& = =1, straight-forward computation shows that on each corner point |G|? — 1 = 0. Hence,
condition (14) holds. O

It is worth mentioning that in a comparable situation in [3] (where a specific partial differential
equation of type (1) is considered) an additional numerical evaluation of condition (14) revealed
it to hold also for non-vanishing mixed derivatives with (f%, E%) # (1,1). However, the left hand
side of (14) was very close to zero, and although the inequality was always satisfied, this left little
room for analytical estimates. This leads to the conjecture that the stability condition in that
case was satisfied also for general parameters, although it would be hard to prove analytically.
Lemma 1 above suggests the present case is similar. We remark that in our numerical experiments
we observe a stable behaviour throughout, also for general choice of parameters.
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7.2 Stability analysis for the three-dimensional case

In this section we analyse the stability of the high-order compact scheme with coefficients given
in Section 5.2 in three space dimensions. We first perform a thorough von Neumann stability
analysis in the case of vanishing cross derivative terms for frozen coefficients. We observe no
additional stability condition in this case. Then we give partial results in the case of non-
vanishing cross-derivative terms for frozen coefficients.

Theorem 2:

Fora;=a<0,b;; =0 and Az, =h >0 fori,j € {1,2,3}, i # j, the fully discrete high-order
compact scheme given in (13) with n = 3, with coefficients given in Section 5.2, satisfies (for
frozen coefficients) the necessary stability condition (14).

Proof. Let & = cos(z;/2) and n; = sin(z;/2) for ¢ = 1,2,3. The stability condition (14) yields
|G|> — 1 = Ng/Dg (explicit expressions for Ng, D¢ are given below).
For the numerator we have Ng = —8ak (n4h4 + n2h2) < 0, since a < 0 and the polynomials

ny =4a® f1 (61,62, 83) [f2 (61, 6) + f2 (€3,&1) + f2 (&2, 83)] <0,
ny =1[f3(&1,&2) + f3 (£1,€3)] & + [fs (&2, 1) + f3 (&2, 83)] 3 + [f3 (€3, &) + f3 (€3, 62)] &3
— 3 (Exmer + Eampea)’ — 03 (Exmer + Exmacs)’ — nf (Eampea + Exmaes)® <0,
are non-negative since
filwy) =2 +9>+2° >0,  fa(z,y) =227 -2 -1 <0,
i (a,9) =27 (1= a) 492 (22— 1) <32 (1 =) 492 (22— 1) =0,
for z,y,z € [-1,1].
The denominator Dg can be written as
D¢ = dgh® + (da2ok® + dy1k + dap) h* + (do2k® + do k) h* + do,

where

do =160k [ma (&1, &) +ma (83, &) +ma (2, €))7 > 0, day = 4dansy > 0,
d2,2 =4a® [me (&1,m1,&2) & + 2mz (&3) Géammacica + me (§2,m2,&1) &3
+me (£1,m1,&3) €1 + 2mz (&2) E1&smmscics + mg (3,13, 1) €3
+me (£2,72, €3) €3 + 2mz (€1) Ea&smanscacs + mg (3,13, &2) €3
+ms (1, 62,€) ] +ms (12,61,€3) 3 +ms (113,61, 62) 3]
dyo =4a’my (51,52,53)2 >0, do1 =4ang >0, dg = [E1mc1 + Eampea + 5377303]2 >0,
dyo = [n%ﬁ +m3cs + n3c3 + 261m€anacica + 26 Esnacics + 252772537730203]2 >0,

since a < 0 and

m1 (z,y) =222y — 2> —1<2?—-1<0, ms (x,y,2) = 2?2+ 92+ 22 >0,
ms (x,y) =x?y? (1- x2) + 92 (:I:2 -1) < y? (1- 1132) + 92 (m2 -1)=0,
ma (5,y) =(1— 2227 — 1) + 52 — 1)] <0,

ms (z,y,2) =— 8ziy?2? 4+ 4a?y?2? + 42% > —8x2y?22 + 42%y?2? + 4a2?

= —da®y?2% + 42 > —4a® + 42 = 0,

12



3
me (21, T2, y) =4z32Ty" + (—8x3aT + 223)y” + 23 + 25’315’32 [0, 3],
my (v) =22%(2* — (1 —2%)) +7 >0,
for z,y,z € [—1,1]. We still need to show d22 > 0. Since we cannot determine the sign of d2 2

directly, we consider three different cases.
Having €35 = £2 = 1 leads to

do =4a® [2(—2.5607 + 3n3)c + (—8nf +8nf) ¢i] > 0

as & <landn? <1.
Secondly, we consider ¢; = ¢ = ¢3 = 0. This leads directly to dz 2 = 0.
From now on we have (c1,c¢2,¢3) # (0,0,0). Since dg 2 is symmetric with respect to c1, ¢z, cs,
we assume without loss of generality ¢; # 0. Additionally, we have (f%,fg) #* (1, 1). Setting
p2 = co/c1 and p3 = c3/cq gives
da.p =403 [me (§1,m1,&2) + 2m7 (§3) E1&2mmap2 + me (€2,72,€1) P
+me (&1,m1,€3) + 2mz (&2) E1&mnsps + me (€373, 1) P
me (82,72, &3) P5 + 2m7 (1) E2€amam3paps + me (£, 713, §2) P3
+ms (11, €2, €3) + ms (112, €1, €3) Ps + ms (03, &1, &2) p3]
a’ct [k11p3 + koaps + k12paps + kipz + kops + ko] =: 4a®cig (p2, ps) -

To calculate the extremum of g (p2, ps),

2k11p2 + k1ops + k1) _ (0
k12p2 + 2kap3 + ko 0

Vg (P2, Ps3) (

is necessary, which leads to

2k1koa — kok12 . 2kokin — kikio

, p3= o2 where k2, — 4k k2, = q1gog3
Ky — 4k3 k3, kiy — 4k% k3,

P2 =
with

@ =n’ns?, = 267" — 26767 26767+ 4P+ &P+ &7 +3€(0,4],
=86"676% + 4476767 +4676°6" + 466G — 14787
— 4677 - 226°6°67 — 667G — 66L°6G1 + 8677
+86°67 +206°6% —26° - 367 - 38" — 6 € [-9,0].
It holds g1¢2q3 # 0 for (53,532,) # (1,1). Since this is the unique root of Vg, as k11, koo > 0, we
have a minimum at (p2,p3) = (P2, p3). We obtain g (pe, P3) = qaqs/gs, where
qu =217 (26765 + 26765 + 26565 — 6§ — &5 — & —3) <2 (F + € + 65 -3) <0
g5 =BEIEES + 8616365 + 8ETE €S — 4616 — 206{65€65 — 481€5 — 2061665 — 20676563
— 46585 + 68381 + 6815 + 6676, + 5TEIEIES + 6£1€5 + 66,63 + 66365
— 206367 — 206765 — 206365 + 367 + 365 + 365 + 6 € [0,9],
G =8EIE3ES + AETEET + AETERES + A65€5 — AE3E] — AE1€] — 22616363
— 66565 — 66565 + BEIET + 8ETE3 4+ 2063¢5 — 267 — 365 — 3¢5 — 6 € [-9,0],
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with gs # 0 for (£3,£3) # (1,1). Hence, in all three cases we conclude dz2 > 0, and Dg > 0
holds.

We still need to show that Dg > 0 for all &,&,& € [—1,1]. It holds dy > 0 for all
(€1,6,8&) € [-1,12\ {-1,1}3 as a < 0 and k > 0. This leads to Dg > 0 in these cases. For
the case (&1,&2,&3) € {—1,1}3 we have my (€1, &2,&3) = 3, which leads to dy o = 36a? > 0 and
D¢ > 0. Therefore, Dg > 0 holds for all (£1,&2,&3) € [—1,1]® and condition (14) is satisfied. [

For the more general case with non-vanishing cross-derivatives we have the following result.
The comments made in the previous section also apply here.

Lemma 2:

Fora; =a <0, Ax; = h > 0 for ¢ = 1,2,3 and arbitrary by 2, b1,z and by 3, the high-order
compact scheme (13) with the coefficients for the three-dimensional case defined in Section 5.2
satisfies (for frozen coefficients) the stability condition (14) at the corner points & = £1, & = +1
and &3 =

Proof. Using sin (21/2) = /1 —¢&2 = 0 for & = +£1, sin(22/2) = /1 —& = 0 for & = +1
and sin (z3/2) = /1 — & = 0 for & = =+1, straight-forward computation yields just as in the
two-dimensional spatial setting to |G|? — 1 = 0 for all corner points. Hence, condition (14) is
satisfied. O

8 Application to Black-Scholes Basket options

To illustrate the practicality of the proposed scheme we now consider the n-dimensional Black-
Scholes option pricing PDE (see, e.g. [23]). In the option pricing problem mixed derivatives
appear naturally from correlation of the underlying assets. After transformations, the conditions
(11) are satisfied, and we give the coefficients of the resulting scheme. Then we discuss the
boundary conditions as well as the time discretisation.

8.1 Transformation of the n-dimensional Black-Scholes equation

In the multidimensional Black Scholes model the asset prices follow a geometric Brownian motion,

where S; is the i-th underlying asset which has an expected return of p;, a continuous dividend
of §;, and the volatility o; for i = 1,...,n and n € N. The Wiener processes are correlated with
(dW;, dW;) =: p; jdt for 4,5 = 1,...,n with ¢ # j. Application of It&’s lemma and standard
arbitrage arguments show that any option price V (S, o,t) solves the n-dimensional Black-Scholes
partial differential equation,

AV 1<
1 o2 2_ _
(16) ot taotigeE T Z pig0i0;9 Jas as +Zm as -V =0

i= 7_]7
1<j

where 7; = r — §;. The transformations

(17) x; =yIn(S;/K) Jo;,, 7=T—-t and u=¢€"V/K,
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for i = 1,...,n, where v is a constant scaling parameter to assure that the resulting computa-
tional domain does not get too large, leads to

2 " g2 n 2 n
vy ou 4 0%u ou
18 T Ty o532 2 yarye in— =0,
(18) Y 2 ;axf v i]z:;pﬂaxiaxj +7;§83@i
i<j

where ¢; = 0;/2 — n;/0;. Comparing this equation with (1), we identify

(19) ai=—=, bij= —?pij, i =75, g=0,
fori,j7=1,...,nand i < j. We find that the transformed partial differential equation (18) with
these coeflicients satisfies the conditions given by (11), if Az; = h for a step size h > 0 is used.
Hence, we are able to obtain a high-order compact scheme in any spatial dimension n € N.

We consider a European Power-Put Basket option, thus the final condition for (16) is given
by

n P
V(Sty.- s Su,T) maX<K —~ Zwisi,o) :
=1

n
where p is an integer and the asset weights satisfy > w; = 1. Applying the transformations (17)
i=1
leads to the initial condition

n s p
(20) u(21,. .., Tn, 0) ZKplmaX(l—Zwie 5 ,0) .

i=1

8.2 Semi-discrete two-dimensional Black-Scholes equation

In this section we apply our general two-dimensional semi-discrete scheme, see Section 5.1, to
the two-dimensional Black-Scholes model. To obtain the semi-discrete scheme (12) we have to
apply (19) with n = 2 to the coefficients in Section 5.1, which gives

b 0=k Ed P, 00 gems $ 9
11,02 342 + 3 ) = 3h2 37 F ah _ G _ T
e A B - B VU R R
41,021 3h2 3N 3 G 3h2 ,
K; . 4 S8 e a1 sipiz | YS2P12 72 72p1a - V2p2,
i1£Lip—1 12 12k~ 12h 6h 6h 12h2 =~ 4h? 6h2
2 2 2 2
. YS2 G261 YS1 YP1261 YS2pP12 vy Y2 p12 Y2 p3y
Ki 7:2 _—_— = j: = j: o B ,
1#Liz+l =5y + 19 19K + oh oh o7 T T -

where IA(Lm is the coefficient of Uy, () for I € {i1 — 1,41,41 + 1} and m € {iz — 1,142,492 + 1}.
The coefficients of 9;Uj m, (T) are given by

2 P12

M;, 4, =3 M 416,41 =M 1,571 = iﬂ’
1 hey 1 hea
Miy+1,6, =75 F 7525 M, iyt1 =5 F —--
1#hi: =15 T 1oy viaEl T T 1oy

Additionally, it holds g(z,7) = 0. This gives a semi-discrete scheme of the form (12), where K,
and M, are time-independent. As in 6 we apply Crank-Nicolson type time discretisation and
obtain the fully discrete scheme for the spatial interior.

15



8.3 Semi-discrete three-dimensional Black-Scholes equation

In this section we give the semi-discrete scheme (12) for the three-dimensional Black-Scholes
Basket option. Using (19) with n = 3 in Section 5.1 and the Appendix A we obtain the coefficients
[A(kﬁlym of Uk:,l,m (7') for k € {Zl — 1,471,721 + 1}, l e {ZQ — 1,492,729 + 1} and m € {’Lg —1,43,13 + 1},
which are

B _SEL% S 20h 1Py 2% 20
11,12,13 3 3 3 352 3h2 3h2 h2”’

2 2.2 2 2.2

> st st P12s2 | VP12 v YP13S3 | VP13

Ki in,ig — + — - = 5
Elinis T E G T e T T T T T g T g2
2 2 2 2 2 2
- YS2 S YS1 Y P12 Y YP23S3 Y P23
Kij i1, =+ — — = F o ;
vistlis =g T e T gt et s T g T g

. s 3 __ypis | 0l P apesse | VPp3s

sl = E gt T e T Tt T T e T e T e
B a2 Ta, s y? B aFe o P39 F p12 & p13pa3
ndLia—Lis =TT T o T 1op2 - P12 Gh2 ’
- G261 _ 1% 72 G1 £ 2 P%g =+ p12 F p13p23
Kiyttiai1is = A -
iELiatli =Y T T Ty T g2 TP Ty 612 ’
2 2
- 3 FS1 , <183 0 S1Fs3 2 P13 F P13 £ p12p23
Kijaripia1 = — TELI s S S -
nEliads—l = T TR o T Rz - 1P Ty GhZ ’
- G3ES _ Gis3 v? Si==<) 5 Pi3 £ p13 F p12pes
K. . — 2153 _
Lz iatl =V T o T o TP Ty 6hZ ’
2 2
- 3 F G2 |, 263 0 G Fs3 o P33 F p23 £ p12p13
Kiyiyanig1 = — + 2% - -
i lis =1 = T 0T 0T T g2 T P8 TGy 6h2 ’
- 3£ _ s v? G £ 5 P33 £ p2s F p12p1s
K. . — 2 _
i EListl =V opT F T T g TP TG T 612 ’
2 . 2361 + P13S2 + P12S3 9 P23 F p12 F P13 2 P12P13 F p12p23 F P13p23
Kitiin-tia-1 = £7 241 7 2412 7 1212 ’
. + +
Kit1is1is1 = F 7p23§1 + p;z}iz + p12€3 I 72 P23 :FQT;Q P13 4 72 pP12013 011;223 + 013P237
. + +
Kit1itiyer = F 7p23§1 + p;zzz + p1263 I 72 P23 2,11;; P13 4 72 P13P23 + ,0113223 P12P137
Pt st prass  apasE P2k pis o p12023 E P12p13 E pispas
i11+1,i0+1,i3+1 Y 24h v 2412 Y 1912 .

Similarly, we get the coefficients Mk,l,m of 0; Uk 1.m (7), given by

pis ; P23

Mit1jm-1 =Mig1jm+1 = F5 Mijerm—1 =Mijz1mir = F5
~ - P12 - 1 hei
Mty j—1,m =Mix1j+1,m = o0 Mit1,j,m =5 T 127’
N 1 h<y - 1 hes -
M - 52 M et Y ¥/ SRS
i,jE1l,m 12 + 127; i,7,m=%1 12 + 127; i,5,m 2;
Mi:l:l,jfl,erl :Mi:tl,jJrl,erl =0 Mi:tl,jfl,mfl :Miﬂ,ﬁl,mq =0.

Additionally, we have g(z,7) = 0. We obtain a semi-discrete scheme of the form (12), where K,
and M, are time-independent. As in 6 we apply Crank-Nicolson type time discretisation and
obtain the fully discrete scheme for the spatial interior.
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8.4 Treatment of the boundary conditions

After deriving a high-order compact scheme for the spatial interior we now discuss the boundary
conditions.

8.4.1 Lower boundaries

The first boundary we discuss is S; = 0 for some ¢ € I C {1,...n} at time ¢ € [0,T[. Once the
value of the asset is zero, it stays constant over time, see (15). Hence, using S; = 0 for ¢ € I in
(16) and applying the transformation (17) leads to

_r au*VQZPUa o7, +VZ§Z 4—,

Z¢I i ]QI
1<J
with f = —u,. Hence, at these boundaries we are able to obtain high-order compact schemes in

the same manner as shown for the spatial interior with then n — |I| spatial dimensions, as the

coefficients of the partial differential equations of these boundaries satisfy condition (11). The

1) (n) _
7)

T

case [ = {1,...,n}, i.e. [I| = n, leads to the Dirichlet boundary condition u(z

min’ ** ) *“min’
u(xfii)n, . f:lz], 0) at time 7 €]0, Timax], since in that case u, = 0.
8.4.2 Upper boundaries
Upper boundaries are boundaries with S; = S{"®* for some ¢ € J C {1,...,n} at time ¢t € [0, T[.

For a sufficiently large S;"** for i € J, we set

OV (S1,...,Sn.t)
95;

=0,
Si=§max

with S, € [Spin, Spax] for k = {1,...,n} \ {i} for a European Power Put Basket option.
Employing this in (16) and using the transformations (17), yields

7?2 & 9% ) — 0%u " Ou
(21) 731'—1 Fr iJZ:1pij78$iaxj +7i;€ia—xi =f,
i J 17J¢J i J
1<J
with f = —u,. Hence the upper boundaries show the same behaviour as the lower boundaries
for a European Power Put Basket. Analogously, we have the Dirichlet boundary condition
u(xfﬁ?ix, . ,xl(fgxm) = u(xfﬁ?ix, . ,xl(fgx, 0) for 7 €]0, Tmax] if J ={1,...,n}.

8.4.3 Combination of upper and lower boundaries

A combination of upper and lower boundaries thus behaves in the same manner and the resulting
partial differential equations with n — |I| — |J| spatial dimensions satisfy condition (11) as well.
For the corner points of 2 we have |I| + |J| = n and thus again u = uo.

9 Numerical experiments for Black-Scholes Basket options

In this section we discuss the numerical experiments for the Black-Scholes Basket Power Puts in
spatial dimensions n = 2, 3. The equation systems which have to be solved over time have been
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derived in Section 8. According to [13], we cannot expect fourth-order convergence if the initial
condition is not sufficiently smooth. Hence, we have to smooth the initial condition for Power
Puts with p = 1,2. In [13] suitable smoothing operators are identified in Fourier space. Since the
order of convergence of our high-order compact scheme is four, we use the smoothing operator
®,4, given by its Fourier transform

dy(w) = <%>4 [1 +§Sin2(w/2)} .

This leads to the smoothed initial condition

3h 3h

g (T1,22) = % / / Dy (%) Dy (%) ug (1 — x, 22 — y) dw dy,

—3h —3h

in the case n = 2 for any step size h > 0, where ug is the original initial condition and ®4(x)
denotes the Fourier inverse of ®4(w), see [13]. If ug is smooth enough in the integrated region
around (z1,...,xy), we have 4g (z1,...,%,) = ug (21, ...,2,). That means that it is possible to
identify the points where smoothing is necessary.

1 —— 1
+ gridpoints
0.5 0.5
0 o
-0.5] -0.5]
=1 =1
-1.5] -1.5]
-2 -2
—2.5] —2.5]
_3 _3}| * gridpoints to smooth
— non-differentiable viaues|
“35 -2 -1 o 1 2 “35 -2 -1 o 1 2

Figure 1: Example of grid points selected for the smoothing procedure in two space dimensions.
We employ the smoothing operators of Kreiss et al. [13] to ensure high-order convergence of the
approximations of the smoothed problem to the true solution of (18).

Figure 1 shows an example of a two-dimensional grid on the left side and on the right side
a graph of the non-differentiable points of the initial condition given in (20) together with the
identified grid points, where smoothing is necessary. The points are chosen in such a way that
we ensure that the non-differentiable points have no influence on @g (21, x2) for those points,
which are not shown in Figure 1 on the right hand side. This approach reduces the necessary
calculations significantly. As h — 0, the smooth initial condition @y converges towards the
original initial condition ug given in (20). The results in [13] guarantee high-order convergence
of the approximation of the smoothed problem to the true solution of (18).

We use the relative (%-error ||Upet — Ul|;2 /|| Uretli2, as well as the (®°-error ||Uyer — Ul1= to
examine the numerical convergence rate, where U, denotes a reference solution on a fine grid and
U is the approximation. When identifying the convergence order of the schemes, we determine
it as the slope of the linear least square fit of the individual error points in the loglog-plots of
error versus number of grid points per spatial direction.

9.1 Numerical example with two underlying assets

In this section we report the numerical results for a two-dimensional Black-Scholes Basket Power
Put. We compare the high-order compact scheme (‘HOC’) with the standard scheme (‘2nd
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order’), which is obtained by using the central difference operator directly in (18) for n = 2 with
no further action and thus leads to a classical second-order scheme. We consider plain European
Puts (p = 1) and use the smoothing procedure outlined above for the initial condition (20). The
parameter values

o1 =0.25, 02=035 =025 r=In(l.05), w; =035=1-—ws, K =10,

and d; = 2 = 0 are used, unless stated otherwise. The parabolic mesh ratio is fixed to A7/h? =
0.4, although we point out that neither the von Neumann stability analysis nor our numerical
experiments revealed any practical restrictions on its choice.

N + HOC, p1; = -0.8, order 3.62
10 - HOC, pjp = 0, order 3.73
- HOC, po = 0.8, order 3.73|

+-2nd order, pyo = -
+-2ud order, pr2 0, order 1.77
o \dm‘urdm. pra = 0.8, order 1.66

2

o ~  HOC, p15 = -0.8, order 3.04

~  HOC, pio= 0, order 3.90)
. HOC, p
+2nd order, pi5 = -0.8, order 1.85
+-2nd order, py 0, order 1.87|
~2nd order, pi, = 0.8, order 1.77

0.8, order 3.87|

L1 T T
S
»*
2
g2
2

10°
Number of gridpoints each dimension Number of gridpoints each dimension

Figure 2: [*°- (left) and relative [?-error (right) for two-dimensional Black-Scholes Basket Put
and smoothed initial condition.

Figure 2 shows convergence plots for the [*-error (left) and for the relative ?-error (right)
for a European Put, respectively. The initial condition is smoothed using the procedure outlined
above. For both types of errors we observe that the numerical convergence rates agree very well
with the theoretical orders of the schemes. The high-order compact scheme yields numerical
convergence orders close to four and strongly outperforms the standard second-order scheme.
The choice of the correlation parameter p;2 = —0.8, p12 = 0 and p;2 = 0.8 has very little
influence.

9.2 Numerical example with three assets

In this section we report on numerical experiments with three underlying assets. We choose the
parameters

5; =001, 0;=03, w=1/3, r=In(1.05), ~v=03, T=025 K=10.

Due to the computational intensity of the three-dimensional problem the number of grid points
per spatial dimension is smaller compared to the results in two dimensions reported above. To
ensure that at the same time there is a sufficiently large number of grid points in time, we fix
the parabolic mesh ratio to A7/h? = 0.1 (not for stability reasons). We perform two types of
experiments: without any correlation between the assets (labeled by ‘nc’ in the plots), and with
correlation (labeled by ‘c’ in the plots) using the parameter values p; o = —0.4, p1 3 = —0.1,
p2,3 = —0.2.

We compare the standard approximation to our high-order compact scheme for European
Power Put options with p = 3,4. For the European Power Puts with p = 1,2 one would smooth
the initial condition, similar as above, to ensure high-order convergence. Figure 3 shows the
convergence of the relative I2-error for a European Power Put with p = 3 and p = 4. We use
the original initial conditions, no smoothing is applied here. The numerical convergence rates
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Figure 3: Relative [2-error for three-dimensional Black-Scholes Basket Power Put, with p = 3
(left) and p = 4 (right)

of the high-order compact scheme are slightly reduced to about three and three and a half,
respectively. Additional smoothing, which we omitted here due to limit the computational load,
would result in even better results. Still, in the high-order compact scheme outperforms the
standard second-order scheme significantly in all cases.

9.3 Numerical example with space-dependent coefficients

In this section we will apply numerical examples for (16), where the continuous dividends are
dependent on the underlying asset price. For both asset prices S; with ¢ = 1,2 we consider
the following example, where the continuous dividends are zero for small asset prices and then
smoothly increase around an asset price S} > 0 towards a given parameter 67 > 0,

_ 0f [tanh (G (S; — SF)) — tanh (—(;.57)]

Financially, the interpretation could be as follows: if the asset is a dividend-paying stock, low
stock prices may mean that the company may not be in the financial position to pay dividends.
A low value of ; > 0 leads to slow transition from 0 to §;. We can apply the transformations
given in (17) and hence use the coefficients

2

Y 2 g; T — (SZ'(KGIi‘YUi)
22 P = T, bi':*}/ 37y =Y 5 T | *07
( ) @ 2 J pj ¢ (2 g; 9

for ¢ = 1,2 to obtain the coefficients of the numerical scheme, see Section 5.1. The boundary
conditions of Section 8.4 are employed and the parameter values of Section 9.1 as well as

£=0.02, 6 =001, (=035 (=05 S =0.9K/w,

for ¢ = 1,2 are used in the numerical experiments. Figure 4 shows numerical convergence plots
for a European Put with space-dependent continuous dividend. Again, smoothing of the initial
condition is employed. For the [*-error as well as the [?-error the high-order compact scheme
has convergence rates close to four for p; 2 = 0, and p; 2 = 0.8. The convergence rate for the
case p1,2 = —0.8 is 3.22 in the [*°-error, which is mainly due to the two approximations with
eleven and 21 grid-points per spatial direction, and 3.57 in the /2-error. The convergence orders
of the standard scheme are for p; 2 = 0,0.8 are slightly above two for both types of errors. For
p1,2 = —0.8 the convergence orders are noticeable lower as well. In all cases of correlation the
high-order compact scheme outperforms the standard second-order scheme significantly.
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Figure 4: [°°- (left) and relative [2-error (right) for two-dimensional Black-Scholes Basket Put
with space-dependent dividend and smoothed initial condition.

10 Conclusion

We presented a new high-order compact scheme for a class of parabolic partial differential equa-
tions with time and space dependent coefficients, including mixed second-order derivative terms
in n spatial dimensions. The resulting schemes are fourth-order accurate in space and second-
order accurate in time. In a thorough von Neumann stability analysis, where we focussed on
the case of vanishing mixed derivative terms, we showed that a necessary stability condition
holds for frozen coefficients without further conditions in two and three space dimensions. For
non-vanishing mixed derivative terms we were able to give partial results. The results suggest
unconditional stability of the scheme. As an application example we considered the pricing of
European Power Put options in the multidimensional Black-Scholes model. The typical initial
conditions of this problem lack sufficient regularity, therefore a suitable smoothing procedure was
employed to ensure high-order convergence. In all numerical experiments performed a compara-
tive standard second-order scheme is significantly outperformed.

Although we derived the scheme in arbitrary space dimension, it was not our aim in this paper
to attack the so-called curse of dimensionality. The issue of exponentially increasing number of
unknowns with growing spatial dimension on full grids is of course alleviated to some degree by
a high-order scheme. To obtain a similar accuracy as a second-order scheme which uses O(N?)
unknowns on a full grid, our high-order compact approach will ‘only’ require O(N d/ 2) unknowns.
To really attack very high-dimensional problems one would need to combine our approach with
hierarchical approaches, e.g. using sparse grids (typically requiring O(NIn(N)?~!) unknowns),
which is beyond the scope of the present paper.
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A Coefficients for semi-discrete scheme in three dimen-
sions

Sy . . . . 1 (2 (3 °,(3) . . 5
Considering an interior grid point (z;,’, #;.”,#;.’) € G}, and time 7 € ., the coefficients K},

of Uk,l,m (T) for k € {il —1,41,21 + 1}, l e {’L'Q —1,49,29 + 1} and m € {’L'g — 1,413,173 + 1} of the
three-dimensional semi-discrete scheme in Section 5.2 are given by:

i _bas[alacs | bis[alics  [es]s ﬁ B C_g _lalin [a]e2 [a]ss | bis[a]se
PRt T g2 6a> 3 6a  6a 2 2 2 6a>
bizlalaci  4a | bislalslalr | boslalsale | bes[alsce  bizlalifale
+ 6a? h? + a? + a? + 6a? + a?
bizlalico  bisles)y  cifas | b3 biolaliz  cafals | big bia
6a2 6a 6a 3ah? 2a 6a 3ah? = 3ah?
_cslals  bislaliz bosfeo]s  bizfea]i  basfalas  bas[ca]s  bos[eso
6a 2a 6a 6a 2a 6a 6a
b12[01]2 c% [aﬁ [a]g [a]g [02]2 [Cl]l
6a 6a + a + a + a 3 3’
[ __bizla)abiz _ basfalzbiz _ [bi2]n + [b12]22 _ [b12]33 + bizlali  bizer | bizes
aEbi2=his T 02h 24a%h 48 8 T 12ah ~ 12ah ~ 12ah
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48a? 48a? 24a2h 12ah 48a? 48a?
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48a? 48a? 48a? 48a? 24ah 48a?
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48a? 24ah 24ah 24ah 12ah? 24a2h  12h = 6h2
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96ah 48ah ' 48ah ~ 24ah?’

[b1s]2 bi3 [bi2]s _ [b23]i _ biz[bis]r _ big[bi2]1 _ ba3[bis]s

48h 24h? 48h 48h 96ah 96ah 96ah
n basbiz | bis[a]sbes | biz[alabas  bos biz[bos]s _ bascr  bizbig

24ah? 48a2h 48a2h 24h? 96ah 48ah  24ah?
- bi2 [a]2b13 | [a]sbi2 I bislalibiz | [a]ibas __ bi2[b2s]2

24h?2 48ah 48ah 48a2%h 48ah 96ah

bas[biz]2 _ csbiz _ bizca _ bigbas

96ah 48ah ' 48ah ' 24ah?’

[es]r |, bis c3 [b1s]1 baglalabiz | [bi3]i1 | [bis]22 |, [b13]ss
o T T on T 2n T T odeen Toas T a3 T 48
n [bis]s _ [a]s[b13]s n biz[es]z | bisles]s _ [a]i[bis]s 4 calbisle | a

12h 24a 48a 48a 24a 48a 6h2

[a]sci n bis[ci]1 I c1[bis) I bas[bis]2s _ [a]ics L acs [a]2[b13]2

24a 48a 48a 48a 24a 24a 24a
n cs[bi3)s I bia[bis]i2 |, bis[bis]r , bas[biz]z _ bislali | csbiz _ bis[a]s

48a 48a 24ah 24ah 24a2h 12ah 12ah
_ biz2[a]2b13 Lo n bis bislbis]i2 | bas[ci]z _ basbia B [a]3bis
24a2h 12h  12ah? 48a 48a 12ah? 24a2h
bislalici __ bizlali[bis]e __ beslalaci _ bis[a]i[bis]s _ basa]s[bis]2
48a? 48a? 48a? 48a? 48a?
n [e1]s _ bis[als[bis]i __ basla]2[bis]s __ bizfa]2[biz]i  bis[a]s
24 48a? 48a? 48a? 12ah
bizlalacs | biz[bis]s _ bizlalzcs | bia[biz]a | cibis
48a2 24ah 48a2 24ah 12ah’
_ baslalacs bisfalics | es]s __ [bas]2 | cs - [b1s]1 I hles)i n hles]ss
12a2 12a2 6 6h 6h 6h 24 24
h[es]a2 2 [ali1 | [al22 | [a]ss , biz[alibas |, biz[al2bis
790 Te T2 Tz T2 12a2h 12a2h
hbisla)i[cs]s __ hbiz[ali[cs]ze _ hbas[al2[cs]s _ hbaslals[cs]e  bis[a)s[a]:
2402 2402 2402 2462 6a?
hbisla)sles]r _ hbiz[a)z2[cs]1 a baslalslalz  bizlalialz  bisles)r
2442 2402 32 6a>2  6a? 12a
c1lalx b3, bizlaliz | c2la)z bis czlals | bizlaiz | heaes]z
T 990 Gan? T 12 T 120 6ah? 124 | 120 T 24a
n baslales | basfcsla _ cobas I baslalz _ bos[bas]s _ bia[bas]: | b3slals
12a 12a 6ah 6ah 12ah 12ah 12a2h
n [a]sbis |, bis[a]i _ bis[bis]s _ biabis]e _ cibiz |, hbis[csliz | heilesh
12a2h 6ah 12ah 12ah 6ah 24a 24a
" hbiz(ca]i2 " hbaz[calzs _ hlali[cs]i _ hla]2[cs]e _ hla]s[es]s
24a 24a 12a 12a 12a
heslesls  [ali [} [a]3
24a  6a 6a  6a’
[csl2 | bas | [basla | c3 _ bis[a]ibas n [b2s]11 4 [b23]22 n [ba2s]33
24 6h2 12h 12h 24a%h 48 48 48
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bi2[es]h [a]3[b23]3 baz[c2]2 bas[cs)s [a)2cs [a]1[b23]1 C2C3

48a 24a 48a 48a 24a 24a 24a
" c3[bas]s I biabas]iz | biz[ea]i | bislbas]iz _ [a]z2[bas]2 _ [a]sce
48a 48a 48a 48a 24a 24a
biz2[a]1b23 c2 a bagcs _ baslals | big[bas]i |, bas[bas]e | c2bos
"~ 24a®h 12k ' 6h% ~ 12ah ' 12ah 24ah 24ah ' 12ah
[a]2b35 b33 ba3[b23]23 L e [b23]2 I c1[bas]1 + biobiz  basfalz
24a2h  12ah? 48a 48a 48a 12ah? 12ah
basla]s[bas]z _ baslalscs __ biz[alics _ bis[ali[bas]s _ bas[a]2[bes]s
48a? 48a? 48a? 48a? 48a?
bag[alaca _ bizla]i[bas]e _ bislalice _ bis[als[bas]i _ biz[a]2[bes]:
T 74842 4842 4842 4842 4842
n bos[bas]s | biafbas]i b33[als n [b23]3 I [e2]s
24ah 24ah 24a2h 12h 24
Note that in the above a,b12, b13, bos, c1,c2,c3 and g are evaluated at (zz(-ll),xg),:cgf)) € éf)

and 7 € Q.. To streamline the notation we used [-]; and []x, to denote the first and second
derivative of the coefficients with respect to zj, and with respect to z; and z,, respectively.
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