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High-Order-Compact ADI schemes for diffusion equations with mixed

derivatives in the combination technique

Christian Hendricks, Matthias Ehrhardt and Michael Günther

Abstract

In this article we combine the ideas of high order compact (HOC) and alternating direction implicit
(ADI) schemes on sparse grids for diffusion equations with mixed derivatives. With the help of
HOC and ADI schemes solutions, which are fourth order accurate in space and second order
accurate in time can be computed. The computationally effort in each leg of the ADI scheme just
consists of solving tridiagonal linear systems. In order to reduce the number of grid points, we
use the combination technique to construct a solution defined on the sparse grid. This approach
allows to further reduce the computational effort and memory consumption.

Keywords: high order compact scheme, sparse grids, combination technique, alternating
direction implicit method

1. Introduction

High dimensional problems arise in many fields of research and practice. In computational finance
for example the pricing of financial derivatives requires to solve partial differential equations (PDEs)
with several spatial dimensions. During the last decades both academics and industry have spent
a great effort to derive techniques to solve these problems efficiently. One very important class of
solvers is built up by operator splitting schemes, such as Alternating-Direction-Implicit (ADI) and
Locally-One-Dimensional (LOD) schemes. These approaches rely on separating the underlying
discretisation matrix to tridiagonal matrices, which can be solved in linear run-time. Thus the
computational effort is significantly reduced. However if tensor based grids are employed, the
exponential growing complexity in connection with memory constraints makes it very difficult to
solve high dimensional problems. Therefore it is quite natural to ask for schemes, which are able
to deliver highly accurate solutions with a very low number of grid points.

In this article we introduce schemes, which combine the ideas of ADI, HOC and sparse grid
techniques to solve diffusion PDEs with mixed derivatives of the form

∂u

∂t
= Lu, t > 0 (1.1)

where L denotes an elliptic operator of the form

Lu =
d

∑

i=1

d
∑

j=1

qij
∂2u

∂xi∂xj

, x = (x1, ..., xd)
⊤ ∈ Ω ⊂ R

d.

The parabolicity of the problem implies that the matrix Q = (qij) is positive semi-definite.

ADI schemes decompose the discretisation matrix into simpler tridiagonal ones. Usually second
order stencils are used to discretise the underlying PDE. HOC schemes have been employed to
derive schemes with order four in space with compact stencils, such that solving the discrete system
in general is not more expensive in terms of computation time than for second order schemes. In
recent years HOC and ADI schemes have been combined to construct efficient solvers, e.g. by Düring
et al. [1] and by Karaa and Zhang [2]. Nevertheless these schemes use a full tensor based grid, thus
resulting in an exponential growing number of grid points. With the combination technique, the
so called sparse grid solution, can be computed by linearly combining a sequence of sub-solutions.
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Compared to a full grid with O(h−d) nodes, the sparse grid only consists of O(h−1 log(h−1)d−1)
grid points, but is able to maintain an approximation accuracy of O(h4 log(h−1)d−1) in case of order
four schemes under suitable regularity assumptions. Hence the combination technique suffers from
the curse of dimensionality to a much lower extent.

The outline of this article is as follows: In Section 2 we discuss four well known ADI schemes.
Based on these schemes we derive HOC-ADI schemes and analyse their consistency and stability
properties in Section 3 and 4. In Section 5 we give a brief discussion of HOC-ADI schemes within
the combination technique. The theoretical results are illustrated by numerical examples in Section
6.

2. ADI schemes

We consider the semi-discretisation of our PDE (1.1)

∂u

∂t
= F (u(t)), t > 0,

with given initial and boundary data. The function F contains the spatial discretisation of the
elliptic operator L. In many applications F is treated implicitly for stiffness and stability reasons.
Especially in the high dimensional case the resulting problem can become unfeasible on now-a-days
standard machines. Therefore it seems to be reasonable to decompose F into a simpler form, which
can be solved sequentially

F (u) = F0(u) + F1(u) + ...+ Fd(u).

Here in case of equation (1.1) the term Fi, i ≥ 1, takes the second-order derivative in the i-th
coordinate direction, while F0 stems form all mixed derivative terms. As F0 will always be treated
explicitly and the Fis implicitly, only tridiagonal systems have to be solved if second-order finite
difference schemes (FD) are employed. In the sequel we consider four well known ADI schemes.

Douglas scheme (DO) [3]:











Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

un+1 = Yd.

(2.1)

∆t denotes the time step and un is the approximation at time level n, un ∼ u(n∆t). In scheme (2.1)
an explicit Euler step is followed by a stabilising correction step in each of the spatial directions. In
the case θ = 1

2 the methods is known as the Douglas [3] and Brian [4] scheme. The value θ = 1 has
been considered by Douglas in [5]. Without mixed derivative terms in (1.1) and θ = 1

2 the scheme
is of order 2 in time and of order 1 otherwise. The scheme was initially developed to solve the heat
equation in two or three dimensions, but as we are interested in equations with cross terms, the
scheme (2.1) seems not well suited. Hence we turn our attention to more sophisticated schemes.

Craig-Sneyd scheme (CS) [6]:































Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F0(Yd)− F0(un))

Ỹi = Ỹi−1 + θ∆t

(

Fi(Ỹi)− Fi(un)
)

for i = 1, ..., d

un+1 = Ỹd.

(2.2)
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Modified Craig-Sneyd scheme (MCS) [7] :










































Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

Ŷ0 = Y0 + θ∆t (F0(Yd)− F0(un))

Ỹ0 = Ŷ0 + ( 12 − θ)∆t (F (Yd)− F (un))

Ỹi = Ỹi−1 + θ∆t

(

Fi(Ỹi)− Fi(un)
)

for i = 1, ..., d

un+1 = Ỹd.

(2.3)

The Craig-Sneyd scheme [6] was originally introduced as an extension of the Douglas scheme,
where a second explicit step is followed by d implicit stabilising steps. It exhibits order 2 if θ = 1

2 .
The modified Craig-Sneyd scheme (2.3) can be seen as an extension of the iterated scheme in the
article by Craig and Sneyd [6] and was defined by in’t Hout and Welfert in [7]. This scheme has
order 2 for arbitrary θ > 0.

Hundsdorfer-Verwer scheme (HV) [8]:































Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F (Yd)− F (un))

Ỹi = Ỹi−1 + θ∆t

(

Fi(Ỹi))− Fi(Yd)
)

for i = 1, ..., d

un+1 = Ỹd.

(2.4)

The Hundsdorfer-Verwer scheme was derived in [8] and possesses like the modified Craig-Syned
scheme order two for any θ > 0.

In recent years huge effort has been spent on stability analysis of these ADI schemes, cf. [9, 7, 10,
11, 8]. There the ADI scheme is applied to the linear test equation

u′(t) = (λ0 + λ1 + ...+ λd) u(t),

with complex values λi for i = 0, ..., d. This implies the assumption that all involved discretisation
matrices are normal and commuting. Although this is often not the case in practice, it is common
to neglect boundary conditions, freeze coefficients and apply von Neumann stability analysis. Let
the stability matrix R of the scheme be given, such that

un+1 = R un.

Then R reduces to the factor r(z0, z1, ..., zd) if applied to the scalar test equation with zi = ∆tλi

for all i. The numerical scheme is stable if

|r| ≤ 1

holds. Defining z = z0 + z1 + ...+ zd and p = (1− θz1) · ... · (1− θzd), the stability functions of the
ADI schemes (2.1), (2.2), (2.3), (2.4) are

rDO(z0, z1, ..., zd) = 1 + z
p
,

rCS(z0, z1, ..., zd) = 1 + z
p
+ 1

2
z0 z
p2 ,

rMCS(z0, z1, ..., zd) = 1 + z
p
+ θ z0 z

p2 + ( 12 − θ) z
2

p2 ,

rHV (z0, z1, ..., zd) = 1 + 2 z
p
− z

p2 + 1
2
z2

p2 .

The single zi can be derived by inserting Fourier modes into the discretisation of the derivatives.
For more details we refer to in’t Hout and Mishra [9]. In the literature the following lower bounds
on θ ensuring unconditional stability have been derived: Douglas scheme θ ≥ 1

2 if d = 2, θ ≥ 2
3 if

d = 3; Craig-Sneyd scheme θ ≥ 1
2 if d = 2, 3; Modified Craig-Sneyd scheme θ ≥ 1

3 if d = 2, θ ≥ 6
13

if d = 3; Hundsdorfer-Verwer scheme θ ≥ 1
2+

√
2

if d = 2, θ ≥ 3
4+2

√
3

if d = 3. In’t Hout [7] proved

a condition on θ ensuring unconditional stability for scheme (2.4) with arbitrary dimensions. In
case of the other three ADI schemes only necessary conditions have been derived and up to now it
is unclear if these are sufficient if d > 3.
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3. High Order Compact ADI schemes

In this Section we combine the ideas of ADI schemes with High-Order-Compact schemes. While
high order finite difference schemes in general use broad stencils, HOC schemes exploit the structure
of the underlying PDE to construct discretisation with order four, but maintain a compact stencils.
Thus the resulting linear system can be solved efficiently and the introduction of ghost points at
the domain’s boundary is avoided.

HOC schemes have been used by Spotz in [12], while operator splitting schemes were employed by
Karaa and Zhang [2], who introduced a D’Yakonov HOC scheme in 2-d for unsteady convection-
diffusion equations. Düring et al. [1] were the first one, who applied a HOC-ADI schemes to PDEs
with mixed derivative terms. However, as far as we know, there exists no detailed stability analysis
for HOC-ADI schemes with mixed derivative terms in the literature.

3.1. Finite Difference Operators

The derivatives in (1.1) are discretised via finite differences, which can easily be derived by straight-
forward Taylor expansion. Let k, l denote the index of the grid node, then the standard difference
operator approximating the second derivative in xi direction is given by

δ2xi
uk,l =

uk+1,l − 2uk,l + uk−1,l

h2
i

,

This operator is of order two, i.e.
∂2u(xk,l)

∂x2

i

= δ2xi
uk,l+O(h2

i ). We will use it to construct fourth order

discretisations with compact stencils, such that only the neighbouring grid nodes are involved. The
mixed derivatives in the ADI schemes are always treated in an explicit fashion, thus we use broad
stencils with order four

δ0xi
uk,l =

−uk+2,l + 8uk+1,l − 8uk−1,l + uk−2,l

12hi

,

to obtain a fourth order approximation of the mixed derivative ∂2u
∂xi∂xj

for i 6= j

δ0xi
δ0xj

uk,l =
1

144hihj

[

64
(

uk+1,l+1 − uk−1,l+1 + uk−1,l−1 − uk+1,l−1

)

+ 8
(

− uk+2,l+1 − uk+1,l+2 + uk−1,l+1 + uk−2,l+1

− uk−2,l−1 − uk−1,l−2 + uk+1,l−2 + uk+2,l−1

)

+ uk+2,l+2 − uk−2,l+2 + uk−2,l−2 − uk+2,l−2

]

.

3.2. HOC scheme

In order to derive a high-order formulation of discrete L, we consider one-dimensional equations
as a starting point

Fi(u) = qii
∂2u

∂x2
i

= g, i = 1, ..., d, (3.1)

where g is some arbitrary right hand side. Applying our discrete operators of the previous para-
graph, we obtain

qii
∂2u

∂x2
i

= qiiδ
2
xi
uk − qii

h2
i

12

∂4u

∂x4
i

+O(h4
i ) = gk. (3.2)

This is an order 2 approximation of equation (3.1) with a fourth derivative truncation error. In
order to get a fourth order scheme, as the fourth derivative is multiplied by h2

i , a second order

discretisation of ∂4u
∂x4

i

is needed. Differentiating equation (3.1) twice, yields

qii
∂4u

∂x4
i

=
∂2g

∂x2
i

. (3.3)
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Hence the fourth derivative can be expressed via the second derivative of the right hand side g.
Replacing the truncation error in (3.2) by (3.3) and applying the second order difference operator,
one obtains a one-dimensional fourth order scheme for equation (3.1)

qiiδ
2
xi
uk = g +

h2
i

12
δ2xi

gk +O(h4
i ).

Thinking in terms of matrices or symbolic operators, we can write the scheme as

Axi
u = Bxi

g,

where

Axi
= qiiδ

2
xi
, Bxi

= 1 +
h2
i

12
δ2xi

.

and vectors u, g. The mixed derivatives are approximated via standard fourth order stencils in
an explicit fashion, such that we have F0(un) =

∑

i 6=j qijδ
0
xi
δ0xj

un, or in matrix/symbolic notation
F0 un =

∑

i 6=j Axi,xj
un. The semi discrete scheme now reads

∂u

∂t
= F0(u) +B−1

x1
Ax1

u+ ...+B−1
xd

Axd
u+O(h4

1) + ...+O(h4
d) +

∑

i,j

O(h4
ih

4
j ). (3.4)

Please note that the scheme exhibits order 4 in all single coordinate directions. It is also possible to
construct HOC schemes by taking into account the full PDE, which leads to a different truncation
error. We illustrate this approach by a simple example. For simplicity let equation (1.1) be given
without cross derivatives and d = 2, then we have a problem of the form

q11
∂2u

∂x2
1

+ q22
∂2u

∂x2
2

= f.

Discretisation leads to

q11δ
2
x1
ukl −

h2
1

12

∂4u

∂x4
1

+ q22
∂2u

∂x2
2

− h2
2

12

∂4u

∂x4
2

= fkl.

Again we approximate the truncation error with second order stencils and obtain after some
straightforward calculations

q11δ
2
x1
ukl + q22δ

2
x2
ukl +

h2
1

12

(

q22δ
2
x1
δ2x2

ukl +O(h2
1) +O(h2

2) +O(h2
1h

2
2)
)

+
h2
2

12

(

q11δ
2
x1
δ2x2

ukl +O(h2
1) +O(h2

2) +O(h2
1h

2
2)
)

=

(

1 +
h2
1

12
δ2x1

+
h2
2

12
δ2x2

)

fkl.

The semi-discrete scheme is
(

1 +
h2
1

12
δ2x1

+
h2
2

12
δ2x2

)

∂u

∂t
= q11δ

2
x1
ukl + q22δ

2
x2
ukl +

h2
1

12
q22δ

2
x1
δ2x2

ukl +
h2
2

12
q11δ

2
x1
δ2x2

ukl +O(h2
1h

2
2)

(3.5)

This scheme has a leading error term of order O(h2
1h

2
2). Thus we can only expect order 4 if

h1 = ch2 holds for some constant c. Therefore this scheme will not exhibit an asymptotic order of
O(h4 log(h−1)d−1) in the combination technique, c.f. Section 5.

3.3. HOC-ADI schemes

We now apply the time discretisation given in Section 2 to the semi-discrete HOC formulation
(3.4).
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HOC Douglas scheme (HDO):











Y0 = un +∆t

(

F0(un) +B−1
x1

Ax1
un + ...+B−1

xd
Axd

un

)

,

(Bxi
− θ∆tAxi

)Yi = Bxi
Yi−1 − θ∆tAxi

un for i = 1, ..., d

un+1 = Yd.

(3.6)

HOC Craig-Sneyd scheme (HCS):































Y0 = un +∆t

(

F0(un) +B−1
x1

Ax1
un + ...+B−1

xd
Axd

un

)

,

(Bxi
− θ∆tAxi

)Yi = Bxi
Yi−1 − θ∆tAxi

un for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F0(Yd)− F0(un))

(Bxi
− θ∆tAxi

) Ỹi = Bxi
Ỹi−1 − θ∆tAxi

un for i = 1, ..., d

un+1 = Ỹd.

(3.7)

HOC modified Craig-Sneyd scheme (HMCS):







































Y0 = un +∆t

(

F0(un) +B−1
x1

Ax1
un + ...+B−1

xd
Axd

un

)

,

(Bxi
− θ∆tAxi

)Yi = Bxi
Yi−1 − θ∆tAxi

un for i = 1, ..., d

Ŷ0 = Y0 + θ∆t (F0(Yd)− F0(un))

Ỹ0 = Ŷ0 + ( 12 − θ)∆t (F (Yd)− F (un))

(Bxi
− θ∆tqAxi

) Ỹi = Bxi
Ỹi−1 − θ∆tAxi

un for i = 1, ..., d

un+1 = Ỹd.

(3.8)

HOC Hundsdorfer-Verwer scheme (HHV):































Y0 = un +∆t

(

F0(un) +B−1
x1

Ax1
un + ...+B−1

xd
Axd

un

)

,

(Bxi
− θ∆tAxi

)Yi = Bxi
Yi−1 − θ∆tAxi

un for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F (Yd)− F (un))

(Bxi
− θ∆tAxi

) Ỹi = Bxi
Ỹi−1 − θ∆tAxi

Yd for i = 1, ..., d

un+1 = Ỹd.

(3.9)

In order to avoid the inverse of the operators Bxi
for i = 1, ..., d one can rewrite the schemes.

Please note that we assume Bxi
, Axi

to be commuting for all i, which is reasonable since they are
only one-directional with constant coefficients.

HOC Douglas scheme (HDO):



















Z0 =
∏d

j=1 Bxj
un +∆t

(

∏d
j=1 Bxj

F0(un) +
∑d

i=1

∏d
j=1
j 6=i

Bxj
Axi

un

)

(Bxi
− θ∆tAxi

)Zi = Zi−1 − θ∆t

∏d
j=i+1 Bxj

Axi
un for i = 1, ..., d

un+1 = Zd,

(3.10)

HOC Craig-Sneyd scheme (HCS):







































Z0 =
∏d

j=1 Bxj
un +∆t

(

∏d
j=1 Bxj

F0(un) +
∑d

i=1

∏d
j=1
j 6=i

Bxj
Axi

un

)

(Bxi
− θ∆tAxi

)Zi = Zi−1 − θ∆t

∏d
j=i+1 Bxj

Axi
un for i = 1, ..., d

Z̃0 = Z0 +
1
2∆t

(

∏d
j=1 Bxj

F0(Zd)−
∏d

j=1 Bxj
F0(un)

)

(Bxi
− θ∆tAxi

) Z̃i = Z̃i−1 − θ∆t

∏

j=i+1 Bxj
Axi

un for i = 1, ..., d

un+1 = Z̃d.

(3.11)
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HOC modified Craig-Sneyd scheme (HMCS):



















































Z0 =
∏d

j=1 Bxj
un +∆t

(

∏d
j=1 Bxj

F0(un) +
∑d

i=1

∏d
j=1
j 6=i

Bxj
Axi

un

)

(Bxi
− θ∆tAxi

)Zi = Zi−1 − θ∆t

∏d
j=i+1 Bxj

Axi
un for i = 1, ..., d

Ẑ0 = Z0 + θ∆t

(

∏d
j=1 Bxj

F0(Zd)−
∏d

j=1 Bxj
F0(un)

)

Z̃0 = Ẑ0 + ( 12 − θ)∆t

(

∏d
j=1 Bxj

F (Zd)−
∏d

j=1 Bxj
F (un)

)

(Bxi
− θ∆tAxi

) Z̃i = Z̃i−1 − θ∆t

∏

j=i+1 Bxj
Axi

un for i = 1, ..., d

un+1 = Z̃d.

(3.12)

HOC Hundsdorfer-Verwer scheme (HHV):







































Z0 =
∏d

j=1 Bxj
un +∆t

(

∏d
j=1 Bxj

F0(un) +
∑d

i=1

∏d
j=1
j 6=i

Bxj
Axi

un

)

(Bxi
− θ∆tAxi

)Zi = Zi−1 − θ∆t

∏d
j=i+1 Axi

un for i = 1, ..., d

Z̃0 = Z0 +
1
2∆t

(

∏d
j=1 Bxj

F (Zd)−
∏d

j=1 Bxj
F (un)

)

(Bxi
− θ∆tAxi

) Z̃i = Z̃i−1 − θ∆t

∏d
j=i+1 Bxj

Axi
Zd for i = 1, ..., d

un+1 = Z̃d.

(3.13)

The new variables are defined as Zi :=
∏d

j=i+1 Bxj
Yi and Ẑi, Z̃i in an analogue way. Each implicit

step during the stabilising procedure just requires one LU -decomposition. If the matrices are not
time-dependent the d decomposition can be performed only once during the start-up phase, which
significantly reduces the run-time.

4. Stability of HOC-ADI schemes

In a first step we rewrite our schemes to one step schemes of the form

un+1 = Run.

Stability requires that ‖R‖ ≤ 1 holds. For a shorthand writing we introduce the following notation
Z0 = ∆t

∑

i 6=j Axi,xj
, Z = Z0 +∆tB

−1
x1

Ax1
+ ... +∆tB

−1
xd

Axd
, Qi = Bxi

− θ∆tAxi
for i = 1, ..., d

and P =
∏d

i=1 Q
−1
xi

Bxi
.

HDO scheme:

The first Euler step is
Y0 − un = Zun

and the stabilising steps are of the form

Yi − un = Q−1
xi

Bxi
(Yi−1 − un) for i = 1, ..., d.

This leads to a stability matrix of the form

RHDO = I + P Z.

HCS scheme:

The stability matrix for the HOC Craig-Sneyd scheme can be derived in a similar fashion with two
Euler and stabilising steps. We have for the explicit steps

Y0 − un = Zun, Ỹ0 = Y0 +
1

2
Z0(Yd − un).

And for the intermediate values

Yi − un = Q−1
xi

Bxi
(Yi−1 − un), Ỹi − un = Q−1

xi
Bxi

(Ỹi−1 − un).
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Recursive insertion we obtain the stability matrix

RHCS = I + P Z + 1
2 P Z0 Z.

HMCS scheme:

In the modified Craig-Sneyd scheme one additional Euler step is performed, thus we have

Y0 − un = Zun, Ŷ0 = Y0 + θZ0(Yd − un), Ỹ0 = ( 12 − θ)Z(Yd − un).

The intermediate values are given by

Yi − un = Q−1
xi

Bxi
(Yi−1 − un), Ỹi − un = Q−1

xi
Bxi

(Ỹ0 − un).

This leads to the following stability matrix

RHMCS = I + P Z + θP 2 Z0 Z + ( 12 − θ)P 2 Z2.

HHV scheme:

The two explicit steps are given by

Y0 − un = Zun, Ŷ0 = Y0 +
1
2Z0(Yd − un).

The intermediate values are given by

Yi − un = Q−1
xi

Bxi
(Yi−1 − un), Ỹi − Yd = Q−1

xi
Bxi

(Ỹ0 − Yd).

Inserting the values for the second stabilising step, we obtain

un+1 = Ỹd = (I + P Z)Yd + P (I + 1
2Z)(un − Yd).

From the HDO scheme we know that Yd = un + P Zun, thus

un+1 = (I + P Z)(I + P Z)un − P (I + 1
2Z)P Zun

and

RHHV = I + 2P Z − P 2 Z + 1
2 P

2 Z2.

In the following we perform a von Neumann stability analysis. Inserting Fourier modes into the
discretisation operators we obtain the eigenvalues

z̃i = −2qii
1
h2

i

(1− cosφi) for i = 1, ...d,

z̄i = 1− 1
6 (1− cosφi) for i = 1, ...d,

z0 = −
∑

i 6=j

qij
4

144
∆t

hihj
(8 sinφi − sin 2φi) (8 sinφj − sin 2φj) . (4.1)

The eigenvalues z̃i stem from qiiδ
2
xi

, Axi
respectively, z̄i from 1 +

h2

i

12 δ
2
xi

, Bxi
respectively, and z0

from all mixed derivatives. The angles φi are integer multipliers of 2π/mi with mi the dimension
of the grid in xi-direction for i = 1, ..., d. Hence we have the scalar factor

p =
∏

i

z̄i
z̄i − θ∆tz̃i

z = z0 +∆t

∑

i

z̃i
z̄i
.

Since z̄i 6= 0 we can rewrite p

p =
∏

i

1

1− θ∆tz̃i/z̄i
.
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Defining

zi := ∆tz̃i/z̄i (4.2)

one obtains

p =
∏

i

1

1− θzi
,

z = z0 + z1 + ...+ zd.

The stability matrices reduce to the following stability functions

rHDO(z0, z1, ..., zd) = 1 + p z,

rHCS(z0, z1, ..., zd) = 1 + p z + 1
2p z0 z,

rHMCS(z0, z1, ..., zd) = 1 + p z + θp2 z0 z +
(

1
2 − θ

)

p2 z2,

rHHV (z0, z1, ..., zd) = 1 + 2p z − p2 z + 1
2p

2 z2.

Please note that the stability functions of the HOC-ADI schemes have the same structure as for
the ’standard’ ADI schemes. This gives rise to the assumption that both approaches have the
same stability properties. Nevertheless the eigenvalues zi for i = 0, 1, ..., d stem from different
discretisations compared to the ones in the literature. In the following we want to use the results
from the literature as far as possible, c.f. [7, 9]. Therefore we formulate a Lemma, which states
some properties regarding the eigenvalues, which will be used later on in the proofs.

Lemma 1. Let z0, z1, ..., zd be given by (4.1), (4.2) respectively. Further let Q be positive semi-
definite, then

all zi are real, (4.3)

zi ≤ 0 for all i (4.4)

z ≤ 0, (4.5)

|z0| ≤
∑

i 6=j

√
zizj . (4.6)

Proof. The properties (4.3), (4.4) are clear. It remains to prove (4.5),(4.6). In order to show that
z ≤ 0 holds, we show the equivalent condition −z ≥ 0:

∑

i

2qii
∆t

h2
i

1− cosφi

1− 1
6 (1− cosφi)

+
∑

i 6=j

qij
4

144

∆t

hihj

(8 sinφi − sin 2φi) (8 sinφj − sin 2φj) ≥ 0

Defining xi :=
2
12

√
∆t

hi
(8 sinφi − sin 2φi), we rewrite the condition to

xTQx+
∑

i

qii4
∆t

h2
i

sin6 1
2φi

(

55− cos 2φi

cosφi + 5

)

≥ 0,

which is fulfilled since Q is positive semi-definite.
By the definiteness of Q it follows |qij | ≤ √

qii qjj . Further it holds

4
144

∣

∣ (8 sinφi − sin 2φi) (8 sinφj − sin 2φj)
∣

∣ ≤
√

2(1−cos φi)

1− 1
6 (1−cos φi)

2(1−cos φj)

1− 1
6 (1−cos φj)

. (4.7)

Applying the Cauchy-Schwarz and the triangle inequality we have

|z0| ≤
∑

i 6=j

|qij |
4

144

∆t

hihj

| (8 sinφi − sin 2φi) (8 sinφj − sin 2φj) |

≤
∑

i 6=j

√
qii qjj

4

144

∆t

hihj

| (8 sinφi − sin 2φi) (8 sinφj − sin 2φj) |

Using (4.7) we conclude |z0| ≤
∑

i 6=j

√
zizj .

9



4.1. Stability in 2 or 3 dimensions

Theorem 2.3 in [9] states the parameters for θ such that the ADI schemes (2.1) - (2.4) using second
order central finite difference stencils are unconditionally stable when applied to the PDE (1.1).
Since only the conditions in Lemma 1 are used in the proof, the same stability conditions also hold
for the HOC-ADI schemes:

Theorem 1. Consider diffusion equation (1.1) with periodic boundary condition and positive semi-
definite coefficient matrix Q in two or three spatial dimensions, then the HOC − ADI schemes
(3.6) - (3.9) derived in Section 3 are unconditionally stable with the following lower bound on θ:

HOC Douglas scheme (3.6)

θ ≥ 1

2
if d = 2 θ ≥ 2

3
if d = 3

HOC Craig-Sneyd scheme (3.7)

θ ≥ 1

2
if d = 2, 3

HOC modified Craig-Sneyd scheme (3.8)

θ ≥ 1

3
if d = 2 θ ≥ 6

13
if d = 3

HOC Hundsdorfer-Verwer scheme (3.9)

θ ≥ 1

2 +
√
2

if d = 2 θ ≥ 3

4 + 2
√
3

if d = 3

Proof. The proof follows directly from Lemma 1 and the analogue steps as in Theorem 2.3 in
[9].

4.2. Stability for arbitrary dimensions

In this Section we want to derive necessary conditions on θ for our HOC-ADI schemes. The stability
condition |r| ≤ 1 can be rewritten to

HOC Douglas scheme (3.6)

2p−1 + z ≥ 0, z ≤ 0, (4.8)

HOC Craig-Sneyd scheme (3.7)

p−1 + 1
2z0 ≥ 0, 2p−2 + p−1z + 1

2z0 z ≥ 0, (4.9)

HOC modified Craig-Sneyd scheme (3.8)

p−1 − θ(z − z0) +
1
2z ≥ 0, 2p−2 + p−1z + θz0 z + ( 12 − θ)z2 ≥ 0, (4.10)

HOC Hundsdorfer-Verwer scheme (3.9)

2p−1 − 1 + 1
2z ≥ 0, 2p−2 + (2p−1 − 1)z + 1

2z
2 ≥ 0. (4.11)

Theorem 2. Let d ≥ 2 be given. Then any HOC-ADI scheme (1.1) derived in Section 3 applied
to diffusion equations (1.1) with positive semi-definite coefficient matrix Q and periodic boundary
conditions needs to fulfill the following lower bound on θ for unconditionally stability:

HOC Douglas scheme (3.6)

θ ≥ 1

2
d(1− 1

d
)d−1,
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HOC Craig-Sneyd scheme (3.7)

θ ≥ max

{

1

2
,
1

2
d(1− 1

d
)d
}

,

HOC modified Craig-Sneyd scheme (3.8)

θ ≥ 1

2

d

1 + ( d
d−1 )

d−1
,

HOC Hundsdorfer-Verwer scheme (3.9)

θ ≥ 1

2
dak

where ak is the unique solution a ∈
(

0, 1
2

)

of 2a
(

1 + 1−a
d−1

)d−1

− 1 = 0.

Proof. We consider a coefficient matrix Q with qij = 1 for 1 ≤ i, j ≤ d. Please note that for this
choice Q is positive semi-definite. In the following we assume equal step sizes in all coordinate
directions h = h1 = ... = hd and choose equal angles φ = φ1 = ... = φd for all zi. Hence the
eigenvalues are given by

z − z0 = −2 d
∆t

h2

1− cosφ

1− 1
6 (1− cosφ)

z0 = −d (d− 1) 4
144

∆t

h2 (8 sinφ− sin 2φ)
2
.

The stability conditions (4.8)-(4.11) yield

(4.8) : θ ≥ −θ
z

2p−1
=

1

2

d (d− 1) θ 4
144

∆t

h2 (8 sinφ− sin 2φ)
2
+ 2dθ∆t

h2

1−cos φ

1− 1
6 (1−cos φ)

2

(

1 + 2θ∆t

h2

1−cos φ

1− 1
6 (1−cos φ)

)d

(4.9) : θ ≥ − 1
2θ

z0
p−1

=
1

2

d (d− 1) θ 4
144

∆t

h2 (8 sinφ− sin 2φ)
2

(

1 + 2θ∆t

h2

1−cos φ

1− 1
6 (1−cos φ)

)d

(4.10) : θ ≥ − 1
2θ

z

p−1 − θ(z − z0)
=

1

2

d (d− 1) θ 4
144

∆t

h2 (8 sinφ− sin 2φ)
2
+ 2dθ∆t

h2

1−cos φ

1− 1
6 (1−cos φ)

(

1 + 2θ∆t

h2

1−cos φ

1− 1
6 (1−cos φ)

)d

+ 2dθ∆t

h2

1−cos φ

1− 1
6 (1−cos φ)

(4.11) : θ ≥ − 1
2θ

z

2p−1 − 1
=

1

2

d (d− 1) θ 4
144

∆t

h2 (8 sinφ− sin 2φ)
2
+ 2dθ∆t

h2

1−cos φ

1− 1
6 (1−cos φ)

2

(

1 + 2θ∆t

h2

1−cos φ

1− 1
6 (1−cos φ)

)d

− 1

Defining α := 2θ∆t

h2

1−cos φ

1− 1
6 (1−cos φ)

we obtain

(4.8) : θ ≥ αd

2

(d− 1)
(

1
216 (5 + cosφ)(cos 3

2φ− 7 cos 1
2φ)

2
)

+ 1

(1 + α)d

(4.9) : θ ≥ αd

2

(d− 1)
(

1
216 (5 + cosφ)(cos 3

2φ− 7 cos 1
2φ)

2
)

(1 + α)d

(4.10) : θ ≥ αd

2

(d− 1)
(

1
216 (5 + cosφ)(cos 3

2φ− 7 cos 1
2φ)

2
)

+ 1

(1 + α)d + dα

(4.11) : θ ≥ αd

2

(d− 1)
(

1
216 (5 + cosφ)(cos 3

2φ− 7 cos 1
2φ)

2
)

+ 1

2(1 + α)d − 1
.

11



Please note that 1
216 (5 + cosφ)(cos 3

2φ− 7 cos 1
2φ)

2 ≤ 1 holds for all φ. Taking the supremum over
φ one obtains

(4.8) : θ ≥ αd2

2 (1 + α)
d

(4.9) : θ ≥ αd(d− 1)

(1 + α)d

(4.10) : θ ≥ d

2

dα

(1 + α)d + dα

(4.11) : θ ≥ d

2

dα

2(1 + α)d − 1
.

Maximization regarding the parameter α > 0 completes the proof.

In case of the HOC Craig-Sneyd scheme we also consider the case φi = 0 for all i > 1, such that
z2 = ... = zd = 0 and z0 = 0. The stability criterion (4.9) reduces to

2(1− θz1)
2 + (1− θz1) z1 ≥ 0 ⇔ 2 + (1− 2θ) z1 ≥ 0.

This leads to the lower bound θ ≥ 1
2 .

We see that the necessary condition on θ coincides with the sufficient condition in two or three
spatial dimensions.

5. Combination technique

Solving high dimensional equations like (1.1) on a full tensor based grid with O(h−d) grid points is
an extensive work. Although ADI or HOC-ADI schemes can reduce the computationally workload
significantly, there will be a limit on the number of nodes as the available memory is finite.
The sparse grid approach, developed by Bungartz and Griebel in [13] and Zenger in [14], reduces
the number of grid points to O(h−1 log(h−1)d−1) by splitting the full grid to a sequence of sub-grids.
These grids can be efficiently constructed with help of the combination technique, which solves the
problem on a sequence of anisotropic grids. As the sub-problems can be computed independently,
the method is embarrassingly parallel and can easily been used on a cluster of computers or on
GPUs [15].

us
n =

d−1
∑

q=0

(−1)q
(

d− 1

q

)

∑

|l|
1
=n−q

ul,

The sparse grid solution on refinement level n is denoted by us
n. The numerical sub-solution ul

is computed on a grid with step sizes h = (h1, h2, ..., hd) =
(

2−l1 · c1, 2−l2 · c2, ..., 2−ld · cd
)

, with
multi-index l = (l1, l2, ..., ld) and grid length ci in coordinate direction i for i = 1, ..., d. The sum
of l is defined by |l|1 =

∑

i li.

Figure 1 shows the sub-grids on level 5 and 4 in the two dimensional case. The sub-solutions
on level four are subtracted from level five solutions to construct the sparse grid solution. The
combination technique exploits the error splitting structure of the numerical sub-solution, such
that low order terms cancel out. In the case of a scheme with a rate of convergence p, the error is
assumed to be of the form

u(xh)− ul =
d

∑

k=1

∑

{j1,...,jk}
⊆{1,...,d}

wj1,...jk(.;hj1 , ..., hjk)h
p
j1
· · · hp

jk
,

where u(xh) is the analytical solution on the discrete grid xh. The coefficient functions w are
assumed to be bounded by some constant K, such that |w| ≤ K. Then we can expect under
suitable regularity assumptions a pointwise rate of convergence O(hp log2(h

−1)d−1). Bungartz et
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Figure 1: Sub-grids on level 5, 4 and combined grid.

al. [16] proved with help of Fourier series of discrete and semi-discrete solutions for the 2-d Laplace
equation that a second order central difference scheme exhibits this error structure. Reisinger [17]
recently extended the framework to a wider class of equations and linear finite difference schemes.
He notes the following key properties, which have to be fulfilled:

1. The scheme has a truncation error of the form

(L− Lh)u(xh) =

d
∑

k=1

∑

{j1,...,jk}
⊆{1,...,d}

τj1,...jk(.;hj1 , ..., hjk)h
p
j1
· · · hp

jk
,

where L is the elliptic operator of equation (1.1) and Lh its discrete approximation from
Section 3.

2. Stability of the discretisation scheme.

3. Sufficiently smooth initial data and compatible boundary data, such that the mixed deriva-
tives of required order are bounded.

In Section 3 and 4 we have already seen that the semi-discretisation has an truncation error of the
form, c.f. (3.4)

(L− Lh)u(xh) = h4
1τ1(xh, h1) + ...+ h4

dτd(xh, hd) +
∑

i 6=j

h4
ih

4
jτi,j(xh, hi, hj).

Please note that the second approach (3.5) does not have this error structure, hence the error
cancellation is disturbed and leads to a lower rate of convergence.

Since we have already derived bounds on θ to ensure unconditional stability, we can expect a
pointwise rate of convergence O(h4 log2(h

−1)d−1) for sufficiently smooth initial data. However this
result is only valid for all points which are not affected by the interpolation technique. Since there
is only one interior point, which belongs to all sub-grids, this result seems to be rather limiting. It
was shown in [18] that if a suitable interpolation technique is applied, the convergence result can
be extended to the entire domain. Following [18] we use multivariate cubic spline interpolation.
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6. Numerical example

In this Section we validate our theoretical results with numerical experiments. We consider the 2-d
diffusion equation on the unit cube Ω = [0, 1]2, which was also used as a test example in [9, 19].
The coefficient matrix Q is given by

Q = 0.025

(

1 2
2 4

)

.

The initial value is chosen to be

u(x1, x2, 0) = e−4
(

sin2(πx1)+cos2(πx2)
)

.

We apply periodic boundary conditions, such that

u(x1 ± 1, x2 ± 1, t) = u(x1, x2, t)

holds. Figure 2 shows the initial value and the solution at t = 1. In a first experiment we
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1
0

0.5

1

x1
x2 0
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1

0

0.5

1
0

0.1

0.2

x1
x2

Figure 2: Initial condition and solution at t = 1.

numerically evaluate the order of convergence in time of our four HOC-ADI schemes. The space
step sizes are fixed at h1 = h2 = 2−5. In order to measure the error, we use the ℓ2 vector norm
and compute

errtℓ2 = ‖u(1)− uh‖ℓ2 ,
where u(1) is the exact solution of the semi-discrete system u′(t) = Fu(t), given in terms of the
propagator via u(t) = etFu(0). The simulation results in Figure 3 are in line with the theoretical
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Figure 3: ℓ2 error for ∆t → 0.

results. On the left hand plot the θ value has been set to its lower bound. The HOC DO scheme
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exhibits order one in time, while the other three schemes are of order two. All schemes show a
stable behaviour. If θ is chosen to be larger the accuracy is slightly reduced due to damping effects.
Here the HOC Craig-Sneyd scheme only exhibits order one since θ 6= 1

2 . In the next experiment
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Figure 4: ℓ2 error for n → ∞, h → 0 respectively.

we test the rate of convergence of the spatial discretisation. The time step is fixed at ∆t = 1/100
and the space error is

errsℓ2 =
‖uref − uh‖ℓ2

‖uh‖ℓ2
,

where uref is a highly accurate reference solution at time level t = 1 with step sizes ∆t = 1/100,
h1 = h2 = 2−11. The left plot shows the numerical solution uh of the sparse grid solution, while
the second plot shows the solution computed with the HOC-ADI schemes. As all schemes use the
same spatial discretisation, the errors are almost identical. The order of convergence is in line
with the theoretical order of O(h4 log2(h

−1)), O(h4) respectively. In Section 5 it was motivated
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Figure 5: Number of grid points versus accuracy in logarithmic scale.

that the number of grid points can be significantly reduced with the help of sparse grids and
the combination technique. In Figure 5 we compare the number of grid points to the obtained
accuracy. If we take them as a measure of memory consumption and computation time, the sparse
grid solution outperforms the standard full grid approach for sufficiently high level. The workload
can be further reduced by not only considering space sparse grids, but by constructing time-space
sparse grids. Since all schemes are unconditionally stable for appropriate chosen θ, one can simply
consider time as an additional variable.
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7. Conclusion and outlook

In this article we derived HOC-ADI schemes for diffusion equations. We were able to prove that
the stability of the schemes coincides with their second order central differences counterpart. In the
case of two and three spatial dimensions conditions guaranteeing unconditional stability could be
found. For arbitrary dimensions necessary conditions on θ were given. Furthermore we showed that
HOC schemes derived from one-dimensional problems have an error structure, which fits into the
framework of the combination technique. With the help of sparse grids the memory consumption
and computational workload could be reduced. Based on our theoretical findings we validated our
results and tested the constructed schemes for a 2-d diffusion problem.

In the next step we plan to use these schemes for convection-diffusion problems arising in compu-
tational finance.
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