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Abstract This Chapter introduces parameterized, or parametric, Model Order Re-
duction (pMOR). The Sections are offered in a prefered order for reading, but can
be read independently. Section 4.1, written by Jorge Fernández Villena, L. Miguel
Silveira, Wil H.A. Schilders, Gabriela Ciuprina, Daniel Ioan and Sebastian Kula,
overviews the basic principles for pMOR. Due to higher integration and increasing
frequency-based effects, large, full Electromagnetic Models (EM) are needed for ac-
curate prediction of the real behavior of integrated passives and interconnects. Fur-
thermore, these structures are subject to parametric effects due to small variations
of the geometric and physical properties of the inherent materials and manufactur-
ing process. Accuracy requirements lead to huge models, which are expensive to
simulate and this cost is increased when parameters and their effects are taken into
account. This Section introduces the framework of pMOR, which aims at generating
reduced models for systems depending on a set of parameters.
Section 4.2, written by Gabriela Ciuprina, Alexandra Ştefănescu, Sebastian Kula
and Daniel Ioan, provides robust procedures for pMOR. This Section proposes a ro-
bust specialized technique to extract reduced parametric compact models, described
as parametric SPICE-like netlists, for long interconnects modeled as transmission
lines with several field effects such as skin effect and substrate losses. The tech-
nique uses an EM formulation based on partial differential equations (PDE), which
is discretized to obtain a finite state space model. Next, a variability analysis of the
geometrical data is carried out. Finally, a method to extract an equivalent parametric
circuit is proposed.
Section 4.3, written by Michael Striebel, Roland Pulch, E. Jan W. ter Maten, Zoran
Ilievski, and Wil H.A. Schilders, covers ways to efficiently determine sensitivity of
output with respect to parameters. First direct and adjoint techniques are consid-
ered with forward and backward time integration, respectively. Here also the use of
MOR via POD (Proper Orthogonal Decomposition) is discussed. Next, techniques
in Uncertainty Quantification are described. Here pMOR techniques can be used
efficiently.
Section 4.4, written by Kasra Mohaghegh, Roland Pulch and E. Jan W. ter Maten,
provides a novel way in extending MOR to Differential-Algebraic Systems. Here
new MOR techniques for reducing semi-explicit system of DAEs are introduced.
These techniques are extendable to all linear DAEs. Especially pMOR techniques
are exploited for singularly perturbed systems.

4.1 Parametric Model Order Reduction

1Model Order Reduction (MOR) techniques are a set of procedures which aim
at replacing a large-scale model of a physical system by a lower dimensional model
which exhibits similar behavior, typically measured in terms of its input-output re-

1 Section 4.1 has been writen by: Jorge Fernández Villena, L. Miguel Silveira, Wil H.A. Schilders,
Gabriela Ciuprina, Daniel Ioan and Sebastian Kula. For additional topics and applications see also
the Ph.D.-Thesis of the last author [19].
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sponse. Reducing the order or dimension of these models, while guaranteeing that
the input-output response is accurately captured, is crucial to enable the simulation
and verification of large systems [1–3, 33]. Since the first attempts in this area [31],
the methods for linear model reduction have greatly evolved and can be broadly
characterized into two types: those that are based on subspace generation and pro-
jection methods [12, 27], and those based on balancing techniques [25, 28] (some-
times also referred to as Singular Value Decomposition (SVD)-based [2]). Hybrid
techniques that try to combine some of the features of each family have also been
presented [17, 18, 20, 30].

Although previously ignored when analyzing or simulating systems, parameter
variability can no longer be disregarded as it directly impacts system behavior and
performance. Accounting for the effects of manufacturing or operating variability,
such as geometric parameters, temperature, etc., leads to parametric models whose
complexity must be tackled both during the design and verification phases. For this
purpose, Parametric MOR (pMOR, also known as Parameterized MOR) techniques
that can handle parameterized descriptions are being considered as essential in the
determination of correct system behavior. The systems generated by pMOR proce-
dures must retain the ability to model the effects of both geometric and operating
variability, in order to accurately predict behavior and optimize designs.

Several pMOR techniques have been developed for modeling large-scale param-
eterized systems. Although the first approaches were based on perturbation based
techniques, such as [16, 24], the most common and effective ones appear to be ex-
tensions of the basic projection-based MOR algorithms [27, 30] to handle param-
eterized descriptions. An example of these are multiparameter moment-matching
pMOR methods [8] which can generate accurate reduced models that capture both
frequency and parameter dependence. The idea is to match, via different approaches,
generalized moments of the parametric transfer function, and build an overall pro-
jector. Sample-based techniques have been proposed in order to contain the large
growth in model order for multiparameter, high accuracy systems [29, 37]. They
rely on sampling the joint multi-dimensional frequency and parameters space. This
approach allows the inclusion of a priori knowledge of the parameter variation, and
provides some error estimation. However, the issue of sample selection becomes
particularly relevant when done in a potentially high-dimensional space.

4.1.1 Representation of Parametric Systems

In order to include parametric systems inside an efficient simulation flow, the
parametric dependence should be explicit. This means that it must be possible to
access the parameter values and modify them inside the same representation, while
avoiding, if possible, re-computing the parametric systems, i.e. to perform another
extraction.

Parameters usually affect the geometrical or electrical properties of the layout,
and thus, most of these variations can be represented as modifications of the values
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of the system matrices inside a state-space descriptor. For this reason, in most cases,
the input and output ports are not affected by these variations (this of course depends
on how the system is built), and in the case when they are in fact affected, these
variations can be shifted to the inner states. The variability leads to a dependence
of the extracted circuit elements on several parameters, of electrical or geometrical
origin. This dependence results in a parametric state-space system representation,
which in descriptor form can be written as

C(λ1, . . . ,λP) ẋ(λ1, . . . ,λP)+G(λ1, . . . ,λP) x(λ1, . . . ,λP) = Bu,
y(λ1, . . . ,λP) = Lx(λ1, . . . ,λP),

(4.1)

where C,G ∈ Rn×n are again, respectively, the dynamic and static matrices, B ∈
Rn×p is the matrix that relates the input vector u ∈ Rp to the inner states x ∈ Rn

and L ∈ Rq×n is the matrix that links those inner states to the outputs y ∈ Rq. The
elements of the matrices C and G, as well as the states of the system x, depend on
a set of P parameters λ = [λ1,λ2, . . . ,λP] which model the effects of the mentioned
uncertainty. This time-domain descriptor yields a parametric dependent frequency
response modeled via the transfer function

H(s,λ1, . . . ,λP) = L (sC(λ1, . . . ,λP)+G(λ1, . . . ,λP))
−1 B (4.2)

for which we seek to generate a reduced order approximation, able to accurately
capture the input-output behavior of the system for any point in the parameter space

Ĥ(s,λ1, . . . ,λP) = L̂ (sĈ(λ1, . . . ,λP)+ Ĝ(λ1, . . . ,λP))
−1 B̂. (4.3)

In general, one attempts to generate a reduced order model whose structure is, as
much as possible, similar to the original, i.e. exhibiting a similar parametric de-
pendence. The ”de facto” standard used in most of the literature for representing a
parametric system is based on a Taylor series expansion with respect to the param-
eters (shown here for first order in the frequency domain):

((C0 +C1λ1 + . . .+CPλP)s+(G0 +G1λ1 + . . .+GPλP)) x(s,λ ) = Bu(s),
y(s,λ ) = Lx(s,λ ), (4.4)

where G0 and C0 are the nominal values of the matrices, whereas Gi and Ci are
the sensitivities with respect to the parameters. Novel extraction methodologies can
efficiently generate such sensitivity information [5, 26].

A nice feature of this representation is that this explicit parameter dependence
allows to obtain a reduced, yet similar representation when a projection scheme is
applied

((Ĉ0 +Ĉ1λ1 + . . .+ĈPλP)s+(Ĝ0 + Ĝ1λ1 + . . .+ ĜPλP)) x(s,λ ) = B̂u(s),
y(s,λ ) = L̂ x(s,λ ),

(4.5)

where Ĉi =V TCiV , Ĝi =V T GiV , B̂ =V T B and L̂ = LV .
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Some questions may be raised about the order neccessary for an accurate repre-
sentation of the parametric model. This depends on the range of variation and the
effect of each parameter, and therefore is not trivial to ascertain.

However, some literature presents interesting results in this area [4, 6], with the
conclusion that low order (first order in most cases) Taylor series are a good and
useful approximation to the real parametric system. As it will be shown later, this
statement has important consequences from the point of view of some parametric
algorithms, especially those which rely on moment matching techniques.

4.1.2 Reduction of Parametric Systems

The most straight-forward approach for the reduction of such a parametric sys-
tem is to apply nominal techniques. A first possibility is to apply nominal reduction
methodologies on the perturbed system. This means that the model in (4.4) is eval-
uated for a set of parameter values. This model is no longer parametric, and thus
standard reduction methodologies can be applied on it. However, once a ”perturbed”
system is evaluated and reduced, the parameter dependence is lost, and thus the re-
sult is a system which is no longer parametric, and therefore only accurate for a set
of parameters.

A slightly different approach that overcomes this issue is to apply the projec-
tion on the Taylor series approximation. In this case, depending on the framework
applied, we can distinguish two cases:

• First, in a projection methodology, the projector is computed from the nominal
system, and later applied on the nominal and on the sensitivity matrices, obtain-
ing a model as in (4.5).

• Second, in the case of Balanced Truncation realizations, the computation of the
Gramians is done via the nominal system, but the balancing and the truncation is
done both on the nominal matrices and on the sensitivities.

These methods, although not oriented to accurately capture the behavior of the
system under variation of the parameters, can yield good approximations in cases
of small variations or mild effect of the parameters. However, they are not reliable,
and their performance heavily depends on the system.

4.1.2.1 Pertubation Based Parametric Reduction

The first attemps to handle and reduce systems under variations were focused on
perturbation techniques.

One of the earliest attempts to address this variational issue was to combine per-
turbation theory with moment matching MOR algorithms [24] into a Perturbation-
based Projector Fitting scheme. To model the variational effects of the intercon-
nects, an affine model was built for the capacitance and conductance matrices,
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G(λ1, . . . ,λP) = G0 +λ1G1 + . . .+λPGP,
C(λ1, . . . ,λP) =C0 +λ1C1 + . . .+λPCP,

(4.6)

where now C0 and G0 are the nominal matrix values, i.e. the value of the matri-
ces under no parameter variation, and Ci and Gi, i = 1, . . . ,P, are their sensitivi-
ties with respect to those parameters. For small parameter variations, the projection
matrix obtained via a moment-matching type algorithm such as PRIMA also may
show small perturbations. To capture such effect, several samples in the parameter
space were drawn G(λ1, . . . ,λP) and C(λ1, . . . ,λP), and for each sample PRIMA
was applied resulting a projector. A fitting methodology was later applied in order
to determine the coefficients of a parameter dependent projection matrix

V (λ1, . . . ,λP) =V0 +λ1V1 + . . .+λPVP. (4.7)

To obtain a reduced model, both the parametric system and the projector are evalu-
ated with the parameter set. Projection is applied and the reduced model obtained.
However, this reduced model is only valid for the used parameter set. If a reduced
model for a different parameter set is needed, the evaluation and projection must be
applied again, what makes hard to include this method in a simulation environment.

Another method combined perturbation theory with the Truncated Balanced Re-
alization (TBR) [25, 28] framework. A perturbation matrix was theoretically ob-
tained starting from the affine models shown in (4.6) [16]. This matrix was applied
via a congruence transformation over the Gramians to address the variability, ob-
taining a set of perturbed Gramians. These in turn were used inside a Balancing
Truncation procedure. As with most TBR-inspired methods, this one is also expen-
sive to compute and hard to implement. The above methods have obvious draw-
backs, perhaps the most glaring of which is the heavy computation cost required for
obtaining the reduced models and the limitation that comes from perturbation based
approximations, possibly leading to inaccuracy in certain cases.

4.1.2.2 Multi-Dimensional Moment Matching

Most of the techniques in the literature extend the moment matching paradigm
[12, 27, 34] to the multi-dimensional case. They usually rely on the implicit or ex-
plicit matching of the moments of the parametric transfer function (4.2). These mo-
ments depend not only on the frequency, but on the set of parameters affecting the
system, and thus are denoted as multi-dimensional or multi-parameter moments.

This family of algorithms assume that a model based on the Taylor Series expan-
sion can be used for approximating the behavior of the conductance and capacitance,
G(λ ) and C(λ ), expressed as a function of the parameters

G(λ1, . . . ,λP) = ∑∞
i1=0 . . .∑

∞
iP=0 Gi1,...,iP λ i1

1 . . .λ iP
P ,

C(λ1, . . . ,λP) = ∑∞
i1=0 . . .∑

∞
iP=0 Ci1,...,iP λ i1

1 . . .λ iP
P ,

(4.8)
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where Gi1,...,iP and Ci1,...,iP are the multidimensional Taylor series coefficients. This
Taylor series can be extended up to the desired (or required) order, including cross
derivatives, for the sake of accuracy. If this formulation is used, the structure for
parameter dependence may be maintained if the projection is not only applied to the
nominal matrices, but to the sensitivities as well.

Multiple methodologies follow these basic premises, but they differ in how and
which such moments are generated and used in the projection stage.

The Multi-Parameter Moment Matching method [8] relies on a single-point
expansion of the transfer function (4.2) in the joint space of the frequency s and the
parameters λ1, . . . ,λP, in order to obtain a power series in several variables,

x(s,λ1, . . . ,λP) =
∞

∑
k=0

k

∑
ks=0

k−ks

∑
k1=0

. . .
k−ks−k1....−kP−1

∑
kP=0

Mk,ks,k1,...,kP sks λ k1
1 . . .λ kP

P , (4.9)

where Mk,ks,k1,...,kP is a k-th (k = ks + k1 + . . .+ kP) order multi-parameter moment
corresponding to the coefficient term sks λ k1

1 . . .λ kP
P .

A basis for the subspace spanned from these moments can be built and the result-
ing orthonormal basis V can be used as a projection matrix for reducing the original
system

colspanV = colspan{M00...0, . . . ,Mk,ks,k1,...,kP}. (4.10)

This parametrized reduced model matches up to the k-th order multi-parameter mo-
ment of the original system.

However, the main inefficiencies of this method are twofold:

• On one hand, this method generates pure multi-dimensional moments (see equa-
tion (4.9)), which means that the number of moments grows dramatically (all the
possible combinations for a given order must be done) when the number of pa-
rameters is increased, even for a modest number of moments for each parameter.
For this reason, the reduced model size grows exponentially with the number of
parameters and the moments to match.

• On the other hand, the process parameters fluctuate in a small range around their
nominal value, whereas the frequency range is much larger, and a higher number
of moments are necessary in order to capture the global response for the whole
frequency range. This algorithm treates the frequency as one parameter more,
which turns to be highly innefficient.

An improvement of the previous approach is to perform a Low-Rank Approxi-
mation of the multi-dimensional moments [21]. An SVD-based low-rank approxi-
mation of the generalized moments, G−1Gi and G−1Ci (which are related to the mul-
tidimensional moments), is applied. Then, separate subspaces are built from these
low-rank approximations for every parameter. The global projector is obtained from
the orthonormalization of the nominal moments (computed via Arnoldi for exam-
ple), and the moments of the subspaces related to the parameters. The projector is
applied on the Taylor Series approximation to obtain a reduced parametric model.
This approach, although providing more flexibility and improving the matching, re-



106 Chapter 4 Authorgroup

quires the low-rank SVD of the generalized moments, which comes at a cost of
O(n3), i.e., limiting its applicability to small-medium size problems.

A different multi-dimensional moment matching approach was also presented
in [15], called Passive Parameterized Time-Domain Macro Models. It relies on
the computation of several subspaces, built separately for each dimension, i.e. the
frequency s (to which respect ks block moments are obtained in a basis denoted as
Qs) and the parameter set λ (generating the basis Qi which match kλi block mo-
ments with respect to parameter λi). These independent subspaces can be efficiently
computed using standard nominal approaches, e.g. PRIMA. Once all the subspaces
have been computed, an orthonormal basis can be obtained so that its columns span
the joint of all subspaces. For example, in the affine Taylor Series representation,
using Krylov spaces Kr(A,B,k) (matrix A, multi-columns vector B, moments k):

colsp{Qs} ≡ Kr{A,R,ks} with
{

A =−G−1C,
R = G−1B

colsp{Qi} ≡ Kr{Ai,Ri,ki} with
{

Ai =−(G+ sC)−1(Gi + sCi),
Ri =−(G+ sC)−1B

V = QR [ Qs Q1 . . . Qi . . .QP],

(4.11)

where subscript i refers to the i-th parameter λi, and the parameter related moments
have been generalized to any shifted frequency s. QR stands for the QR-factorization
based orthonormalization. Applying the resulting matrix V in a projection scheme
ensures that the parametric Reduced Order Model matches ks moments of the origi-
nal system with respect to the frequency, and ki moments with respect to the param-
eter λi. If the cross-term moments are needed for accuracy reasons, the subspace
that spans these moments can also be included by following the same scheme.

A different approach is explored in CORE [22]. Here an explicit moment match-
ing with respect to the parameters is first done, via Taylor-series expansion, followed
by an implicit moment matching in frequency (via projection). The first step in done
by expanding the state space vector x and the matrices G and C in its Taylor Series
only with respect to the parameters,

x(s,λ ) =
∞

∑
i1=0

. . .
∞

∑
iP=0

xi1,...,iP(s) λ i1
1 . . .λ iP

P , (4.12)

G(λ ) = ∑∞
i1=0 . . .∑

∞
iP=0 Gi1,...,iP λ i1

1 . . .λ iP
P ,

C(λ ) = ∑∞
i1=0 . . .∑

∞
iP=0 Ci1,...,iP λ i1

1 . . .λ iP
P ,

(4.13)

where G0,...,0,C0,...,0 and x0,...,0(s) are the nominal values for the matrices and the
states vector, respectively. The remaining Gi1,...,iP , Ci1,...,iP and xi1,...,iP are the sen-
sitivities with respect to the parameters. Explicitly matching the coefficients of the
same powers leads to an augmented system, in which the parametric dependence is
shifted to the output related matrix LA:
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CA =




C0
C1 C0
... 0 C0

Ci 0 0 C0
...

. . .



, BA =




B
0
...
0
...



,

GA =




G0
G1 G0
... 0 G0

Gi 0 0 G0
...

. . .



, LA = [L λ1L · · · λiL · · · ].

xA =




x0
x1
...
xi
...



, (4.14)

The second step applies a typical nominal moment matching procedure (e.g. PRIMA
[27]) to reduce this augmented system. This is possible because the matrices GA, CA
and BA used to build the projector do not depend on the parameters. The projector is
latter applied on all the matrices of the augmented system in (4.14). Furthermore, the
Block Lower Triangular structure of the system matrices GA and CA can be exploited
in recursive algorithms to speed-up the reduction stage. This two-step approach al-
lows to increase the number of the matched multi-parameter moments with respect
to other techniques, for a similar reduced order. In principle, in spite of the larger
size of the augmented model, the order of the reduced system can be much smaller
than in the previous cases. On the other hand, the structure of the dependence with
respect to the parameters is lost, since the parametric dependence is shifted to the
later projected output related L matrix. The projection mixes all the parameters, los-
ing the possibility of modifying them without need of recomputation. This method
also has the disadvantage that the explicit computation of the moments with respect
to the parameters can lead to numerical instabilities. The method, although stability-
preserving, is unable to guarantee passivity preservation.

Some algorithms [23, 37] try to match the same moments as CORE, but in a
more numerical stable and efficient fashion, using Recursive and Stochastic Ap-
proaches. They generalize the CORE paradigm up to an arbitrary expansion order
with respect to the parameters, and apply an iterative procedure in order to compute
the frequency moments related to the nominal matrices, and the ones obtained from
the parametric part (this means, to obtain a basis for each block of states xi in (4.14),
but without building such system).

colspan{V0} ≡ Kr{A,R,q0}=
[
V 0

0 V 1
0 . . . V q−1

0

]
,

with A =−(G0 + skC0)
−1 C0, R = (G0 + skC0)

−1 B,

colspan{Vi}=
[
V 0

i V 1
i . . .V j

i . . .
]
,

with V j
i =−(G0 + skC0)

−1
(

GiV
j

0 + skCiV
j−1

0 +C0V j−1
i

)
,

Gi = G0...010...0,
Ci =C0...010...0,

(4.15)
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where sk is the expansion point for the Krylov subspace generation, and V j
i is the

j-th moment with respect to the frequency for the i-th parameter. This general re-
cursive scheme, here presented for first order with respect to the parameters, can be
extended to any (independent) order with respect to each parameter.

The technique in [37] uses a tree graph scheme, in which each node is associated
to a moment, and the branches represent recursive dependences among moments.
Each tree level contains all the moments of the same multi-parameter order. On this
tree, a random sampling approach is used to select and generate some representative
moments, preventing the exponential growth.

On the other hand, the technique in [23] advocates for an exhaustive computation
at each parameter order. This means that all the moments for zero-parameter order
(i.e. nominal), are computed until no rank is added. The same procedure is repeated
for first order with respect to all parameters. If the model is not accurate, more order
with respect to the parameters can be added.

Notice that both schemes provide a large degree of flexibility, as different orders
with respect to each parameter and with respect to the frequency can be applied.
In both approaches, the set of all the moments generated is orthonormalized, so
an overall projector is obtained. This is used inside a congruence transformation
on the Taylor Series approximation (4.4), to generate a reduced model in the same
representation. Another advantage of these methodologies is that the passivity is
PRIMA-like preserved, and the basis is built in a numerical stable fashion.

4.1.2.3 Multi-Dimensional Sampling

Another option present in the literature relies on sampling schemes for capturing
the variational nature of the parametric model. They are applied for the building of
a projector to later apply congruence tranformation on the original model.

A simple generalization of the multi-point moment matching framework [11] to a
multi-dimensional space can be done via Variational Multi-Point Moment Match-
ing. Small research has been devoted to this family of approaches, but one algorithm
can be found in [21]. The flexibility it provides is also one of its main drawbacks,
as the methodology can be applied in a variety of schemes, from a single-frequency
multi-parameter sampling to a pure multi-dimensional sampling. From these expan-
sion points, several moments are computed following a typical moment matching
scheme. The orthonormalization of the set of moments provides the overall pro-
jector which is applied in a congruence reduction scheme. However, it is hard to
determine the number and placement of samples, and the number of moments to
match with respect to the frequency and to the parameters.

Another scheme, which overcomes some of the issues of the previous approach
is the Variational Poor Man’s TBR [29]. This approach is based on the statistical
interpretation of the algorithm (see [30] for details) and enhances its applicability to
multiple dimensions. In this interpretation, the Gramian Xλ is seen as a covariance
matrix for a Gaussian variable xλ , obtained by exciting the (presumed stable) system
with u involving white noise. Rewriting the Gramian as
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Xλ =
∫

Sλ

∫ ∞

−∞
( jωCλ +Gλ )

−1 BBT ( jωCλ +Gλ )
−H p(λ )dωdλ , (4.16)

where p(λ ) is the probability density of λ in the parameter space, Sλ . Just as in
PMTBR, a quadrature rule can be applied in the overall parameter plus frequency
space to approximate the Gramian via numerical computation. But in this case the
weights are chosen taking into account the Probability Density Function (PDF) of λi
and the frequency constraints. This can be generalized to a set of parameters, where
a joint PDF of all the parameters can be applied on the overall parameter space, or
the individual PDF of each parameter can be used. This possibility represents an in-
teresting advantage, since a-priori knowledge of the parameters and the frequency
can be included in order to constrain the sampling and yield a more accurate reduced
model. The result of this approach is an algorithm which generates Reduced Order
Models whose size is less dependent on the number of parameters. In the determin-
istic case, an error analysis and control can be included, via the eigenvalues of the
SVD. However, in the variational case only an expected error bound can be given:

E{‖x̂λ (0)− xλ (0)‖2
2} ≤

n

∑
i=r+1

σ2
i , (4.17)

where r is the reduced order and n the original number of states. On the other hand,
in this method the issue of sample selection, already an important one in the deter-
ministic version, becomes even more relevant, since the sampling must now be done
in a potentially much higher-dimensional space.

4.1.3 Practical Consideration and Structure Preservation

Inside the pMOR realm, the moment matching algorithms based on single point
expansion may not be able to capture the complete behavior along the large fre-
quency range required for common RF systems, and may lead to excessively large
models if many parameters are taken into account. Therefore the most suitable tech-
niques for the reduction seem to be the multipoint ones. Among those techniques,
Variational PMTBR [29] offers a reliable framework with some interesting features
that can be exploited, such as the inclusion of probabilistic information and the
trade off between size and error, which allows for some control of the error via
analysis of the singular values related to the dropped vectors. On the other hand, it
requires a higher computational effort than the multi-dimensional moment match-
ing approaches, as it is based on multidimensional sampling schemes and Singular
Value Decomposition (SVD), but the compression ratio and reliability that it offers
compensates this drawback. The effort spent in the generation of such models can
be amortized when the reduced order model generated is going to be used multiple
times. This is usually the case for parametric models, as the designer may require
several evaluations for different parameter sets (e.g. in the case of Monte Carlo
simulations, or optimization steps). Furthermore, this technique offers some extra
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Fig. 4.1 Two-level hierarchy: Domain level (given by the numbers, 1 and 2) and Variable level
(voltages vk and currents ik).

advantages when combined with block structured systems [14], such as the block-
wise error control with respect to the global input-output behaviour, which can be
applied to improve the efficiency of the reduction. This means that each block can
be reduced to a different order depending on its relevance in the global response.

An important point to recall here is that the block division may not reflect dif-
ferent sub-domains. Different sub-divisions can be done to address different hierar-
chical levels. For instance, it may be interesting to divide the complete set in sub-
domains connected by hooks, which generates a block structured matricial represen-
tation. But inside each block corresponding to a sub-domain, another block division
may be done, corresponding either to smaller sub-domains or to a division related
to the different kind of variables used to model each domain (for example, in a sim-
ple case, currents and voltages). This variable related block structure preservation
has already been advocated in the literature [13] and may help the synthesis of and
equivalent SPICE-like circuit [35] in the case that is required. Figure 4.1 presents a
more intuitive depiction of the previous statements, in which a two domain example
is shown with its hierarchy, and each domain has also some inner hierarchy related
to the different kind of variables (in this case, voltages and currents, but it can also
be related to the electric and magnetic variables, depending on the formulation and
method used for the generation of the system matrices).

The proposed flow starts from a parametric state-space descriptor, such as (4.1),
which exhibits a multi-level hierarchy, and a block parametric dependence (as dif-
ferent parameters may affect different sub-domains). The matrices of size n have K
domains, each with size ni, n = ∑i ni. For instance, for the static part,

G =




G11(λ{11}) . . . G1K(λ{1K})
...

. . .
...

GK1(λ{K1}) . . . GKK(λ{KK})


 , (4.18)

where λ{i j} is the set of parameters affecting Gi j ∈ Rni×n j . Then we perform the
multi-dimensional sampling, both in the frequency and the parameter space. For
each point we generate a matrix or vector z j (a matrix in case B includes multiple
inputs)

z j = (C(λ j)s j +G(λ j))
−1 B, (4.19)
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where C(λ ) and G(λ ) are the global matrices of the complete domain, with n de-
grees of freedom (dofs). To generate the matrix z j ∈ Rn×m, with m the number
of global ports, we can apply a direct procedure, meaning a factorization (at cost
O(nβ ), with 1.1 ≤ β ≤ 1.5 for sparse matrices) and a solve (at cost O(nα), with
1 ≤ α ≤ 1.2 for sparse matrices). Novel sparse factorization schemes can be ap-
plied to improve the efficiency [9, 10]. In cases when a direct method may be too
expensive iterative procedures may be used [32].

The choice of the sampling points may be an issue, as there is no clear scheme or
procedure that is known to provide an optimal solution. However, as stated in [29],
the accuracy of the method does not depend on the accuracy of the quadrature (and
thus in the sampling scheme), but on the subspace generated. For this reason, a good
sampling scheme is to perform samples in the frequency for the nominal system, and
around these nominal samples, perform some parametric random sampling in order
to capture the vectors that the perturbed system generates. The reasoning behind this
scheme is that for small variations, such as the ones resulting from process param-
eters, the subspace generated along the frequency is generally more dominant than
the one generated by the parameters. In addition, under small variations, the nomi-
nal sampling can be used as a good initial guess for an iterative solver to generate
the parametric samples. For the direct solution scheme, to generate P samples (and
thus Pm vectors) for the global system has a cost of O(Pnα +Pnβ ). Note that since
m is the number of global (or external) ports, the number of vectors is smaller than
if we take all the hooks into account.

The next step is the orthonormalization, via SVD, of the Pm vectors for generat-
ing a basis of the subspace in which to project the matrices. Here an independent
basis Vi, i ∈ {1, . . . ,K}, can be generated for each i-th sub-domain. To this end the
columns in z j are split according to the block structure present in the system matri-
ces (i.e., the ni rows for each block), and an SVD is performed on each of these set
of vectors, at a cost of O(ni(Pm)2), where ni is the size of the corresponding block,
and n = ∑i ni. For each block, the independent SVD allows to drop the vectors less
relevant for the global response (estimated by the dropped singular value ratio, as
presented in [29]). This step generates a set of projectors, Vi ∈ Rni×qi , with qi ≪ ni
the reduced size for the i-th block of the global system matrix. These projectors can
be placed in the diagonal blocks of an overall projector, that can be used for reduc-
ing the initial global matrices to an order q = ∑i qi. This block diagonal projector
allows a block structure (and thus sub-domain) preservation, increasing the sparsity
of the ROM with respect to that of the standard projection. This sparsity increase is
particularly noticeable in the case of the sensitivities (if a Taylor series is used as
base representation), as the block parameter dependence is maintained (e.g. in the
static matrix)

Ĝi j(λ{i j}) =V T
i Gi j(λ{i j})Vj. (4.20)

The total cost for the procedure can be approximated by

O(Pnα +Pnβ +(Pm)2 ∑i ni). (4.21)
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Fig. 4.2 (Top:) Frequency response of the L-shape example. The original, both the nominal and the
Taylor series for a fixed parameter value, of order 313, and the reductions via PRIMA, CORE, Pas-
sive Parameterized Time-Domain Macro Models (PP TDM), and Variational PMTBR (VPMTBR),
of different orders. (Bottom:) Relative error of the reduction models with respect to the original
Taylor series approximation.

4.1.4 Examples

4.1.4.1 L-shape

As a first example we present a simple L-shape interconnect structure depending
on the width of the metal layer. Figure 4.2 shows the frequency response for a fixed
parameter value, of the nominal system, the Taylor series approximation (both of
order 313), and the reduction models obtained with several parametric approaches:

• Nominal reduction of the Taylor Series, via PRIMA, of order 25,
• Multi-dimensional moment matching, via CORE, of order 25,
• Multi-dimensional moment matching, via Passive Parameterized Time-Domain

Macro Models technique, of order 20,
• and Multi-dimensional sampling, via Variational PMTBR, of order 16.

Figure 4.3 shows the same example, but in this case the response of the systems
with respect of the parameter variation, for a given frequency point. It is clear that
the parametric Model Order Reduction techniques are able to capture the parametric
behavior, whereas the nominal approach (PRIMA) fails to do so, even for high order.
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Fig. 4.3 Parameter impact on the response of the L-shape example. The EM model for several
parameter values (of order 313), the Taylor series approximation (of order 313 as well), and the
reductions via PRIMA, CORE, PP TDM, and VPMTBR, of different orders.

Table 4.1 Characteristics of the Examples

Ex Domain Dofs Terminals (EH,MH,IT) ROM Dofs

Left 785 77 (42,34,1) 85

U-shape Middle 645 152 (84,68,0) 90

Right 785 77 (42,34,1) 85

Complete 2215 2 (0,0,2) 260

Var1 49125 2 (0,0,2) 142

Double Spiral Var2 54977 2 (0,0,2) 165

Complete 104102 2 (0,0,2) 307

4.1.4.2 U-Coupled

This is a simple test case, which has two U-shape conductors; each of the con-
ductors ends represent one port, having one terminal voltage excited (intentional ter-
minal, IT) and one terminal connected to ground. A clear illustration of the setting
is given by Figure 4.4. The distance (d) separating the conductors and the thickness
(h) of the corresponding metal layer are parameterized. The complete domain is
partitioned into three sub-domains, each of them connected to the others via a set of
hooks (both electric, EH, and magnetic, MH). The domain hierarchy and parameter
dependence are kept after the reduction, via Block Structure Preserving approaches.
The Full Wave EM model was obtained via Finite Integration Technique (FIT) [7],
and its matrices present a Block Structure that follows the domain partitioning. Ta-
ble 4.1 shows the characteristics of the original system. Each sub-domain is affected
by a parameter. The left and right sub-domains contain the conductors, and thus are
affected by the metal thickness h. The middle domain width varies with the distance
between the two conductors, and thus is affected by parameter d. For each param-
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Fig. 4.4 Topology of the U-shape: (Up) cross view, (Down) top view. Parameters: distance between
conductors, d, and thickness of the metal, h.

eter the first order sensitivity is taken into account, and a first order Taylor Series
(TS) formulation is taken as the original system.

For the reduction we apply three techniques. First, a Nominal Block Structure
Preserving (BSP) PRIMA [36], with a single expansion point and matching 50 mo-
ments, is applied. This leads to a 100-vector generated basis, that after BSP expan-
sion produces a 300-dofs Reduced Order Model (ROM). Second, a BSP procedure
coupled with a Multi-Dimensional Moment Matching (MDMM) approach [15], is
tried. The basis will match 40 moments with respect to the frequency, and 30 mo-
ments with respect to each parameter. The orthonormalized basis has 196 vectors,
that span a BSP ROM of size 588. Third, the proposed BSP VPMTBR, with 60 mul-
tidimensional samples, and a relative tolerance of 0.001 for each block, is studied.
This process generates different reduced sizes for each block: 85, 90 and 85, with a
global size of 260.
Figure 4.5 shows the relative error in the frequency transfer function at a parame-

ter set point for the three ROMs w.r.t. the Taylor series. PRIMA and MDMM ap-
proaches fail to capture the behavior with the order set, but the proposed approach
performs much better even for a lower order. Figure 4.6 shows the response change
with the variation of parameter d at a single frequency point (Parameter Impact).
PRIMA and MDMM only present accuracy for the nominal point, whereas the pro-
posed method maintains the accuracy for the parameter range.

4.1.4.3 Double Spiral

This is an industrial example, composed by two square integrated spiral inductors
in the same configuration as the previous example (See Figure 4.7). The complete
domain has two ports, and 104102 Dofs. The example also depends on the same two
parameters, the distance d between spirals, and the thickness h of the corresponding
metal layer. In this case a single domain is used, but the BSP approach is applied
on the inner structure provided by the different variables in the FIT method (electric
and magnetic grid). For the reduction, the proposed BSP VPMTBR methodology
is benchmarked against a nominal BSP PRIMA (400 dofs) methodology, and com-
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Fig. 4.5 U-Coupled: Relative Error (dB) in |H12(s)| for (Up) the nominal response, and (Down) the
perturbed response at a single parameter set. The curves represent: BSP PRIMA, BSP VPMTBR,
and BSP MDMM.

pared with the original Taylor Series formulation. The ROM size in this case is 142
and 165 respectively for the blocks. The results are presented in the Figures 4.8
and 4.9. Figure 4.8 shows the frequency relative error of the ROMs with respect
to the original Taylor Series. PRIMA, although accurate for the nominal response,
fails to capture the parametric behavior, whereas the proposed method succeeds in
modeling such behavior. This is also the conclusion that can be drawn from the
parameter impact in Figure 4.9.
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Fig. 4.6 U-Coupled: Variation of |H12| vs. the variation of the parameter d at 59.6 GHz for the
original TS and the three BSP ROMs.

Fig. 4.7 Layout configuration of the Double Spiral example (view from the top).

4.1.5 Conclusions

We conclude that Parametric Model Order Reduction techniques are essential for
addressing parameter variability in the simulation of large dynamical systems.
Representation of the state space based on Taylor series expansion with respect to
the parameters provide the flexibility and accuracy required by efficient simulation.
This reresentation approach can be combined with projection-based methods to gen-
erate structural equivalent reduced models.
Single-point based moment-matching approaches are suitable for small variations
and local approximations, but usually suffer from several drawbacks when applied
to EM based models operating in a wide frequency range. Multi-point based ap-
proaches, although computationally more expensive, are more reliable and generate
more compressed models. Thus, the generation cost can be amortized in the simu-
lation stages.
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Fig. 4.8 Double Spiral: Relative Error (dB) in |H12(s)| for (Up) the nominal response, and (Down)
the perturbed response at a single parameter set.

Fig. 4.9 Double Spiral: |H12| vs. the variation of the parameter d at a frequency point for the
original TS and the ROMs: PRIMA, and VPMTBR.

Combination of the projection methodologies with Block Structure Preserving ap-
proaches can be done efficiently in parametric environments. Further advantages
can be obtained in this case, such as different compression order for each block
based on its relevance in the global behavior, higher degree of sparsification of the
nominal matrices, and in particular, of the sensitivities, and the maintenance of the
block domain hierarchy and block parameter dependence after reduction.
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Fig. 4.10 Decomposition of the interconnect net in 2D TLs and 3D junctions.

4.2 Robust Procedures for Parametric Model Order Reduction
of High Speed Interconnects

2Due to higher integration and increasing of running frequency, full Electromag-
netic Models (EM) are needed for an accurate prediction of the real behavior of
integrated passives and interconnects in currently designed chips [44]. In general,
if on-chip interconnects are sorted with respect to their electric length, they may be
categorized in three classes: short, medium and long. While the short interconnects
have simple circuit models with lumped parameters, the extracted model of the in-
terconnects longer than the wave length has to consider the effect of the distributed
parameters, as well. Fortunately, the long interconnects have usually the same cross-
sectional geometry along their extension. If not, they may be decomposed in straight
parts connected by junction components (Fig.4.10). The former are represented as
transmission lines (TLs) whereas the latter are modeled as common passive 3D
components.

Due to the fact that the lithographic technology is pushed today to work at its
limit, the variability of geometrical and physical properties cannot be neglected.
That is why, to obtain robust devices, the variability analysis is necessary even dur-
ing the design stage [43, 54].

This Section proposes a robust specialized technique to extract reduced paramet-
ric compact models, described as parametric SPICE like netlists, for long intercon-
nects modeled as transmission lines with several field effects such as skin effect and
substrate losses. The technique uses an EM formulation based on partial differential
equations (PDE), which is discretized to obtain a finite state space model. Next, a
variability analysis of the geometrical data is carried out. Finally, a method to extract
an equivalent parametric circuit is proposed. The procedure is validated by applying
it on a study case for which experimental data is available.

2 Section 4.2 has been written by: Gabriela Ciuprina, Alexandra Ştefănescu, Sebastian Kula and
Daniel Ioan. For additional topics see also the Ph.D.-Theses of the second author [59] and of the
third author [55].
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4.2.1 Field problem formulation: 3D - PDE models

Long interconnects and passive components with significant high frequency field
effects, have to be modeled by taken into consideration Full Wave (FW) electromag-
netic field equations. Typical examples of such parasitic effects are: skin effect and
proximity, substrate losses, propagation retardation and crosstalk. Only Maxwell
equations in FW regime

curlH = J+ ∂D
∂ t , divB = 0,

curlE = − ∂B
∂ t , divD = ρ,

(4.22)

complemented with the constitutive equations which describe the material behavior:

B = µH, D = εE, J = σE, (4.23)

can model these effects. While material constants are known for each subdomain
(Si, Al, SiO2), vectorial fields B,H,E,D : Ω × [0,T )→ IR3 and the scalar field ρ :
Ω × [0,T )→ IR are the unknowns of the problem. They can be univocal determined
in the simple connected set Ω , which is the computational domain, for zero initial
conditions (B = 0,D = 0 for t = 0), if appropriate boundary conditions are imposed.

According to authors’ knowledge, the best boundary conditions which allow the
field-circuit coupling are those given by the electric circuit element (ECE) formula-
tion [53]. Considering S′1,S

′
2, . . . ,S

′
n ⊂ ∂Ω a disjoint set of surfaces, called terminals

(Fig.4.2.1), the following boundary conditions are assumed:

n · curlE = 0 on ∂Ω , (4.24)
n · curlH = 0 on ∂Ω\∪n

k=1 S′k (4.25)
n×E = 0 on ∪n

k=1 S′k (4.26)

Fig. 4.11 ECE - Electric Circuit Element with multiple terminals.
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Fig. 4.12 Three levels of abstraction for a component model and its corresponding equations.

Condition (4.24) interdicts the magnetic coupling between the domain and its
environment, (4.25) interdicts the galvanic coupling and the capacitive coupling
through the boundary excepting for the terminals and (4.26) interdicts the varia-
tion of the electric potential over the terminal, thus allowing the connection of the
device to exterior electric circuit nodes. For each terminal, k = 1, . . . ,n the voltage
and the current can be univocal defined:

uk =
∫

Ck⊂∂Ω
E ·dr, ik =

∫

∂S′k
H ·dr, (4.27)

where C′k is an arbitrary path on the device boundary ∂Ω , that starts on S′k and ends
on S′n, where, by convention, the n-th terminal is considered as reference, i.e. un = 0.
If we assume that the terminals are excited in voltage, then uk, k = 1,2, . . . ,n−1 are
input signals and ik, k = 1,2, . . . ,n− 1 are output signals. Equations (4.24)÷(4.26)
define a multiple input multiple output (MIMO) linear system with n− 1 inputs
and n−1 outputs, but with a state space of infinite dimension. In the weak form of
Maxwell’s equations, state variables, H,E belong to the Sobolev space H(curl,Ω)
[39]. Uniqueness theorem of the ECE field problem [53] generates the correct for-
mulation of the transfer function Y(s) : IC→ IC(n−1)×(n−1), which represents the ma-
trix of the terminals admittance for a complex frequency s. The relation

i = Yu (4.28)

defines a linear transformation in the frequency domain of the terminal voltages
vector u ∈ ICn−1 to the currents vector i ∈ ICn−1.

4.2.2 Numeric discretization and state space models

PDE models are too complex for designers needs. The approach we propose for
the extraction of the electric models is schematically represented in Fig. 4.12. The
left block corresponds to the formulation described in the previous section.

The next important step in the EM modeling is the discretization of the PDEs.
One of the simplest methods to carry out this, is based on the indexFinite Integra-
tion Technique (FIT)Finite Integration Technique (FIT), a numerical method able to
solve field problems based on spatial discretization ”without shape functions”. Two
staggered orthogonal (Yee type) grids are used as discretization mesh [41]. The cen-
ters of the primary cells are the nodes of the secondary cells. The degrees of freedom
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Fig. 4.13 Dofs for FIT numerical method in the two dual grids cells.

(dofs) used by FIT are not local field components as in FEM or in FDTD, but global
variables, i.e. electric and magnetic voltages ue,um, electric currents i, and magnetic
and electric fluxes φ ,ψ assigned to the grid elements: edges and faces, respectively.
They are associated to these grids elements in a coherent manner (Fig.4.13).

By applying the global form of electromagnetic field equations on the mesh ele-
ments (elementary faces and their borders), a system of differential algebraic equa-
tions (DAE), called Maxwell Grid Equations (MGE) is obtained:

curlE =−∂B
∂ t

⇒ ∫
Γ Edr =−∫ ∫SΓ

∂B
∂ t dA ⇒ Cue =−

dϕ
dt

(4.29)

→֒ divB = 0 ⇒ ∫ ∫
Σ BdA = 0 ⇒ D′ϕ = 0 (4.30)

curlH = J+
∂D
∂ t

⇒ ∫
Γ Hdr =

∫ ∫
SΓ
(J+ ∂D

∂ t )dA ⇒ C′um = i+
dψ
dt

(4.31)

→֒ divD = ρ ⇒ ∫ ∫
Σ DdA =

∫ ∫ ∫
DΣ

ρdv ⇒ Dψ = q (4.32)

→֒ divJ =−∂ρ
∂ t
⇒ ∫ ∫

Σ JdA =−∫ ∫ ∫DΣ
∂ρ
∂ t dv ⇒ Di =−dq

dt
(4.33)

FIT combines MGE with Hodge’s linear transform operators, which approximate
the material behavior (4.23):

ϕ = Gmum, ψ = Ceue, i = Geue. (4.34)

The main characteristics of the FIT method are:

• There is no discretization error in the MGE fundamental equations (4.29) ÷
(4.33). All numerical errors are hold by the discrete Hodge operators (4.34).

• An equivalent FIT circuit (Fig.4.14), having MGE+Hodge as equations may be
easily build. The graphs of the two constituent mutually coupled sub-circuits are
exactly the two dual discretization grids; therefore the complexity of the equiva-
lent circuit has a linear order with respect to the number of grid-cells [47].

• MGE are:
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Fig. 4.14 Electric (left) and magnetic (right) equivalent FIT circuits

- sparse: matrices Gm,Ce and Ge are diagonal and matrices C,D have maximum
6 non-zero entries per row,

- metric-free: matrices C - the discrete-curl and D - the discrete-div operators
have only 0, +1 and -1 as entries,

- mimetic: in Maxwell equations curl and div operators are replaced by their
discrete counterparts C and D, and

- conservative: the discrete form of the discrete charge conservation equation
is a direct consequence of both Maxwell and as well as of the MGE equations.

Due to these properties the numerical solutions have no spurious modes.
Considering FIT equations (4.29), (4.31), (4.34) with the discrete forms of

boundary conditions (4.24)÷ (4.27) a linear time-invariant system is defined having
the same input-output quantities as (4.28), but the state equations:

C
dx
dt

+Gx = Bu, i = Lx, (4.35)

where x= [uT
m,u

T
e , i

T ]T is the state space vector, consisting of electric voltages ue de-
fined on the electric grid used by FIT, magnetic voltages um defined on the magnetic
grid and output quantities i. Equations can be written such that only two semi-state
space matrices (C and G) are affected by geometric parameters (denoted by α in
what follows). Considering all terminals voltage-excited, the number of inputs is
always equal to the number of outputs. Since output currents are components of the
state vector, the matrix L = BT is merely a selection matrix.

For instance, the structure of the matrices in the case of voltage excitation is the
following:

C =




Gm(α) 0 0
0 −Ci(α) 0 0
0 0 0
0 CSl(α) 0
0 CT E(α) 0
0 0 0




G =




0 B1 B2 0
BT

1 −Gi(α) 0 0
0 0 BSl 0
0 GSl(α) 0
0 GT E(α) −SE
0 PE 0




(4.36)

There are six sets of rows, corresponding to the six sets of equations. The first
group of equations is obtained by writing Faraday’s law for inner elementary elec-
tric loops. Gm is a diagonal matrix holding the magnetic conductances that pass
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through the electric loops. The block
[

B1 B2
]

has only 0, 1, -1 entries, describing
the incidence of inner branches and branches on the boundary to electric faces. The
second group corresponds to Ampere’s law for elementary magnetic loops. Ci and
Gi are diagonal matrices, holding the capacitances and electric conductances of the
inner branches. The third group represents Faraday’s law for electric loops on the
boundary. BSl has only 0, 1, -1 entries, describing the incidence of electric branches
included in the boundary to the electric boundary faces. The forth row is obtained
from the current conservation law for all nodes on the boundary excepting for the
nodes on the electric terminals. GSl and CSl hold electric conductances and capaci-
tances directly connected to boundary. The fifth set of equations represents current
conservation for electric terminals. GT E and CT E hold electric conductances and
capacitances that are directly connected to electric terminals. SE is the connexion
matrix between electric branches and terminals path. The last row is the discrete
form of (4.27), obtained by expressing the voltages of electric terminals as sums of
voltages along open paths from terminals to ground, PE being a topological matrix
that holds the paths that connect electric terminals to ground.

Thus, the top left square block of C is diagonal and the top left square bloc of G
is symmetric. The size of this symmetric bloc corresponds to the useful magnetic
branches and to the useful inner electric branches. Its size is dominant over the size
of the matrix, therefore, solving or reduction strategies that take into consideration
this particular structure are useful.

The discretized state-space system given by (4.35) describes the input output
relationship in the frequency domain

i = Y u, (4.37)

similar to (4.28), but having as transfer (circuit) function:

Y = L(sC+G)−1 B (4.38)

which is a rational function with a finite number of poles.
In conclusion, the discretization of the continuous model leads to a model rep-

resented by a MIMO linear time invariant system described by the state equations
of finite size. Even if this is an important step ahead in the extraction procedure,
the state space dimension is still too large for designer’s needs, therefore a further
modeling step aiming an order reduction is required.

4.2.3 Transmission Lines - 2D+1D Models

In this section, aiming to reduce the model extraction effort, we will exploit the
particular property of interconnects of having invariant transversal section along
their extent. We assume that the field has a similar structure as a transversal electro-
magnetic wave that propagates along the line. The typical interconnect configuration
(Fig.4.15) considered consists of n parallel conductors having rectangular cross sec-
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tion, permeability µ = µ0, permittivity ε = ε0 and conductivity σk,k = 1,2, · · · ,n,
placed in a SiO2 layer (σd , εd , possibly dependent on y) placed above a silicon
substrate (σs, εs).

If the field is decomposed in its longitudinal (oriented along the line, which is
assumed to lie along the Oz axis) and the transversal components (oriented in the
xOy plane)

E = Et +kEz, J = Jt +kJz, H = Ht +kHz, (4.39)

then Maxwell’s Equations can be separated into two groups:

curlxyHt = k
(

Jz + ε ∂Ez
∂ t

)
, divxy(µHt) =− ∂ (µHz)

∂ z ,

curlxyEt =−kµ ∂Hz
∂ t , divxy(εEt) = ρ− ∂ (εEz)

∂ z ,
(4.40)

called transversal equations and

∂Et
∂ z −gradxyEt =−µ ∂

∂ t (Ht×k);
∂Ht
∂ z −gradxyHz = Jt ×k+ ε ∂

∂ t (Et×k);

called propagation equations.
The following hypotheses are adopted:

• The volume charge density ρ and the displacement current density ∂E
∂ t are ne-

glected both in conductors and in the substrate.
• The following ”longitudinal” terms Ez = 0, Hz = 0 are canceled in the transversal

equations, neglecting the field generated by eddy currents.
• The longitudinal conduction current is neglected in dielectric Jz = 0, but not in

the conductors.
• Since the conductances σk of the conductors are much bigger than the dielectric

conductance σd , the transversal component of the electric field is neglected in
the line conductors and in the substrate:

Et =
1
σk

Jt = 0. (4.41)

Under these hypotheses the transversal equations have the following form (where
(k) = conductor, (s) = substrate, (d) = dielectric):

Fig. 4.15 Typical interconnect configuration.
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curlxyHt =

{
kJz, in (k) and (s)
0, in (d) divxy(µHt) = 0

curlxyEt = 0, divxy(εEt) = 0,
(4.42)

identical with the steady state electromagnetic field equations. For this reason,
the electric field admits a scalar electric potential V (x,y,z, t), whereas the magnetic
field admits a vector magnetic potential A(x,y,z, t) = kA(x,y,z, t) with longitudinal
orientation, so that:

Et =−gradxyV, (4.43)

Ht =
1
µ
[k× (curlA×k)] =−k× 1

µ
gradxy(A×k). (4.44)

Thus, the propagation equations become:

gradxy

[
∂A
∂ t +

∂V
∂ z +Ez

]
= 0,

−gradxyHz = k×
[

1
µ gradxy

(
∂A
∂ z

)
+σgradxyV + εgradxy

(
∂V
∂ t

)]
.

(4.45)

By assuming an asymptotic behavior of potentials, the integration of the propagation
equations yields to:

Ez =
1
σ Jz =− ∂V

∂ z − ∂A
∂ t ,

Hz =−
∫

C

[
1
µ

∂
∂n

(
∂A
∂ z

)
+σ ∂V

∂n + ε ∂
∂n

(
∂V
∂ t

)]
ds,

(4.46)

where C is a curve in the plane z=constant, which starts from the infinity and stops
in the computation point of the field Hz, n is the normal to the curve, oriented so
that the line element is

ds = dsk×n. (4.47)

From (4.41) it follows that the potential V is constant on every transversal cross-
section of the conductors and zero in the substrate:

V |Sk =Vk(z, t), Vs = 0. (4.48)

From relations (4.42) and (4.43) it follows that, in the transversal plane, the elec-
tric field has the same distribution as an electrostatic field. By using the uniqueness
theorem of the electrostatic field it results that the function V (x,y,z, t) is uniquely
determined by the potentials of the conductors Vk. Consequently, due to the linear-
ity, the per unit length (p.u.l.) charge of conductors and the current loss through the
dielectric are:

qk(z, t) =−
∫

∂Sk

εd
∂V
∂n

ds =
n

∑
m=1

ckmVm(z, t); (4.49)

igk(z, t) =−
∫

∂Sk

σd
∂V
∂n

ds =
n

∑
m=1

gkmVm(z, t), (4.50)
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where ckm is the p.u.l. capacitance, and gkm is the p.u.l. conductance between the
conductor k and the conductor m.

By integrating Ez equation from (4.46) over the surface Sk and Hz equation from
(4.46) along the path ∂Sk which bounds this surface, the following propagation
equations for potentials are obtained:

−∂ ṽk

∂ z
= r0

k ik +
∂ ãk

∂ t
; −∂ ik

∂ z
= igk +

∂qk

∂ t
, (4.51)

where r0
k = 1/(σkASk) is the p.u.l. d.c. resistance of the conductor k, and

ṽk(z, t) = 1
ASk

∫
Sk

V (x,y,z, t)dxdy = vk(z, t),

ãk =
1

ASk

∫
Sk

A(x,y,z, t)dxdy
(4.52)

are the average values of the two potentials on the cross-section of the conductor k.
By computing the average values of the magnetic potential as in [58] and by

substituting (4.49), (4.50) in (4.51) the following expressions are obtained in zero
initial conditions:

−∂vk

∂ z
= r0

k ik +
n

∑
m=1

l0
km

∂ im
∂ t

+
n

∑
m=1

∂
∂ t

∫ t

0

(
dlkm

dt

)

t−τ
im(τ, t)dτ, (4.53)

−∂ ik
∂ z

=
n

∑
m=1

(
gkmvm + ckm

∂vm

∂ t

)
, (4.54)

where l0
km are the p.u.l. external inductances (self inductances for k = m and mutual

inductances for k 6= m) of the conductors (k) and (m) where the return current is dis-
tributed on the surface of the substrate, and lkm(t) are ”transient p.u.l. inductances”,
defined as the average values on Sk of the vector potential A obtained in zero initial
conditions by a unity step current injected in conductor (m).

For zero initial conditions for the currents im(z,0)= 0, for the potential vm(z,0)=
0 and for the field B0

k(s) = 0, the Laplace transform of (4.53) and (4.54) can be
written as:

−dvk(z,s)
dz

=
n

∑
m=1

Zkm(s)im(z,s), −dik(z,s)
dz

=
n

∑
m=1

Ykm(s)vm(z,s), (4.55)

which is identical to the operational form of the classical Transmission Lines (TLs)
Telegrapher’s equations, but where the p.u.l. inductances depend on s (implicitly on
the frequency in a time-harmonic regime). In order to extract these dependencies, a
magneto-quasi-static (MQS) field problem has to be solved.
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4.2.4 Numeric extraction of line parameters

Models with various degrees of fineness can be established for TLs. The coarsest
ones are circuit models with lumped parameters, such as the pi equivalent circuit for
a single TL shown in Fig.4.16. As expected, the characteristic of such a circuit is
appropriate only at low frequencies, over a limited range, and for short lines. Even
chaining similar cells, the result is not appropriate.

At high frequencies, the distributed effects have to be considered as an important
component of the model. Proper values for the line parameters can be obtained only
by simulating the electromagnetic field. The extraction of line parameters is the
main step in TLs modeling since the behavior of a line with a given length can be
computed from them. For instance, for a multiconductor transmission line, from the
per unit length parameters matrices R, L, C and G the transfer matrix for a line of
length l can be computed as

T = exp[(D+ jωE)l], where D =

[
0 −R
−G 0

]
, E =

[
0 −L
−C 0

]
. (4.56)

From them, other parameters (impedance, admittance or scattering) can be com-
puted. The simplest method to extract constant matrices of the line resistance R,
capacitance C and inductance L, respectively, is to solve the field equations numeri-
cally in steady-state electric conduction (EC), electrostatics (ES) and magnetostatics
(MS) regimes. Empirical formulas may also be found in the literature, such as the
ones given in [56] for the line capacitance. None of them take the frequency depen-
dence of p.u.l. parameters into account.

A first attempt to take into consideration the frequency effect, which becomes
important at high frequencies, is to compute the skin depth in the conductor and
to use a better approximation for the resistance. In [50] we proposed a much more
accurate estimation of frequency dependent line parameters based on the numeri-
cal modeling of the EM field including the semiconductor substrate. The previous
section is the theoretical argument of this approach in which two complementary
problems are solved, the first one describing the transversal behavior of the line
from which Yl(ω) = G(ω) + jωC(ω) is consequently extracted, and the second
one describing the longitudinal behavior of the line from which Zl(ω) = R(ω) +
jωL(ω) is extracted.

Since the first field problem is dedicated to the computation of the transversal
capacitances between wires and their loss conductances, according to the previous
section, the natural choice is to solve a 2D problem of the transversal electro-quasi-

Fig. 4.16 The coarsest model for a single transmission line: a pi equivalent circuit.
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Fig. 4.17 Boundary conditions for the full wave
- transversal magnetic problem.

Fig. 4.18 The pi equivalent circuit for a
simulated short line segment. Parameters
are evaluated from field simulations.

static (EQS) field in dielectrics, considering the line wires as perfect conductors with
given voltage. The boundary conditions are of Dirichlet type V = 0 on the lower
electrode, and open boundary conditions (e.g. Robin, SDI or appropriate ELOB
[48]) on the other three sides. A dual approach, such as dFIT [49] allows a robust
and accurate parameter extraction.

The second field problem focuses on the longitudinal electric and the generated
transversal magnetic field. Consequently, a short line-segment (with only one cell
layer) is considered. The magneto-quasi-static (MQS) regime of the EM field is
appropriate for the extraction of Zl(ω). However, for our simulations we used a
our FIT solver for Full Wave (FW) ECE problems. The magnetic grid is 2D, thus
ensuring the TM mode of propagation.

In order to eliminate the transversal distribution of the electric field, the lower
electrode is prolongated over the entire far-end cross-section of the rectangular
computational domain, which thus has perfect electric conductor (PEC) boundary
conditions Et = 0 on two of their faces. On the three lateral faces, open-absorbing
boundary conditions are the natural choice, whereas on the near-end cross-section
the natural boundary conditions are those of the Electric Circuit Element (ECE):
Bn = 0, n× curlH = 0 excepting for the wire traces, where Et = 0. These condi-
tions ensure the correct definition of the terminals voltages, and consequently of the
impedance/admittance matrix (Fig.4.17).

These boundary conditions are the field representation of the line segment with
short-circuit at the far-end, whereas the 2D EQS problem is the field representation
of the segment-line with open far-end.

The transversal component is finally subtracted from the FW-TM simulation to
obtain an accurate approximation of the line impedance, as given by

ZMQS =

(
Z−1

T M−
1
2

YEQS

)−1

. (4.57)

This subtraction is carried out according to a pi-like equivalent net for the simulated
short segment (Fig.4.18). Finally, the line parameters are:
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G(ω) = Re(Yl), C(ω) = Im(Yl)/ω, R(ω) = Re(Zl), L(ω) = Im(Zl)/ω,
(4.58)

where
Yl = YEQS/∆ l, Zl = ZMQS/∆ l, (4.59)

where ∆ l is the length of the considered line-segment and ZT M is the impedance
matrix extracted from the TM field solution.

This numerical approach to extract the line parameters, named the two fields
method, is more robust and may be applied without difficulties to multi-wire lines.
The obtained values of the line parameters are frequency dependent, taking into
consideration proximity and skin effects as well as losses induced in the conducting
substrate.

4.2.5 Variability Analysis of Line Parameters

The simplest way to analyze the parameter variability is to compute first order
sensitivities. These are derivatives of the device characteristics with respect to the
design parameters. The sensitivities of the line parameters are essential to estimate
the impact of small variations on the device behavior. Moreover, the sensitivity of
the terminal behavior of interconnects can also be estimated.

For instance, in the case of a single TL, having the global admittance given by

Y =

[
Y11 Y12
Y21 Y22

]
=

[
coshγl

Zcsinhγl − 1
Zcsinhγl

− 1
Zcsinhγl

coshγl
Zcsinhγl

]
(4.60)

the sensitivities of the terminal admittance with respect to a parameter can be com-
puted as:

∂Y11

∂α
=

l
Zc

∂γ
∂α

− coshγl
Z2

c sinhγl
∂Zc

∂α
− l

Zc

cosh2γl
sinh2γl

∂γ
∂α

(4.61)

∂Y12

∂α
=

1
Z2

c sinhγl
∂Zc

∂α
+

l
Zc

cosh
sinh2γl

∂γ
∂α

(4.62)

where the sensitivities of

γ =
√
(R+ jωL)(G+ jωC) and Zc =

√
(R+ jωL)/(G+ jωC)

can be computed if the sensitivities of the p.u.l. parameters ∂R/∂α , etc. are known.
In the case of a multiconductor TL with n conductors the sensitivity of the ad-

mittance matrix Y of dimension (2n×2n) is computed by means of the sensitivity
of the transfer matrix

T =

[
T11 T12
T21 T22,

]
(4.63)
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also of dimension (2n×2n), knowing that

Y =

[
Y11 Y12
Y21 Y22

]
=

[
−T−1

12 T11 T−1
12

T22T−1
12 T11−T21 −T22T−1

12

]
. (4.64)

In the formulas above, all the sub-blocks are of dimensions (n×n). For instance

∂Y11

∂α
= −T−1

12
∂T12

∂α
T−1

12 T11−T−1
12

∂T11

∂α
, (4.65)

∂Y12

∂α
= −T−1

12
∂T12

∂α
T−1

12 . (4.66)

The transfer matrix T is computed with (4.56) and its sensitivity is

∂T
∂α

= exp[(D+ jωE)l]
(

∂D
∂α

+ jω
∂E
∂α

)
, (4.67)

where

∂D
∂α

=

[
0 −∂R/∂α

−∂G/∂α 0

]
,

∂E
∂α

=

[
0 −∂L/∂α

−∂C/∂α 0

]
. (4.68)

Thus, the basic quantities needed to estimate the sensitivitity of the admittance
are the sensitivities of the p.u.l. parameters. By using a direct differentiation tech-
nique, as explained in [40] the sensitivities of the EQS and TM problems with re-
spect to the parameters that vary, i.e ∂YEQS/∂α and ∂ZT M/∂α are computed.
Then, the sensitivity of the MQS mode is computed by taking the derivative of
(4.57):

∂ZMQS

∂α
=−

(
Z−1

T M−
1
2

YEQS

)−1(
−Z−1

T M
∂ZT M

∂α
Z−1

T M−
1
2

∂YEQS

∂α

)(
Z−1

T M−
1
2

YEQS

)−1

(4.69)
Finally, the sensitivities of the p.u.l. parameters are:

∂R
∂α

=
1
l

Re
{

∂ZMQS

∂α

}
,

∂L
∂α

=
1

lω
Im
{

∂ZMQS

∂α

}
, (4.70)

∂G
∂α

=
1
l

Re
{

∂YEQS

∂α

}
,

∂C
∂α

=
1

lω
Im
{

∂YEQS

∂α

}
. (4.71)

The values of the sensitivities thus obtained depend on the frequency as well.
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4.2.6 Parametric Models based on Taylor Series

Continuous improvements in today’s fabrication processes determine smaller
chip sizes and smaller device geometries. Process variations induce changes in the
properties of metallic interconnect between devices.

Simple parametric models are often obtained by truncating the Taylor series ex-
pansion for the quantity of interest. This requires the computation of the derivatives
of the device characteristics with respect to the design parameters [54]. Let us as-
sume that y(α1,α2, · · · ,αn) = y(α) is the device characteristic which depends on
the design parameters α = [α1,α2, · · · ,αn]. The quantity y may be, for instance, the
real or the imaginary part of the device admittance at a given frequency or any of
the p.u.l. parameters. The parameter variability is thus completely described by the
real function, y, defined over the design space S, a subset of IRn. The nominal design
parameters correspond to the particular choice α0 = [α01 α02 · · · α0n].

4.2.6.1 Additive Model (A)

If y is smooth enough then its truncated Taylor Series expansion is the best poly-
nomial approximation in the vicinity of the expansion point α0. For one parameter
(n = 1), the additive model is the first order truncation of the Taylor series:

ŷ(α) = y(α0)+
∂y
∂α

(α0)(α−α0). (4.72)

If we denote by y(α0) = y0 the nominal value of the output function, by ∂y
∂α (y0)

α0
y0

=

Sy
α the relative first order sensitivity and by (α−α0)/α0 = δα the relative variation

of the parameter α , then the variability model based on (4.72) defines an affine [60]
or additive model (A):

ŷ(α) = y0(1+Sy
α δα). (4.73)

To ensure a relative validity range of the first order approximation of the output
quantity less a given threshold t1, the absolute variation of the parameter must be
less than

Vd =

√
2y0t1
D2

, (4.74)

where D2 is an upper limit of the second order derivative of the output quantity y
with respect to parameter α [40].

For the multiparametric case, one gets:

y(α) = y(α0)+∇y(α0) · (α−α0) = y0 +
n

∑
k=1

∂y
∂αk

(α0)(αk−α0k). (4.75)

Similar with one parameter case, the relative sensitivities w.r.t. each parameter are
denoted by ∂y

∂αk
(α0)

α0k
y0

= Sy
αk and the relative variations of the parameters by δαk =

(αk−α0k)/α0k, the additive model (A) for n parameters being given by:
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ŷ(α) = y0

(
1+

n

∑
k=1

Sy
αk δαk

)
. (4.76)

Thus, each new independent parameter taken into account adds a new term to the
sum [50]. The additive model is simply a normalized standard version of a linearly
truncated Taylor expansion.

Instead of using this truncated expansion may be numerically favorable to expand
some transformation F(y) of y instead. Two particular choices for F have practical
importance: identity and inversion as it will be indicated below.

4.2.6.2 Rational Model (R)

The rational model is the additive model for the reverse quantity 1/y. It is ob-
tained from the first order truncation of the Taylor Series expansion for the function
1/y. For n = 1, if we denote by r(α) = 1

y(α) , it follows that:

r̂(α) = r(α0)+
∂ r
∂α

(α0)(α−α0). (4.77)

We define the relative first order sensitivity of the reverse circuit function:

∂ r
∂α

(α0)
α0

r(α0)
= Sr

α = S1/y
α . (4.78)

Consequently, we obtain the rational model for n = 1:

y(α) =
y0

1+S1/y
α δα

. (4.79)

It can be easily shown that the reverse relative sensitivity is S
1
y
α = −Sy

α . For the
multiple parameter case, the rational model is:

ŷ(α) =
y0

1+∑n
k=1 S1/y

αk δαk

. (4.80)

If the circuit function y is for instance the admittance, its inverse 1/y is the
impedance. In the time domain, these two transfer functions correspond to a de-
vice excited in voltage or in current, respectively. Consequently, the choice between
additive and rational models for the variability analysis of the circuit functions in
frequency domain can be interpreted as a change in the terminal excitation mode
in the time domain state representation. Choosing the appropriate terminal excita-
tion, the validity range of the parametric model based on first order Taylor series
approximation can be dramatically extended.
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4.2.7 Parametric circuit synthesis

We have shown in [51] that one of the most efficient order reduction method
for the class of problems we address is the Vector Fitting (VFIT) method proposed
in [45], improved in [42, 46] and available at [61]. It finds the transfer function
matching a given frequency characteristic. Thus, in the frequency domain, for the
output quantity y(s), this procedure finds the poles pm (real or complex conjugate
pairs), the residuals km and the constant terms k0 and k∞ of a rational approximation
of the output quantity (e.g an admittance):

y(s)≈ yV FIT (s) = k∞ + sk0 +
q

∑
m=1

km

s− pm
. (4.81)

The resulting approximation has guaranteed stable poles and the passivity can be
enforced in a post-processing step [42]. The transfer function (4.81) can be synthe-
sized by using the Differential Equation Macromodel (DEM) [57]. Our aim is to
extend DEM to take into consideration the parameterization.

To simplify the explanations, we assume a single input single output system,
excited in voltage. It follows that the output current is given by (4.82), where xm(s)
is a new variable defined by (4.83).

i(s) = y(s)u(s) = k∞u(s)+ sk0u(s)+
q

∑
m=1

kmxm(s), (4.82)

xm(s) =
u(s)

s− pm
. (4.83)

By applying the inverse Laplace transformation to (4.82) and (4.83), relation-
ships (4.84) and (4.85) are obtained:

i(t) = k∞u(t)+ k0
du(t)

d t
+

q

∑
m=1

kmxm(t), (4.84)

dxm(t)
d t

= pmxm(t)+u(t). (4.85)

If we use the following matrix notations

A = diag(p1, p2, . . . , pq), b =
[

1 1 · · · 1
]T

, (4.86)

c =
[

k1 k2 · · · kq
]T x =

[
x1 x2 · · · xq

]T
, (4.87)

then equations of the system (4.84), (4.85) can be written in a compact form as

dx(t)
dt

= Ax(t)+bu(t), (4.88)

i(t) = k∞u(t)+ k0
du(t)

d t
+ cx(t). (4.89)
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4.2.7.1 Case of real poles

In the case in which all poles (and consequently, all the residuals) are real, eq.
(4.84) can be synthesized by the circuit shown in Fig. 4.19 which consists of a ca-
pacitor having the capacitance k0, in parallel with a resistor having the conductance
k∞, in parallel with q voltage controlled current sources, their parameters being the
residuals km.

Eq. (4.85) can be synthesized by the circuit in Fig. 4.20, where xm is the voltage
across a unity capacitor, connected in parallel with a resistor having the conductance
−pm and a voltage controlled current source, controlled by the input voltage u.

We would like to include the parametric dependence into the VFIT model and
in the synthesized circuit. To keep the explanations simple, we assume that there is
only one parameter that varies, i.e the quantity α is a scalar. Assuming that keeping
the order q is satisfactory for the whole range of the variation of this parameter, this
means that (4.81) can be parameterized as:

y(s,α)≈ yV FIT (s,α) = k∞(α)+ sk0(α)+
q

∑
m=1

km(α)

s− pm(α)
. (4.90)

Without loss of generality, we can assume that the additive model is more accurate
than the rational one. If not, the reverse quantity is used, which is equivalent, for
our class of problems, to change the excitation of terminals from voltage excited to
current excited, and use an additive model for the impedance z = y−1. The additive
model (4.73) can be written as

y(s,α)≈ yA(s,α) = y(s,α0)+
∂y
∂α

(s,α0)(α−α0), (4.91)

where here y is a matrix function. By combining (4.90) and (4.91) we obtain an
approximate additive model based on VFIT:

y(s,α)≈ yA−V FIT (s,α) = yV FIT (s,α0)+
∂yV FIT

∂α
(s,α0)(α−α0). (4.92)

From (4.90) it follows that the sensitivity of the VFIT approximation needed in
(4.92) is

Fig. 4.19 Equivalent circuit for the output
equation if all poles are real.

Fig. 4.20 Sub-circuit corresponding to a
real pole.
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∂yV FIT

∂α
=

∂k∞

∂α
+ s

∂k0

∂α
+

q

∑
m=1

[
∂km/∂α
s− pm

+
km

(s− pm)2
∂ pm

∂α

]
. (4.93)

The sensitivity ∂y/∂α can be evaluated with (4.61) for as many frequencies as re-
quired and thus the sensitivities of poles and residues in (4.93) can be computed by
solving the linear system (4.93) by least square approximation. Finally, by substi-
tuting (4.93) and (4.90) in (4.92), the final parameterized and frequency dependent
model is obtained:

yA−V FIT (s,α) =

[
k∞ +(α−α0)

∂k∞

∂α

]
+ s
[

k0 +(α−α0)
∂k0

∂α

]
+

+
q

∑
m=1

[
km +(α−α0)∂km/∂α

s− pm

]
+(α−α0)

q

∑
m=1

[
km

(s− pm)2
∂ pm

∂α

]
. (4.94)

Expression (4.94) has the advantage that it has an explicit dependence with respect
both to the frequency s = jω and parameter α , is easy to implement and feasible
to be synthesized as a net-list having components with dependent parameters, as
explained below.

If we denote by

k∗(α) = k∗+(α−α0)
∂k∗
∂α

, (4.95)

where k∗ = k∗(α0) then eq. (4.94) can be written as

yA−V FIT (s,α) = y1(s,α)+ y2(s,α), (4.96)

where

y1(s,α) = k∞(α)+ sk0(α)+
q

∑
m=1

km(α)

s− pm
, (4.97)

y2(s,α) = (α−α0)
q

∑
m=1

km

(s− pm)2
∂ pm

∂α
. (4.98)

The output current is thus

i(s,α) = y1(s,α)u(s)+ y2(s,α)u(s), (4.99)

where the first term can be synthesized with a circuit similar to the one in Fig. 4.19
but where the k∗ parameters depend on α , and the second term

i2(s,α) = (α−α0)
q

∑
m=1

km

(s− pm)2
∂ pm

∂α
u(s) (4.100)

adds q new parallel branches to the circuit (Fig. 4.21). It is useful to write (4.100) as
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Fig. 4.21 Parameterized circuit corresponding to the output equation.

i2(s,α) =
q

∑
m=1

Em(α)
u(s)

( s
pm
−1)2 , where Em(α) =

(α−α0)km

p2
m

∂ pm

∂α
. (4.101)

The part that depends on s in (4.101) can be synthesized by a second order circuit,
such as the one in Fig. 4.22.

Fig. 4.22 Second order subcircuit, with a
voltage controlled current source.

Fig. 4.23 Second order subcircuit corre-
sponding to a real pole.

The current through the coil is

j(s) =
u(s)

s2LC+ sLG+1
. (4.102)

To obtain the expression in (4.101) it is necessary that LC = 1/p2
m, LG = −2/pm,

for instance, we can chose G =−pm, L = 2/p2
m, C = 1/2. Thus, the parameterized

circuit is given by the sub-circuits in Fig. 4.21, Fig. 4.20 and Fig. 4.23. The circuit
that corresponds to the output equations has new branches with current controlled
current sources. Only this sub-circuit contained parameterized components.

Another possibility to derive a parameterized circuit is to do as follows. In (4.100)
we denote by

1
(s− pm)2

∂ pm

∂α
u(s) = fm(s), (4.103)

and by
(s− pm) fm(s) = gm(s). (4.104)

Relationships (4.103) and (4.104) are equivalent to

sgm(s) = pmgm(s)+
∂ pm

∂α
u(s), (4.105)

s fm(s) = pm fm(s)+gm(s), (4.106)

which correspond in the time domain to
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dgm(t)
dt

= pmgm(t)+
∂ pm

∂α
u(t), (4.107)

d fm(t)
dt

= pm fm(t)+gm(t). (4.108)

Eqs. (4.107) and (4.108) can be synthesized with the subcircuit shown in Fig. 4.24.

Fig. 4.24 Subcircuit corresponding to the second order term (second approach).

Fig. 4.25 Parameterized circuit corresponding to the output equation (second approach).

In this case the circuit that corresponds to the output equation is the one in Fig. 4.25.
In brief, the parameterized reduced order circuit can be either the one in Fig. 4.21,
Fig. 4.20 and Fig. 4.23 or in Fig. 4.25, Fig. 4.20 and Fig. 4.24. In both approaches
only the circuit that corresponds to the output equation is parameterized. The second
approach has the advantage that can be generalized for a transfer function having
complex poles as well.

4.2.7.2 Case of complex poles

Nominal Differential Equation Macromodel

If some of the q poles are complex, then they appear in conjugated pairs since
they are the roots of the characteristic equation corresponding to a real matrix. We
assume for the beginning that the transfer function has only one pair of complex
conjugate poles: p = a+ jb and p∗ = a− jb. In this case the transfer function is

y(s) =
k1

s− p
+

k2

s− p∗
=

(s−a)(k1 + k2)+ jb(k1− k2)

(s−a)2 +b2 . (4.109)

The numerator can be a real polynomial in s only if k1 and k2 are complex conju-
gated residues: k1 = c+ jd, k2 = c− jd. In this case, the matrices in (4.86) are
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A =

[
a+ jb 0

0 a− jb

]
, b =

[
1 1
]T c =

[
c+ jd c− jd

]
x =

[
x1 x2

]T
.

(4.110)
In order to obtain a real coefficient equation, a matrix transformation is intro-

duced. The system (4.88) becomes

V
dx(t)

dt
= V AV−1V x(t)+V bu(t), (4.111)

i(t) = k∞u(t)+ k0
du(t)

d t
+ cV−1V x(t), (4.112)

where

V =

[
− 1√

2
− 1√

2
j√
2
− j√

2

]
, V−1 =

[
− 1√

2
− j√

2
− 1√

2
j√
2

]
. (4.113)

Let

x̂ =V x =
[

x̂1 x̂2
]T

, Â =V AV−1 =

[
a −b
b a

]
, (4.114)

b̂ =V b =
[
−
√

2 0
]
, ĉ = cV−1 =

[
−
√

2c
√

2d
]
. (4.115)

The transformation Â =V AV−1 is a similarity transformation, preserving the eigen-
values of the matrix and thus the characteristic polynomial of the system.

The two equations corresponding to the complex conjugated pair of poles

d
dt

[
x1
x2

]
=

[
p 0
0 p∗

][
x1
x2

]
+

[
1
1

]
u(t) (4.116)

become after applying the similarity transformation

d
dt

[
x̂1
x̂2

]
=

[
a −b
b a

][
x̂1
x̂2

]
+

[
−
√

2
0

]
u(t). (4.117)

If there are several pairs of complex conjugated poles, equation (4.117) will be true
for any of these pairs and, by renaming p→ pm, x̂1→ x̂′m, x̂2→ x̂′′m, a→ am, b→ bm,
the synthesized circuit is shown in Fig. 4.26.

Fig. 4.26 Sub-circuit corresponding to a pair of complex conjugate poles.

In general, if the system has q poles out of which qr are real and qc = (q−qr)/2
are pairs of complex conjugate poles, then the synthesis will be done as follows:
for each real pole m = 1, . . . ,qr, let km be the residue corresponding to the pole; for
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each pair of complex conjugate poles m = 1, . . . ,qc let the pole be p′m = am + jbm,
with the corresponding residue k′m = cm + jdm. An equivalent circuit for the output
equation is shown in Fig. 4.27. It consists of the following elements connected in

Fig. 4.27 Sub-circuit corresponding to a pair of complex conjugate poles.

parallel:

• a capacitance k0;
• a conductance k∞,
• qr voltage controlled current sources (having the parameter km, controlled by the

voltages xm),
• qc voltage controlled current sources (having the parameter −

√
2cm, controlled

by the voltages x̂′m)
• qc voltage controlled current sources (having the parameter

√
2dm, controlled by

the voltages x̂′′m).

The voltages xm are defined on the qr subcircuits that correspond to real poles (Fig.
4.20) and the voltages x̂′m, x̂′′m are defined on the qc subcircuits that correspond to the
pair of complex conjugate poles (Fig. 4.26).

Parametric DEM

To derive the parametric circuit in the case of complex poles, we could proceed as
we did in the first approach for real poles. This would conduce to a transfer function
of order 4, which is not obvious how it can be synthesized. The second approach
can be extended to the case of complex poles, as follows.

Let’s consider equations (4.107) and (4.108) written for a pair of complex conju-
gate poles p1 = a+ jb, p2 = a− jb:

dg1(t)
dt

= p1g1(t)+
∂ p1

∂α
u(t), (4.118)

d f1(t)
dt

= p1 f1(t)+g1(t), (4.119)

dg2(t)
dt

= p2g2(t)+
∂ p2

∂α
u(t), (4.120)

d f2(t)
dt

= p2 f2(t)+g2(t). (4.121)

By using the matrix notations
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g =

[
g1
g2

]
, f =

[
f1
f2

]
,

∂ p
∂α

=

[
∂ p1/∂α
∂ p2/∂α

]
, A =

[
p1 0
0 p2

]
, (4.122)

it follows that (4.118) ÷ (4.121) can be written in a compact form as

dg(t)
dt

= Ag(t)+
∂ p
∂α

u(t), (4.123)

d f (t)
dt

= A f (t)+g(t), (4.124)

and by applying the similarity transformation described in the previous section it
follows that

dĝ(t)
dt

= V AV−1ĝ(t)+V
∂ p
∂α

u(t), (4.125)

d f̂ (t)
dt

= V AV−1 f̂ (t)+ ĝ(t), (4.126)

where V AV−1 is given by (4.114). It is straightforward to derive that

V
∂ p
∂α

=
[
−
√

2 ∂a
∂α −

√
2 ∂b

∂α

]
. (4.127)

Thus, the equations (4.123) and (4.124) corresponding to the two complex-conjugated
poles become after applying the similarity transformation

d
dt

[
ĝ1
ĝ2

]
=

[
a −b
b a

][
ĝ1
ĝ2

]
+

[
−
√

2∂a/∂α
−
√

2∂b/∂α

]
u(t), (4.128)

d
dt

[
f̂1
f̂2

]
=

[
a −b
b a

][
f̂1
f̂2

]
+

[
ĝ1
ĝ2

]
. (4.129)

If there are several pairs of complex conjugated poles, equations above will be true
for any of these pairs and, by renaming p → pm, ĝ1 → ĝ′m, ĝ2 → ĝ′′m, f̂1 → f̂ ′m,
f̂2 → f̂ ′′m, a→ am, b→ bm, the synthesized circuit is shown in Fig. 4.28.

Fig. 4.28 Sub-circuit corresponding to a pair of complex conjugate poles.
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The new terms added in the output equations are

i2(s,α) = (α−α0)
[

k k∗
][ f1

f2

]
= (α−α0)

[
k k∗

]
V−1 f̂ = (4.130)

= (α−α0)
[
−
√

2c
√

2d
]

f̂ =−
√

2c(α−α0) f̂1 +
√

2d(α−α0) f̂2.

In general, if the system has q poles out of which qr are real and qc = (q−qr)/2
are pairs of complex conjugate poles, then the parametric synthesis will be done
as follows: for each real pole m = 1, . . . ,qr, let km be the residue corresponding
to the pole; for each pair of complex conjugate poles m = 1, . . . ,qc let the pole
be p′m = am + jbm, with the corresponding residue k′m = cm + jdm. The equivalent
circuit for the parametric output equation is shown in Fig. 4.29. It consists of the

Fig. 4.29 Parametric sub-circuit corresponding to the output equation.

following elements connected in parallel:

• a parameterized capacitance k0(α) = k0 +(α−α0)∂k0/∂α ,
• a parameterized conductance k∞(α) = k∞ +(α−α0)∂k∞/∂α ,
• qr voltage controlled current sources (having as parameter the parameterized

value km(α) = km +(α−α0)∂km/∂α , controlled by the voltages xm),
• qc voltage controlled current sources (having as parameter the parameterized

value −
√

2cm(α), controlled by the voltages x̂′m),
• qc voltage controlled current sources (having the parameter

√
2dm(α), controlled

by the voltages x̂′′m),
• qr voltage controlled voltage sources (having the parameter (α −α0)km, con-

trolled by the voltages fm,
• qc voltage controlled current sources (having the parameter −

√
2cm(α −α0),

controlled by the voltages f̂ ′m),
• qc voltage controlled current sources (having the parameter

√
2dm(α−α0), con-

trolled by the voltages f̂ ′′m).

The voltages xm are defined on the qr subcircuits that correspond to real poles
(Fig. 4.20), the voltages x̂′m, x̂′′m are defined on the qc subcircuits that correspond
to the pair of complex conjugate poles (Fig. 4.26), the voltages fm are defined on
the qr subcircuits that correspond to real poles (Fig. 4.24), the voltages f̂ ′m and f̂ ′′m
are defined on the qc subcircuits that correspond to the complex poles (Fig. 4.28).
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4.2.8 Case Study

In order to validate our approach and to evaluate different parametric mod-
els which can be extracted by the proposed procedure, several experiments have
been performed on a test structure that consists of a microstrip (MS) transmission
line having one Aluminum conductor embedded in a SIO2 layer. The line has a
rectangular cross-section, parameterized by several parameters (Fig. 4.30). The re-
turn path is the grounded surface placed at y = 0. The nominal values used are:
h1 = 1µm, h2 = 0.69µm, h3 = 10µm, a = 130.5µm, p1 = h1, p2 = h2, p3 = 3µm,
xmax = 264µm. In order to comply with designer’s requirements, the model should
include the field propagation along the line, taking into consideration the distributed
parameters and the high frequency effects.

Fig. 4.30 Stripline parameterized structure.
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Fig. 4.31 Frequency characteristic Re(S11): nu-
merical model vs measurements.

4.2.8.1 Validation of the nominal model

The first step of the validation refers to the simulation of the nominal case
for which measurements (S parameters) are available from the European project
FP5/Codestar (http://www.magwel.com/codestar/). By using dFIT +
dELOB [50], at low frequencies, the following values are obtained:

R = 18.11kΩ/m, L = 322nH/m, C = 213pF/m, (4.131)

which are coherent with the values obtained from the measurements at low frequen-
cies, and validates the grid used and the extension of the boundary used in the nu-
merical model. Then, by using the method described in section 4.2.4 the dependence
of p.u.l. parameters with respect to the frequency was computed. The comparison
between the resulting S parameters and the measurements is shown in Fig. 4.31 and
it validates the nominal model. The sensitivities of the p.u.l. parameters are com-
puted using the CHAMY software [62], by direct differentiation method applied



4 Parameterized Model Order Reduction 145

Fig. 4.32 Left: Reconstruction of the p.u.l. C from Taylor Series first order expansion; Right:
Relative error w.r.t. the relative variation of parameter p3.

to the state space equations [40]. They could also be computed by Adjoint Field
Technique (AFT) [38, 52].

4.2.8.2 Parametric Models

In this section, the accuracy of several parametric models for the line capacitance
is investigated.

The first sets of tests considered only one parameter that varies, namely the width
of the line, p3. The nominal value chosen was p3 = 3µm and samples in the inter-
val [1,5]µm were considered. The reference result was obtained by simulated the
samples separately (each sample was discretized and solved). These were compared
with the approximate values obtained from models A and R (Fig. 4.32). As expected
intuitively, the dependence w.r.t. p3 is almost linear and the A model is better than
the R model. Considering the relative variation of the parameters less than 15%
(which is the typical limit for the technological variations nowadays) the relative
variation of the output parameter is obtained (Fig. 4.32, right). The errors of both
affine and rational first order models for p.u.l. parameters are given in Table 4.2.
Model A based on the first order Taylor series approximation has a maximal error
for technologic variations 1.78% for p.u.l. resistance when p3 is variable, whereas
model R has an approximation error of only 0.6% for the same range of the techno-
logical variations for p.u.l. capacitance when p3 is variable. Using (4.74) one can be
easily identify which is the best model for any case.

The second set of tests considered two parameters that vary simultaneously: p1
and p3. For reference, a set of samples in [0.8,1.2]µm × [2,4]µm were considered.
The p.u.l. capacitance was approximated using the additive, rational and multiplica-
tive models described above. In this case, a new model M is computed using an
additive model for p3 and a rational one for p1, which is the best choice. Fig. 4.33,
left compares the relative variation of the errors w.r.t. a relative variation of param-
eter p1 for a variation of p3 of 5%. Model M provides lower errors (maximum error
is 2%) than models A (3.7%) and R (2.2%). Fig. 4.33,right illustrates that in the
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Table 4.2 Maximal errors [%] of p.u.l. parameters for technology variation of ± 15%.

Parameter Quantity Affine (A1) Rational (R1)

p1 L 0.11 0.15
C 0.65 0.25

p3 R 1.78 0.22
L 0.34 0.04
C 0.035 0.6

Fig. 4.33 Left: Relative error w.r.t. the relative variation of parameter p1, for a variation of p3 of
5%; Right: Relative error w.r.t. the relative variation of parameter p3, for a variation of p1 of 10%

range from 20% to 40% model M is the best one if we look at the variation w.r.t. p3
for a variation of p1 of 10%.

Thus, by using the appropriate multiplicative models in the modeling of the tech-
nological variability, the necessity of higher order approximations can be elimi-
nated.

4.2.8.3 Frequency dependent parametric models

In this case, the parameter considered variable is h2. The sensitivity of the admit-
tance with respect to this p arameter has been calculated according to (4.61), using
EM field solution. By applying Vector Fitting, a transfer function with 8 poles has
been obtained. This conduced to an overdetermined system of size (236, 26) which
has been solved with an accuracy (relative residual) of 3.7% (Fig.4.34-left). Finally,
the relative error of the A-VFIT model is 1.09 % compared to the relative error of
the A model which is 0.95 % for a relative variation of the parameter of 10 % (in
Fig. 4.34-right the three curves are on top of each other).
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Fig. 4.34 Left: Variation of the admittance sensitivity with respect to the frequency; Right: Refer-
ence simulation vs. answer obtained from the frequency dependent parametric model (4.94).

4.2.9 Conclusions

The paper describes an effective procedure to extract reduced order parametric
models of on-chip interconnects allowing model order reduction in coupled field
(PDE) - circuit (DAE) problems. These models consider all EM field effects at
high frequency, described by 3D-FW Maxwell equations. The proposed procedure
is summarized by the following steps:

• Step 1 - Solve two field problems (2D EQS and FW-TM) and compute frequency
dependent p.u.l. parameters and their sensitivities with respect to the geometric
parameters that vary;

• Step 2 - Compute admittance for the real length of the line and its sensitivities
with respect to the variable parameters;

• Step 3 - Choose the A/R variation model, i.e. the appropriate terminal excitation
(admittance or impedance);

• Step 4 - Apply Vector Fitting for the nominal case in order to extract a rational
model for the circuit function with respect to the frequency;

• Step 5 - Compute sensitivities of poles and residues of the circuit function by
solving a least square problem;

• Step 6 - Assemble the frequency dependent parametric model by using the com-
pact expression (4.94) or by synthesis of a SPICE like parametric netlist having
frequency constant parameters.

Step 1 is dedicated to the extraction of the frequency dependent p.u.l. line pa-
rameters in a more robust and flexible way than the inversion of the equation of the
short line segment. It is based on the solving of two field problems: 2D-EQS field
which describes the transversal effects such as capacitive coupling whereas EMQS-
TM field describes the longitudinal effects such as inductive, skin effect and eddy
currents. The longitudinal propagation is described by the classic TL equations, but
with frequency dependent p.u.l. line parameters.

Then (step 2), variability models for TL structures considering the dependency of
p.u.l. parameters w.r.t. geometric parameters, at a given frequency were analyzed. A
detailed study of the line sensitivity was made by using numeric techniques. For one
parameter case, the proposed methods avoid the evaluation of higher order sensitiv-
ities, but keeping a high level of accuracy by introducing models based on a rational
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approximation in the frequency domain. The multi-parametric case has been ana-
lyzed, in addition, a multiplicative parametric model (M) has been proposed. This is
based on the assumption that the quantity of interest can be expressed with separated
variables, for which A and/or R models are used. Model M is sometimes better than
A and R models obtained from Taylor Series expansion. Its specific terms (prod-
ucts of first order sensitivities) can thus approximate higher order, cross-terms of
Taylor Series. In order to automatically select the best first order model for a multi-
parametric problem, the validity ranges of direct and reversed quantities have to be
evaluated (step 3). Once we establish the best model (A or R) for each parameter, the
M model will be easily computed by multiplication of individual submodels. Our
numerical experiments with the proposed algorithm in all particular structures we
investigated prove that the technological variability (e.g.±20% variation of geomet-
ric parameters, which is typical for the technology node of 65 nm) can be modeled
with acceptable accuracy (relative errors under 5%) using only first order parametric
models for line parameters. This is one of the most important results of our research.

Next, a rational approximation in the frequency domain, obtained with Vector
Fitting (step 4) is combined with a first order Taylor Series approximation. The
sensitivities of poles, residues and constant terms are computed by solving an over-
determined system of linear equations (step 5). The main advantage of this approach
is that the final result is amenable to be synthesized with a small parameterized
circuit (step 6). This method relies on the differential equation macromodel which
is extended in order to take into account the variability. It also assumes that a first
order Taylor Series expansion for the parameter that varies is accurate enough for
the frequency range of interest. As shown in our previous work, there is a specific
excitation type of terminals for which this assumption is acceptable for a certain
frequency range. The passivity of the obtained circuit is guaranteed by the fact that
the transfer function used as input for the synthesis procedure is passive as it is
obtained by a fitting procedure with passivity enforcement.

Thus, the proposed method allows one to obtain parameterized reduced order cir-
cuits, having equivalent behavior as on-chip interconnects. These equivalent circuits
described in SPICE language are extracted by considering all electromagnetic field
effects in interconnects at very high frequency. This method applied to extract the
reduced order model of the system described by PDE is a robust and efficient one,
being experimentally validated.

The advantages of the proposed approach are:

• its high accuracy, due to the consideration of all field effects at high frequency;
• fast model extraction due to the reduced order of degrees of freedom in the nu-

merical approach;
• high efficiency of the model order reduction step due to the use of Vector Fitting;

in all interconnect studied cases, extracted models with an order less than 10 had
an acceptable accuracy for designers.

• simple geometric variability models based only on first order sensitivities, with
extended valability domain due to the appropriate excitation;

• appropriate variation model for frequency and length of interconnects, due to the
transmission lines approach;
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• the reduced SPICE models are simple and compact, containing ideal linear ele-
ments with lumped frequency independent constant parameters: capacitances, re-
sistances and voltage controlled current sources; these element parameters have
very simple affine variation in the case of the geometric variability.

The proposed method was successfully applied to model technological variabil-
ity, without being necessary the use of higher order sensitivities.
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58. RĂDULEŢ, R., TIMOTIN, A., ŢUGULEA, A.: The propagation equations with transient pa-
rameters for long lines with losses. Rev. Roum. Sci. Tech., 15(4), pp. 585–599 (1979)
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4.3 Model Order Reduction and Sensitivity Analysis

3Several types of parameters p = (d,s,θ) influence the behaviour of electronic
circuits and have to be taken into account when optimizing appropriate performance
functions f (p): design parameters d, manufacturing process parameters s, and op-
erating parameters θ . The impact of changes of design parameters, e. g., the width
and length of transistors or the values of resistors, plays a key role in the design of
integrated circuits. Deviations from the nominal values defined in the design phase
arise in the manufacturing process. Hence, to guarantee that the physical circuit
shows the performances that were specified, the design has to be robust with respect
to variations in the manufacturing phase. It has to be analysed how sensitive to pa-
rameter changes an integrated circuit and its performance is.
The manufacturing process parameters have a statistical impact, f.i., for the oxide

3 Section 4.3 has been written by: Michael Striebel, Roland Pulch, E. Jan W. ter Maten, Zoran
Ilievski, and Wil H.A. Schilders. Of parts of this Section extensions can be found in the Ph.D.-
Thesis of the fourth author [95].
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thickness threshold. Examples of operating parameters are temperature and supply
voltage.
Sensitivity can ease calculations on statistics (for instance by including the sen-
sitivity in calculating the standard deviation of quantities that nearly linearly de-
pend on independent normal distributed parameters [91]: if F(p) ≈ F0 +Ap with
pi ∼ N(0,σi) then σ2(F i) ≈ ∑ j a2

i jσ2
j (σ(Fi), and σ j being the standard deviation

of Fi and p j, resp.).
For optimizing one wants to minimize a performance function f (p) while also sev-
eral constraints have to be satisfied. The performance function f (p) and the con-
straint functions c(p) can be costly to evaluate and are subject to noise (for instance
due to numerical integration effects). For both, the dependency on p can be highly
nonlinear. Here there is interest in derivative free optimization [102], or to response
surface model techniques [79, 80, 92, 115]. Partly these approaches started because
in circuit simulation, sensitivities of f (p) and c(p) with respect to p are not always
provided (several model libraries do not yet support the calculation of sensitivities).
However, when the number of parameters increases adjoint sensitivity methods be-
come of interest [73,74]. For transient integration of linear circuits this is described
in [76,77]. In [96] a more general procedure is described that also applies to nonlin-
ear circuits and retains efficiency by exploiting (nonlinear) techniques from Model
Order Reduction.
A special sensitivity problem arises in verification of a design after layouting. Dur-
ing the verification the original circuit is extended by a huge number of ‘parasitics’,
linear elements that generate additional couplings to the system. To reduce their ef-
fect the dominant parasitics should be detected in order to modify the layout.
Adjoint equations are also used for goal achievement. One example is in global er-
ror estimation in numerical integration [75, 99].
In this Section we describe adjoint techniques for sensitivity analysis in the time
domain and indicate how MOR techniques like POD (Proper Orthogonal Decom-
position) may fit here. Next we give a short introduction into Uncertainity Quantifi-
cation which techniques provide an alternative way to perform sensitivity analysis.
Here pMOR (parameterized MOR) techniques can be exploited.

4.3.1 Recap MNA and time integration of circuit equations

Modified Nodal Analysis (MNA) is commonly applied to model electrical cir-
cuits [86,90]. Including the parameterization the dynamical behaviour of a circuit is
then described by network equations of the general form

d
dt

q(x(t,p),p)+ j(x(t,p),p) = s(t,p). (4.132a)

The state variables x(t,p) ∈ Rn, i. e., the potentials at the network’s nodes and
the currents through inductors and current sources, are the unknowns in this sys-
tem. They depend implicitly on the parameters gathered in the vector p ∈ Rnp ,
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because the voltage-charge and current-flux relations of capacitors and inductors,
subsumed in q(·, ·) ∈Rn, the voltage-current relations of resistive elements, appear-
ing in j(·, ·) ∈Rn and the source terms s(·, ·) ∈Rn, i. e., the excitation of the circuit,
may depend on the parameterization. The elements’ characteristics q, j are usually
nonlinear in the state variables x, e. g., when transistors or diodes are present in the
design at hand.
If, however, all elements behave linear with respect to x, the MNA equations are of
the form

C(p)ẋ(t,p)+G(p)x(t,p) = s(t,p), (4.132b)

where ẋ denotes total differentiation, (d/dt)x(t,p) with respect to time. C(p) and
G(p) are real n×n-matrices that might depend nonlinearly on the parameters p.
Usually the network equations (4.132) state a system of Differential-Algebraic
Equations (DAEs), i. e., (∂/∂x)q(x,p) (or C(p)) does not have full rank along
the solution trajectory x(t,p).
In transient analysis the network equations (4.132) are solved on a time-interval
[t0, tend] ⊂ R, where the parameter vector p is fixed and a (consistent) initial value
x0,p := x(t0,p) ∈Rn is chosen. As the system can usually not be solved exactly, nu-
merical integration, e. g., BDF (backward differentiation formulas) or RK (Runge-
Kutta) methods are used to compute approximations xi,p ≈ x(ti,p) to the state vari-
ables on a discrete timegrid {t0, . . . , tl , . . . , tK = tend}. For a timestep h form tl−1
to tl = tl−1 + h, multistep methods, like the BDF schemes, approximate the time
derivative d

dt q(x(tl ,p),p) by some k-stage operator ρq(xl,p,p) := αq(xl,p,p)+β ,
where α = α(h) ∈R is the integration coefficient and β ∈Rn is made up of history
terms q(xµ,p,p) at the timepoints tµ for µ = l−k, . . . , l−1. For the backward Euler
method, e. g., we have

ρq(xl,p,p) :=
1
h︸︷︷︸
=α

q(xl,p,p)−
1
h

q(xl−1,p,p)
︸ ︷︷ ︸

=β

.

This results at each discretisation point tl ∈ {t0, t1, . . . , tK} in a nonlinear equation
for the state variable xl,p of the form

αq(xl,p,p)+β + j(xl,p,p) = s(tl ,p). (4.133)

This nonlinear problem is usually solved with some Newton-Raphson technique,
where in each underlying iteration ν = 1, 2, . . . a linear system with a system matrix
of the form

J(x(ν)l,p ) =

(
α

∂q(·,p)
∂x

+
∂ j(·,p)

∂x

)
(x(ν)l,p ) (4.134)
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appears. Typically, simplified Newton-Raphson iterqations may be applied. i.e., only
the evaluation at x(1)l,p is involved. Note, also when applying a onestep method, like
an RK-scheme, linear systems, made up of the Jacobian (4.134) arise.

4.3.2 Sensitivity Analysis

We encounter that the state variables x(t,p) implicitly depend on the the param-
eters p ∈ Rnp . Hence, one is interested in how sensitive the behavior of the circuit
with respect to variations in the parameters is. Thinking about ”behavior of the sys-
tem” we can basically have in mind :

(i) How do the state variables vary with varying parameters?
(ii) How do measures derived from the state variables, e. g., the power consumption

change with varying parameter?

Furthermore, due to usually nonlinear dependence of the element characteristics
q and j or C and G, respectively, on the parameters, we are interested in variations
around a nominal value p0 ∈ Rnp .
In the following we will give a brief overview on the different kinds of sensitivities
and how they can be treated numerically. For further reading we refer to the PhD
thesis by Ilievsky [95] and the papers by Daldoss et al [78], Hovecar et al. [93], Cao
et al. [73, 74] and Ilievski et al. [96].

4.3.2.1 State Sensitivity

In (transient) state sensitivity one is interested, how the trajectories of the state
variables x vary with respect to the parameters p around the nominal setting p0.
Hence, the goal is to compute

χp0
(t) :=

dx(t,p)
dp

∣∣
p=p0

∈ Rn×np , for all t ∈ [t0, tend]. (4.135)

As described by Daldoss et al. [78] we linearize the nonlinear network equations
(4.132b) around the nominal parameter set p0, i. e., we differentiate with respect to
p. We assume that the element functions q, j are sufficiently smooth such that we
can exchange the order of differentiation (Schwarz’s theorem) and get:

d
dt

[
Cx(t) ·χp0

(t)
]
+Gx(t) ·χp0

(t) = Sp(t)− (
d
dt

Cp(t)+Gp(t)) (4.136)
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with Cx(t) :=
∂q
∂x

(x(t,p0),p0), Cp(t) :=
∂q
∂p

(x(t,p0),p0),

Gx(t) :=
∂ j
∂x

(x(t,p0),p0), Gp(t) :=
∂ j
∂p

(x(t,p0),p0),

Sp(t) :=
∂ s
∂p

(t,p0),

where Cx(t),Gx(t) ∈ Rn×n and Cp(t),Gp(t),Sp(t) ∈ Rn×np and x(t,p0) solves the
network problem (4.132a).
The initital sensitivity value χp0

(t0) =: χ p0,0 =: χDC
p0

can easily be calculated as
the sensivity of the DC-solution x(0,p0) := xDC

p0
of the network equation (4.132a),

satisfying
j(xDC

p0
,p0) = s(t0,p0). (4.137)

Obviously, the DAE (4.136) states a linear time varying dynamical system for the
state sensitivity χp0

, even when (4.132a) was nonlinear. We assume that we have
used the backward Euler method to solve the network problem (4.132). Using the
same time grid for solving the state sensitivity problem (4.136), we advance from
time point tl−1 to tl = tl−1 + h, i. e., we compute χp0,l ≈ χp0

(tl) again with the
backward Euler by solving

Ml χp0,l = rhsl (4.138)

with

Ml : =
1
h

Cx(tl)+Gx(tl)≈
∂q
∂x

(xl,p0 ,p0)+
∂ j
∂x

(xl,p0 ,p0),

rhsl : = Sp(tl)− (
d
dt

Cp(tl)+Gp(tl))+
1
h

Cx(tl−1) ·χp0,l−1

≈ Sp(tl)−
(

1
h

(
∂q
∂p

(xl,p0 ,p0)−
∂q
∂p

(xl−1,p0 ,p0)

)

+
∂ j
∂p

(xl,p0 ,p0)

)
− 1

h
∂q
∂x

(xl−1,p0 ,p0) ·χp0,l−1.

(4.139)

We note, that the partial derivatives with respect to x have already been computed in
the transient analysis and are available, if they have been stored. Especially, the sys-
tem matrix Ml is the same as we have used in applying the backward Euler method
in the underlying simulation: within the Newton iterations these where the system
matrices in the steps where convergence was recorded. Hence, also the decompo-
sition of this matrix is available, such that the system could be solved efficiently.
For schemes other than the backward Euler, we can also state, that the solution of
the transient sensitivity problem (4.136) needs ingredients that are available (if they
have been stored) from the solution of the network problem with the same method
and the same step size. A reasoning for this and details on step size control and error
estimation can be found in the paper by Daldoss et al. [78].
However, the sensitivities of the element functions q, j and s have to be calculated.
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In total, the evaluation of the right-hand side rhsl requires O(np · n2)+O(np · n)
operations [96]. As in addition a lot of data has to be stored, computing the state
sensitivities for circuits containing a large number of parameters is not tractable.

4.3.2.2 Observation Function Sensitivity

Often one is not interested in the sensitivity χp0
(t) of the states of the parameter

dependent network problem (4.132) but rather in the sensitivity of some perfor-
mance figures of the system, like e. g., power consumption. These measures can
usually be described by some observation function Γ (x,p) ∈ Rno of the form

Γ (x,p) =
∫ tend

t0
g(x, t,p)dt, (4.140)

where the function g : Rn ×R×Rnp → Rno is such that the partial derivatives
∂g/∂x and ∂g/∂p exist and are bounded. Note that at the left-hand side of (4.140)
x = x(.,p), which is a whole waveform in time.
The sensitivity of the observation function Γ : Rn×Rnp → Rno around some nomi-
nal parameterset p0 ∈ Rnp , clearly is

dΓ
dp

(x(p0),p0) =
∂Γ
∂x

(x(p0),p0)
∂x
∂p

(x(p0),p0)+
∂Γ
∂p

(x(p0),p0) ∈ Rno×np .

(4.141)

For problems where the sensitivity of a few observables, i. e., where no is small but
the system depends on a large number np of parameters, the adjoint method, intro-
duced by Cao et al. in [73, 74] is an attractive approach. In the mentioned papers,
the observation sensitivity problem is derived for implicit differential equations of
the form

F(x, ẋ, t,p) = 0. (4.142)

Here we derive the observation sensitivity problem for problem (4.132a) as we usu-
ally encounter in circuit simulation. The idea however, follows the idea presented
by Cao et al. in the papers mentioned.
The observation function’s sensitivity is not calculated directly. Instead, an inter-
mediate quantity λ , defined by a dynamical system, the adjoint model [82] of the
parent problem, is calculated.

4.3.2.3 Adjoint System for Sensitivity Analysis

Instead of considering the definition (4.140) of the observation function Γ di-
rectly, we define an augmented observation function
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ϒ (x,p) := Γ (x,p)−
∫ tend

t0
λ T (t)

[
d
dt

q(x(t,p),p)+ j(x(t,p),p)− s(t,p)
]

dt,

(4.143)

which arises from coupling the dynamics and the observation function Γ by a La-
grangian multiplier λ (t) ∈ Rn×no that we will define more precisely furtheron.
If x(t,p) solves the network equations (4.132a) for p = p0 it holds ϒ (x,p0) =
Γ (x,p0) and also the sensitivities coincide:

dΓ
dp

(x,p0) =
dϒ
dp

(x,p0).

Note, that where it is clear from the context we omit in the following the specifica-
tions of the evaluation points, e. g., (x,p0).
By the definitions (4.140) and (4.143) of the observation function and the augmented
observation function, respectively, we get

dΓ
dp

=
∫ tend

t0

(
∂g
∂p

+
∂g
∂x

∂x
∂p

)
dt−

∫ tend

t0
λ T (t)

(
d
dt

dq
dp

+
dj
dp
− ds

dp

)
dt. (4.144)

We have a closer look at the second integral and apply integration by parts:

∫ tend

t0
λ T (t)

(
d
dt

dq
dp

)
dt =

[
λ T dq

dp

]tend

t0

−
∫ tend

t0

dλ T

dt
dq
dp

dt.

Recombining this with the observation sensitivity (4.144) and expanding the total
derivatives with respect to p we see

dΓ
dp

=−
[
λ T (t)

(
Cx(t)χp0

(t)+Cp(t)
)]tend

t0

+
∫ tend

t0

(
dλ T

dt
Cx(t)−λ T Gx(t)+ γx(t)

)
·χp0

(t)dt

+
∫ tend

t0

(
γ p(t)+

dλ T

dt
Cp(t)−λ T [Gp−Sp(t)]

)
dt,

(4.145)

where Cx,Gx,Cp,Gp and Sp are the quantities defined in Eq. (4.136) and

γx(t) :=
∂g
∂x

(x(t,p0)) ∈ Rno×n, γ p(t) :=
∂g
∂p

(x(t,p0)) ∈ Rno×np

are the partial derivatives of the kernel of the observable and can thus be computed,
if the solution trajectory x(t,p0) is known.
In the present form (4.145) the calculation of the observation function’s sensitivity
still demands to know the development of the state sensitivities χp0

(t). As the above
considerations are valid for any smooth λ (t)∈Rn×no we may choose this parameter
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such that the state sensitivity disappears in the equation. We have already seen that
the sensitivity χDC

p0
of the circuit’s operating point xDC

p0
can easily be calculated.

Hence, choosing λ such that

CT
x (t)

dλ
dt
−Gx(t)T λ =−γT

x (t) (4.146a)

and λ T (T )Cx(T ) = 0, (4.146b)

the calculation of the observable function’s sensitivity reduces to evaluating

dΓ
dp

=λ T (t0)
(

Cx(t0)χDC
p0

+Cp(t0)
)
−λ T (tend)Cp(tend)

+
∫ tend

t0

(
γ p(t)+

dλ T

dt
Cp(t)−λ T [Gp−Sp(t)]

)
dt.

(4.147)

Equation (4.146a) inherits the basic structure of the underlying network problem
(4.132a). Therefore, this equation defining the Lagrangian λ (t), is usually a DAE
system. This linear system is called the adjoint system to the underlying network
equation. For DAEs of index up to 1, the choice (4.146b) defines a consistent initial
value [74]. For systems of index larger and equal to 2, the consistent initialisation is
more difficult. As an initial value for λ is specified for the end of the interval [t0, tend]
of interest, the adjoint equation (4.146a) is solved backwards in time.
Several kind of observation functions also need ẋ = d

dt x in addition to x. For in-
stance when considering jitter one is interesting in the time difference between two
subsequent times τ1 and τ2 when a specific unknown reaches or crosses a given
value c (with equal signs of the time derivative). For the frequency of the jitter we
have f = 1/T = 1/(τ2− τ1). Let the specific unknown be xi(t, p). The time mo-
ment τ for which xi(τ, p) = c may be determined by inverse interpolation between
two time points t1 and t2 and known values xi obtained by time integration such
that xi(t1, p) < c < xi(t2, p). Of course τ depends on p, so more precisely we have
xi(τ(p), p) = c. By differentiation we obtain: d(τ)/dp =−[d(xi)/dt]−1d(xi)/dp.
Hence we are also interested in a more general case than (4.140)

H(ẋ(p),x(p),p) =
∫ tend

t0
F(ẋ(t,p),x(t,p),p)dt. (4.148)

By a similar analysis as presented in [96] for (4.144)-(4.145) we derive ( ˆ̇x= ∂ ẋ/∂p)
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d
dp

H(ẋ(p),x(p),p) =
∫ tend

t0

(∂F
∂ ẋ
· ˆ̇x+ ∂F

∂x
· x̂+ ∂F

∂p

)
dt

= −
(

ζ T (tend)Cx(tend)−
∂F
∂ ẋ

(tend)
)

χp0
(tend)−ζ T (tend)Cp(tend)

+
(

ζ T (t0)Cx(t0)−
∂F
∂ ẋ

(t0)
)

χp0
(t0)+ζ T (t0)Cp(t0)

+
∫ tend

t0

([dζ T

dt
Cx−ζ T Gx−

d
dt

(
∂F
∂ ẋ

)+
∂F
∂x

]
·χp0

+
dζ T

dt
Cp−ζ T

(
Gp−Sp

)
+

∂F
∂p

)
dt. (4.149)

which holds for any ζ (t) ∈ Rn×no . If ζ is chosen such that

CT
x

dζ
dt
−GT

x ζ =
d
dt
(

∂F
∂ ẋ

)T −
(∂F

∂x

)T
, (4.150)

with ‘initial’ value CT
x ζ (tend) = (

∂F
∂ ẋ

)T (tend), (4.151)

a significant reduction occurs in (4.149) and x̂(t) is not explicitly needed. This gen-
eralizes the result in [96] (see also [64]). Note that χp0

(0) = x̂(0,p0) = x̂DC(p0),
which is the sensitivity of the DC-solution, which one needs to determine explicitly.
Some efficiency is gained by calculating ζ T (0)Cx(0)x̂DC = [CT

x (0)ζ (0)]T ˆstateDC
(when np ≫ 1). Note however that (4.151) can be satisfied only when the right-
hand side is in the range of CT

x . Because in (4.150)-(4.151) the right-hand sides are
evaluated at x(t,p), in general, the solution ζ will depend on p, even in the case of
constant matrices Cx and Gx. This is in contrast to [64].

Summing up, the backward adjoint method for computing the sensitivity of the ob-
servable Γ with respect to parameter variations around a nominal parameter setting
p0 is carried out by the following steps

1. solve the network DAE (4.132a) for x = x(t,p0), on the interval [t0, tend];
2. solve the backward adjoint problem (4.146a), subject to the initial condition

(4.146b) for λ on the interval [tend, t0], i. e., backward in time;
3. compute the observable sensitivity dΓ /dp using the expression (4.147).

Carrying out the backward adjoint method, one has to consider several aspects we
do not address here. Amongst these are the evaluations of the partial derivatives
like Cx along the solution trajectory. On the one hand, these derivatives are usually
not available as a closed function but are approximated by finite differences. On
the other hand, the evaluation points, i. e., points on the trajectory x(t,p0) are also
available as approximations only. Furthermore, the integral in the formula (4.147)
has to be approximated by a numerical quadrature. The nodes needed in the accord-
ing scheme may not be met exactly during transient simulation and/or during the
backward integration of the adjoint problem. For further reading on these problems
we refer to [95, 96].
However, leaving all these aspects aside, one has to integrate two dynamical systems
numerically. First the (nonlinear) forward problem (4.132a) for the states and then
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the linear backward problem (4.146a). The contribution of the COMSON project for
transient sensitivity analysis was to add model order reduction (MOR) to the pro-
cess. More precisely, the idea elaborated during the project was to solve an order
reduced variant of the backward problem where the data needed to apply the re-
duction is calculated from the forward solving phase. In the next section we will
describe the very basic idea of MOR and give a brief introduction to the specific
technique that was used in this project.

4.3.3 Model Order Reduction (with POD)

Solving a dynamical system with any numerical scheme implies to set up and
solve a series of linear equations. In circuit simulation typically the dimension of
these systems are in a range of 105 to 109. Both the evaluation of the system matrices
and right-hand sides, e. g., Ml and rhsl in (4.138)-(4.139), as well as solving the
system, i. e., decomposing the system matrices, is computationally costly.
However, in circuit design often the main interest is the analysis of how a circuit
block processes an input signal, e. g., if some input signal is amplified or damped by
the circuit. That means, one may not be interested in all n internal state variables but
only in a limited selection. This concern is described by an input-output variant of
the network model. For a linear network problem (4.132b), omitting the parameters
for ease of notation, e. g., the corresponding input-output system reads

Cẋ(t)+Gx(t) = Bu(t),
y(t) = Lx(t),

(4.152)

where u(t) ∈ Rm and y(t) ∈ Rq are the input and the output of the system, injected
to and extracted from the system by the matrices B ∈ Rn×m and L ∈ Rq×n.
As in an input-output setting, the states x represent an auxiliary variable only. The
idea of MOR is to replace the high-dimensional dynamical system (4.152) by

Ĉż(t)+ Ĝz(t) = B̂u(t),

ỹ(t) = L̂z(t),
(4.153)

where z(t) ∈ Rr and the system matrices Ĉ,Ĝ ∈ Rr×r, B̂ ∈ Rr×m and L̂ ∈ Rq×r are
chosen such that r≪ n and ỹ(t)≈ y(t).
There are various methods to construct the reduced variant (4.153) from the full
problem (4.152). We refer to Chapter 3 for an overview, as well as to [63,67,68,70,
104, 106–108, 117] for further studies.
A large class of MOR methods are based on projection. These methods determine a
subspace of dimension r, spanned by a basis of vectors vi ∈ Rn (i = 1, . . . ,r). The
original state vector x(t) is approximated by an element of this subspace that can be
written in the form Vz(t), where V = (v1, . . . ,vr) ∈ Rn×r. Hence, one replaces x(t)
by Vz(t) in (4.152) and projects the equation onto the space subspaces spanned by
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the columns of V by a Galerkin approach. In this way, a dynamical system (4.153)
emerges where the system matrices are given by

Ĉ := VT CV, Ĝ := VT GV, B̂ := VT B, L̂ := LV. (4.154)

4.3.3.1 Proper Orthogonal Decomposition

While other MOR methods start operating from the matrices C,G,B and L, the
method of Proper Orthogonal Decomposition (POD) constructs the matrix V, whose
columns span the reduced space the system (4.152) is projected on, from the space
that is spanned by the trajectory x(t), i. e., the solution of the dynamical system. The
method applies to nonlinear systems as well.
Recall, that our aim is to construct a reduced model for the backward adjoint prob-
lem (4.146). As this is a linear system from which we know the system matrices only
after a solution of the underlying forward network problem (4.132a), POD seems to
be the best choice for this task.
The mission POD fulfills is to find a subspace approximating a given set of data in
an optimal least-squares sense. The basis of this approach is known also as Principal
Component Analysis and Karhunen-Loève theorem from picture and data analysis.
The mathematical formulation of POD [104, 105, 117] is as follows: Given a set of
K datapoints X := {x1, . . . ,xK}, a subspace S⊂ Rn is searched for that minimizes

‖X−ρX‖2
2 :=

1
K

K

∑
k=1
‖xk−ρxk‖2

2, (4.155)

where ρ : Rn → S is the orthogonal projection onto S, which has {ϕ1, . . . ,ϕr} as an
orthonormal basis of S.
This problem is solved, applying the Singular Value Decomposition (SVD) to the
matrix X := (x1, . . . ,xK) ∈ Rn×K , which is called snapshot matrix, as its columns
are (approximations to) the solution of the dynamical system (4.152) at timepoints
t1, . . . , tK ∈ [t0, tend]. The SVD applied to the matrix X, provides three matrices:

Φ ∈ Rn×n orthogonal,

Ψ ∈ RK×K orthogonal,

Σ = diag(σ1, . . . ,σν) ∈ Rν×ν with σ1 ≥ ·· · ≥ σν > σν+1 = . . .= σK = 0,

such that

X = Φ
(

Σ 0
0 0

)
Ψ T , (4.156)

where the columns of Φ and Ψ are left and right eigenvectors, respectively, and
σ1, . . . ,σν are the singular values of X.
Then, for any r ≤ ν , taking ϕ1, . . . ,ϕr as the first r columns of the matrix Φ is
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optimal in the sense that it minimizes the projection mismatch (4.155).
Both cases, n≥ K and n≤ K, are allowed; in practise one often has n≫ K.
Finally, the MOR projection matrix V in (4.154) is chosen made up of these basis
vectors:

V := (ϕ1, . . . ,ϕr) ∈ Rn×r.

To understand why the first r columns of Φ solve the minimization problem (4.155)
one can recall that for i = 1, . . . ,n the ith column ϕ i of Φ is actually an eigenvector
of the correlation (or covariance) matrix of the snapshots with σ2

i as eigenvalue:

XXT ϕ i = σ2
i ϕ i.

Intuitively the correlation matrix XXT detects the principal directions in the data
cloud that is made up of the snapshots x1, . . . ,xK . The eigenvectors and eigenvalues
can be thought of as directions and radii of axes of an ellipsoid that incloses the
cloud of data. Then, the smaller the radii of one axis is, the less information is lost
if that direction is neglected.
We abandon to explain the derivation of POD in detail here as in literature e. g.,
[63, 104, 117] this is well explained. For details on the accuracy of MOR with POD
we refer to papers by Petzold et al [94, 105].

4.3.4 The BRAM algorithm

In [96] it was observed that a forward analysis in time of (4.132a) automatically
provides provides snapshots x(ti,p) at time points ti. This can lead to a reduced
system of equations for ζ (t) = Vζ̃ in (4.150)-(4.151)

VT CT
x V

dζ̃
dt
−VT GT

x Vζ̃ = VT d
dt
(

∂F
∂ ẋ

)T −VT
(∂F

∂x

)T
, (4.157)

with ‘initial’ value VT CT
x Vζ̃ (tend) = VT (

∂F
∂ ẋ

)T (tend), (4.158)

Then the overall algorithm is described in Algorithm 4.1, without the lines 5-7.
Here it is assumed that the matrices are saved after the forward simulation. It is also
assumed that for the adjoint system the same step sizes are used as in the forward
run. If not, additional interpolation has to be taken into account to determine the
reduced matrices at intermediate solutions and also effort has to be spent in LU-
decomposition.
Apart from this discussion, the question is why this should work in general (apart
from special cases in [96]). The solution x≈Vx̃ depends on the right-hand side s of
(4.132a). Clearly VT s should contain the dominant behaviour of s. If VT [ d

dt (
∂F
∂ ẋ )

T −(
∂F
∂x

)T
] behaves similarly when compared to the right-hand side of (4.150) we may
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Algorithm 4.1 BRAM: Backward Reduced Adjoint Method
1: Integrate (4.132a) and store the solutions x(ti,p)
2: Build the snapshot matrix X = [x(t0,p), . . . ,x(tN ,p)] (where tN = tend)
3: Determine the singular value decomposition X = ΦT ΣΨ and dominant singular values

σ1, . . . ,σr .
4: Determine the Proper Orthogonal Decomposition (POD) time-independent projection matrix

V, such that x≈ Vx̃ and d
dt x≈ V d

dt x̃
5: if (BRAM II) then
6: Include a second forward time integration, now for the reduced system of equations.
7: end if
8: Integrate (4.157) backward in time using reduced matrices V⋆CT

x V and VT GT
x V and the pro-

jected right-hand side VT [ d
dt (

∂F
∂ ẋ )

T −
(

∂F
∂x

)T
]

expect a similar good approximation for the solution ζ ≈ Vζ̃ . Because the right-
hand side of (4.157) does not depend on ζ this can be checked in advance, before

solving (4.157). In the case of power loss through a resistor we have
(

∂F
∂x

)T
=

(Ax)T (for some matrix A) and we have to check if (Ax)T ≈ VT x̃T VT AT .
Another point of attention is that the projection matrix V found implies that we more
or less are looking to the sensitivity of the solution x̃ of

d
dt
[VT q(Vx̃(t,p),p)]+VT j(Vx̃(t,p),p) = VT s(t,p) (4.159)

rather than for the solution x of (4.132a). By this it is clear that V depends on p and
thus

x(t,p)≈ V(p)x̃(t,p) =⇒ ∂x
∂p
≈ ∂V

∂p
x̃+V

∂ x̃
∂p

. (4.160)

The question is: can we ignore the first term at the right-hand side of (4.160). Here
the last term represents the change inside the space defined by the span of the
columns of V. The first term represents the effect by the change of this space it-
self. One may expect that this term is smaller than the last term (‘the first term will
in general require more energy’), especially when the reduction is more or less de-
termined by topology. In several tests we made, this first term indeed was much
smaller than the other term.
Note that we not intend to solve (4.159) by using a fixed projection matrix V, valid
for p= p0, for several different values of p. The danger of obtaining improper results
when doing this was pointed out by [83]. Contrarily, we always apply an up-to-date
matrix V(p). However, this example shows that ∂V

∂p is not always negligible.
One can collect Ṽ = [V(p1), . . . ,V(pk)] and apply an additional SVD to Ṽ. This
procedure provides a larger, uniform, projection matrix V.
In [95] the parameter dependency of the singular values for POD was analysed for
a battery charger, for a ring oscillator, and for a car transceiver example. Also the nr
of dominant singular values as function of p was studied. Finally the angle between
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the subspaces for different p was studied. Note that one can use a matlab function
for this based on the algorithm by Knyazev-Argentati [98].
Finally, in [95] a modification was introduced in Algorithm 4.1 by introducing the
lines 5-7. Note that the additional step 6 is cheap. We obtain the solution of the
POD-reduced system. In [94, 104, 105, 117] error estimates are determined for the
approximation error of the POD approximation. Actually, in step 8, BRAM II deter-
mines the sensitivity of the POD solution. In Fig. 4.35 [95] the singular values of

Fig. 4.35 Singular values of POD after 3500 snapshots for a Li-ion charger for different values of
the area of a capacitor.

POD after 3500 snapshots within a simulation from t0 = 0ms and tend = 200ms for
a Li-ion charger for different values of the area of a capacitor. The parameter p took
values p = 30,32,34,36,38,40. Clearly the first 100 singular values are enough for
a good reconstruction, which as a by-product als shows a high potential for the ap-
plication of the BRAM methods as the dimension of the problem can be reduced by
roughly a factor 35. In Fig. 4.36 [95] the angle in the rotation of the principle vector
is studied, the nominal being for p = 30. The apparent jump to 90 degrees rotation
near the cut off point is due to matrix diagonal zero padding introduced in the gen-
eral case for principle vector analysis. These large 90 degree rotations are not due
to principle vectors influenced by parameter changes and should not be taken into
account.
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Fig. 4.36 Principle vector rotation as a function of the capacitor area for the problem in Fig. 4.35.

4.3.5 Sensitivity by Uncertainty Quantification

A modern approach to Uncertainty Quantification is to expand a solution x(t,p)
in a series of orthogonal polynomials in which the p is argument of the (multidi-
mensional) polynomials and the t appears in the coefficients. If the p are subject
to variations such a representation is called a generalized Polynomial Chaos (gPC)
expansion. Having established the expansion, this provides facilities similar like a
response surface model: fast and accurate statistics and sensitivity.
In this section we shortly summarize some basic items. We also point out how a
strategy for parameterized Model Order Reduction (pMOR) fits here. This strategy
contains a generalization of one of the pMOR algorithms described in Section 4.1
of this Chapter.
We will denote parameters by p = (p1, . . . , pq)

T and assume a probability space
given (Ω ,A ,P) with P : A → R (measure; in our case the range will be [0,1])
and p : Ω → Q⊆Rq,ω 7→ p(ω). Here we will assume that the pi are independent.
For a function f : Q → R, the mean or expected value is defined by

< f >=
∫

Ω
f (p(ω))dP(ω) =

∫

Q
f (p) ρ(p)dp. (4.161)

The specific probability distribution density is defined by the function ρ(p). A bi-
linear form < f ,g > is defined by
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Distribution Polynomial Weight function Support range

Gaussian Hermite Hn(p) e−
p2
2 (−∞,∞)

Uniform Legendre Pn(p) 1 [−1,1]
Beta Jacobi Pα,β

n (p) (1− p)α (1+ p)β [−1,1]
Exponential Laguerre Ln(p) e−p [0,∞)

Gamma Generalized Laguerre L(α)
n (p) pα e−p [0,∞)

Table 4.3 One-dimensional orthogonal polynomials related to well-known probability density
functions.

< f ,g >=
∫

Q
f (p) g(p) ρ(p)dp =< f g > . (4.162)

The last form is convenient when products of more functions are involved. Similar
definitions hold for vector- or matrix-valued functions f : Q → Rm×n.
We assume a complete orthonormal basis of polynomials (φi)i∈N, φi : Rq → R,
given with < φi,φ j >= δi j (i, j,≥ 0). When q = 1, φi has degree i. To treat a uni-
form distribution (i.e., for studying effects caused by robust variations) one can use
Legendre polynomials; for a Gaussian distribution one can use Hermite polyno-
mials [100, 119, 120]. Some one-dimensional polynomials are mentioned in Ta-
ble 4.3. A polynomial φi on Rq can be defined from one-dimensional polynomi-
als: φi(p) = ∏q

d=1 φid (pd). Actually i orders a vector i = (i1, . . . , iq)T ; however we
will simply write φi, rather then φi. An expample is given in (4.163), using Legen-
dre polynomials. Note that, due to normalization, L0(p) = 1/

√
2, L1(p) =

√
3/2 p,

L2(p) = 1
2

√
5
3 (3p2− 1) - see also [87]. In [88] one finds algorithms how to effi-

ciently generate orthogonal polynomials from a given weight function.

φ0(p) = L0(p1)L0(p2),

φ1(p) = L1(p1)L0(p2),

φ2(p) = L0(p1)L1(p2),

φ3(p) = L2(p1)L0(p2), (4.163)
φ4(p) = L1(p1)L1(p2),

φ5(p) = L0(p1)L2(p2).

We will denote a dynamical system by

F(x(t,p), t,p) = 0, for t ∈ [t0, t1]. (4.164)

Here F may contain differential operators. The solution x ∈Rn depends on t and on
p. In addition initial and boundary values are assumed. In general these may depend
on p as well.
A solution x(t,p) = (x1(t,p), . . . ,xn(t,p))T of the dynamical system becomes a
random process. We assume that second moments < x2

j(t,p) > are finite, for all
t ∈ [t0, t1] and j = 1, . . . ,n. We express x(t,p) in a Polynomial Chaos expansion
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x(t,p) =
∞

∑
i=0

vi(t) φi(p), (4.165)

where the coefficient functions vi(t) are defined by

vi(t) =< x(t,p),φi(p)> . (4.166)

Continuity/smoothness follow from the solution x(t,p) and similarly the construc-
tion of expected values and variances.
A finite approximation xm(t,p) to x(t,p) is defined by

xm(t,p) =
m

∑
i=0

vi(t) φi(p). (4.167)

For long time range integration m may have to be chosen larger than for short time
ranges. Further below we will describe how the coefficient functions vi(t) can be
efficiently approximated.
For functions x(t,p) that depend smoothly on p convergence rates for ||x(t, .)−
xm(t, .)||, in the norm associated with (4.162), are known. For instance, for one-
dimensional functions x(p) that depend on a scalar parameter p such that x(1), . . . ,x(k)

are continuous (i.e., derivatives w.r.t. p), one has

||x(.)− xm
H(.)||L2

ρ
≤ C

1
mk/2 ||x

(k)(.)||L2
ρ
, (Hermite expansion [65]), (4.168)

||x(.)− xm
L (.)||L2

ρ
≤ C

1
mk

√√√√ k

∑
i=0
||x(i)(.)||2

L2
ρ
, (Legendre expansion [120]).(4.169)

Here the L2
ρ -norms include the weighting/density function ρ(.). Note that the up-

perbound in (4.169) actually involves a Sobolev-norm. In [72] one also finds upper-
bounds using seminorms (that involve less derivatives).
For more general distributions ρ(.) convergence may not be true. For instance, poly-
nomials in a lognormal variable are not dense in L2

ρ . For convergence one needs to
require that the probability measure is uniqely determined by its moments [81].
One at least needs that the expected value of each polynomial has to exist. This
has a practical impact. The imperfections in a manufacturing process cause some
variability in the components of an electronic circuit. To address the variability, cor-
responding parameters or functions are replaced by random variables or random
fields for uncertainty quantification. However, the statistics of the parameters often
do not obey traditional probability distributions like Gaussian, uniform, beta or oth-
ers. In such a case one may have to construct probability distributions or probability
density functions, respectively, which approximate the true statistics at a sufficient
accuracy. Thereby, one has to match corresponding data obtained from measure-
ments and observations of electronic devices. The resulting probability distribution
functions should be continuous and all moments of the random variables should be
finite such that a broad class of methods like, e.g., Polynomial Chaos, is applicable.
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The integrals (4.166) can be computed by (quasi) Monte Carlo, or by multi-
dimensional quadrature. We assume quadrature grid points p1, p2, . . . ,pK and quadra-
ture weights wk, 1≤ k ≤ K, such that

< x(t,p),φi(p)>≈
K

∑
k=1

wk x(t,pk) φi(pk). (4.170)

We solve (4.164) for x(t,pk), k = 1, . . . ,K (K deterministic simulations). Here any
suitable numerical solver for (4.164) can be used. In fact (4.170) is a (discrete)
inner-product with weighting function wK(p) = ∑K

k=1 wk δ (p−pk). This approach
is called Stochastic Collocation [100, 119, 120]. Afterwards we determine

vi(t) =
K

∑
k=0

wk x(t,pk) φi(pk), for each i. (4.171)

Here the Polynomial Chaos expansion is just a post-processing step.
Only for low dimensions q, tensor-product grids of Gaussian quadrature are used.
Gaussian quadrature points are optimal for accuracy. In higher-dimensional cases
(q > 1) one prefers sparse grids [119,120], like the Smolyak algorithm. Sparse grids
may have options for refinement. Note that Gaussian points do not offer this refine-
ment. Stroud-3 and Stroud-5 formulas [114] have become popular [118].
An alternative approach to Stochastic Collocation is provided by Stochastic Galerkin.
After, inserting an expansion of the solution, in polynomials in p, into the equations
one orthogonally projects the residue of the equations to the subspace spanned by
these polynomials. By this, one gets one big system of differential equations in
which the vi are the unknowns [100, 119, 120]. In practise, Stochastic Collocation
is much more easily combined with dedicated software for the simulation problem
at hand than is the case with Stochastic Galerkin. Theoretically the last approach
is more accurate. However, statistics obtained with Stochastic Collocation is very
satisfactory.

We note that the expansion x(t,p), see (4.165), gives full detailed information when
varying p. From this the actual (and probably biased) range of solutions can be de-
termined. These can be different from envelope approximations based on mean and
variances.
Because of the orthogonality, the mean of x(t,p) and of xm(t,p) are equal and are
given by

Ep[x(t,p)] =
∫

Q
x(t,p)ρ(p)dp = v0(t) =

∫

Q
xm(t,p)ρ(p)dp. (4.172)

Using (4.171), we get an approximative value. The integrals in (4.172) involve all
pk together. One may want to consider effects of pi and p j separately. This restricts
the parameter space Rq to a one-dimensional subset with individual distribution
densities ρi(p) and ρ j(p).
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A covariance function of x(t,p) can also be easily expressed

Rxx(t1, t2) = Ep[(x(t1,p)−Ep[x(t1,p)])T (x(t2,p)−Ep[x(t2,p)])]

=
∫

Q
(x(t1,p)−Ep[x(t1,p)])T (x(t2,p)−Ep[x(t2,p)])ρ(p)dp

≈ < (xm(t1,p)−Ep[xm(t1,p)])T (xm(t2,p)−Ep[xm(t2,p)])>

= < (
m

∑
i=1

vT
i (t1)φi(p))(

m

∑
j=1

v j(t2)φ j(p))>

=
m

∑
i=1

vT
i (t1)vi(t2). (4.173)

This outcome clearly depends on m. A (scalar) variance is given by

Varp[x(t,p)] = Rxx(t, t)≈
m

∑
i=1

vT
i (t)vi(t) =

m

∑
i=1
||vi(t)||2 = ||V0(t)||2, (4.174)

where VT
0 (t) = (0T ,vT

1 (t), . . . ,v
T
m(t))

T . Note that this equals

Varp[x(t,p)]≈
m

∑
i=1

q

∑
d=1

v2
i,q(t) =

q

∑
d=1

m

∑
i=1

v2
i,q(t) =

q

∑
d=1

Varp[xd(t,p)]. (4.175)

Having a gPC expansion the sensitivity (matrix) w.r.t. p is easily obtained

Sp(t,p) =
[

∂x(t,p)
∂p

]
≈

m

∑
i=0

vi(t)
∂φi(p)

∂p
. (4.176)

One may restrict this to Sp(t,µp), where µp = E[p] and ∂x(t,p)
∂p is the solution of the

system that is differentiated w.r.t. p at p = µp . For a scalar quantity x one can order
according to a ‘stochastic influence’ based on

max{ ∂x
∂ p1

σp1 , . . . ,
∂x

∂ pq
σpq}. (4.177)

Here σ2
pi
= Var[pi]. The sensitivity matrix also is subject to stochastic variations.

With a gPC expansion one can determine a mean global sensitivity matrix by

Sp(t) = Ep

[
∂x(t,p)

∂p

]
≈

m

∑
i=0

vi(t)
∫

Q

∂φi(p)
∂p

ρ(p)dp. (4.178)

Note that the integrals at the right-hand side can be determined in advance and stored
in tables.
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Algorithm 4.2 pMOR Strategy in Uncertainty Quantification
1: A set p1,p2, . . . ,pK is given in advance, together with frequencies s1,s2, . . . ,sK . In our case the

p1,p2, . . . ,pK can come from quadrature points in Stochastic Collocation. Let Ψ k = (sk,pk).
Furthermore, let A = sC(p)+G(p) and AX = B, and, similarly, Ak = A(Ψ k) = skC(pk)+
G(pk) and AkXk = B.

2: Assume that we have already found some part of the (orthonormal) basis, V = (v1, . . . ,vk)
3: For any Ψ j , that was not selected before to extend the basis, the actual error formally

is given by E j = X(Ψ j)−∑k
i=1 αi(Ψ j)vi and thus for the residue we have R j = A jE j =

B−∑k
i=1 αi(Ψ j)A jvi. In [85] one determines R = B⊥ Span(A jV), the residue after orthogo-

nalization of B against Span(A jV). This step does not require evaluation of a solution.
4: Let R = (R1, . . . ,Rm), r j = ∑m

i=1 ||Ri|| and determine j0 such that r j0 = max j r j .
5: if (r j0 > ε) then
6: X(Ψj0 ) may add most significantly rank to the space spanned by V. Hence one now really

evaluates X j0 = X(Ψj0 ) and orthogonalizes this against V and extends V with this orthogo-
nal complement. Thus X j0 = X(Ψj0 ) = [Ak]

−1B = [A(Ψ k)]−1B and Vk = X j0 −V(VT X j0 )
is the expansion to V. One can use a rank-revealing QR for this step (which also includes
a tolerance). Note that until now one collects only zero-moments (in the frequency expan-
sion); for refinements see remarks at the end of this Section.

7: Reduce the set of the Ψ k with Ψ j0 . Go to Step 2.
8: else
9: Decide for applying MOR on remainder.

10: if (MOR) then
11: if (Expressions for C(p) and G(p) are explicitly known) then
12: Expand the matrices C(p) and G(p) in polynomials as in (4.181)-(4.182)
13: Apply the common projection matrix to get the reduced parameterized system.
14: Apply the collocation to the reduced system (and possibly re-evaluate for parameters

used so far the solutions of the reduced system). The solutions of the reduced system
at the re-evaluated parameters may be compared to the solutions of the non-reduced
system to provide some error control. Note that the expanded expressions provide ex-
pressions for the reduced system.

15: for all Ψ k do
16: Evaluate C(pk) and G(pk) of the reduced system.
17: Solve the reduced system.
18: end for
19: One now has a parameterized reduced system.
20: else
21: for all Ψ k do
22: Evaluate C(pk) and G(pk) of the big system (in the CAD environment, say).
23: Apply the common projection matrix to get the reduced system.
24: Solve the reduced system.
25: end for
26: end if
27: Determine the gPC-expansion of the solution of the reduced system.
28: Perform statistics and/or determine sensitivity of the solution of the reduced system.
29: else
30: Use the Krylov space found so far to efficiently solve all remaining solutions X(Ψj). Note

that we can use the original expressions in (4.179).
31: Determine the gPC-expansion of the solution of the original system (4.179).
32: Perform statistics and/or determine sensitivity of the solution of the original system.
33: end if
34: end if
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In [85] (see also [84]) a parameterized system in the frequency domain

[sC(p)+G(p)]x(s,p) = Bu(s), (4.179)
y(s,p) = BT x(s,p). (4.180)

is considered. Here s is the (angular) frequency. For this system a parameterized
MOR approach is proposed, which exploits an expansion of C(p) and G(p)

C(p) =
k1...kq

∑
l1...lq=0...0

Φl1...lq(p)Cl1...lq , (4.181)

G(p) =
k1...kq

∑
l1...lq=0...0

Φl1...lq(p)Gl1...lq , (4.182)

Φl1...lq(p) = pl1
1 pl2

2 . . . plq
q . (4.183)

In [71] the parameter variation in C and G did come from parameterized layout ex-
traction of RC circuits.

In Algorithm 4.2 it is assumed that a set p1,p2, . . . ,pK is given in advance, together
with frequencies s1,s2, . . . ,sK . LetΨ k =(sk,pk). Furthermore, let A= sC(p)+G(p)
and AX = B, and, similarly, Ak = A(Ψ k) = skC(pk)+G(pk) and AkXk = B.
A projection matrix V (with orthonormal columns vi) is determined such that
X(s,p) ≈ X̄(s,p) ≡ VX̂(s,p) ≡ ∑K′

i=1 αi(s,p)vi. Algorithm 4.2 applies a strategy of
which a key step is found in [85]. The extension of V is similar to the recycling
of Krylov subspaces [103] and used in MOR by [84]. The refinement introduced
in [85] is in the selection from the remaining set (steps 5-6). Note that the residues
deal with B and with x and not with the effect in y. Hence, one may consider a
two-sided projection here. The method of [85] was used in [71] (using expansions
of the matrices in moments of p; note that used expressions from layout extraction
were linear in p).
This procedure assumes that the evaluation of a matrix Ak (and subsequent matrix
vector multiplications) is much cheaper than determining a solution X(Ψk). Note
also that after extending the basis V in the next step the norms of the residues should
reduce. This allows for some further efficiency in the algorithm [85]. Finally, we re-
mark that the Xk are zero order (block) moments at Ψ k. After determining the LU-
decomposition of Ak one easily includes higher moments as well when extending
the basis.
A main conclusion of this section is that for the Stochastic Collocation the expan-
sions (4.181)-(4.183) are not explicitly needed by the algorithm. This facilitates
dealing with parameters that come from geometry, like scaling [109–113]. The eval-
uation can completely be done within the CAD environment of the simulation tool
- in which case the expressions remain hidden.
The selection of the next parameter introduces a notion of ”dominancy” from an
algorithmic point of view: this parameter most significantly needs extension of the
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Krylov subspace. To invest for this parameter will automatically reduce work for
other parameters (several may even drop out of the list because of small residues).
If first order sensitivity matrices are available, like in C(p) = C0(p0)+C′(p0)p and
in G(p) = G0(p0)+G′(p0)p one can apply a Generalized Singular Value Decom-
position [89] to both pairs (CT

0 (p0), [C′]T (p0)) and (GT
0 (p0), [G′]T (p0)). In [101]

this was applied in MOR for linear coupled systems. The low-rank approximations
for C′(p0) and G′(p0) (obtained by a Generalized SVD [89]) give way to increase
the basis for the columns of B of the source function. Note that by this one automat-
ically will need MOR methods that can deal with many terminals [69, 97, 116].
In Algorithm 4.2 and in [85] the subspace generated by the basis V is slightly
increasing with each new pk. A different approach is to apply normal MOR for
each pk, giving bases Vk, and next determine V by an SVD or rank-revealing QR-
factorizaton of [Vk, . . . ,VK ]. In [66] this approach is used to obtain a Piecewise
H2-Optimal Interpolation pMOR Algorithm.
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4.4 MOR for singularly perturbed systems

4For large systems of ordinary differential equations (ODEs), efficient MOR
methods already exist in the linear case, see [121]. We want to generalize accord-
ing techniques to the case of differential-algebraic equations (DAEs). On the one
hand, a high-index DAE problem can be converted into a lower-index system by an-
alytic differentiations, see [123]. A transformation to index zero yields an equivalent
system of ODEs. On the other hand, a regularization is directly feasible in case of
semi-explicit systems of DAEs. Thereby, we obtain a singularly perturbed problem
of ODEs with an artificial parameter. Thus according MOR techniques can be ap-
plied to the ODE system. An MOR approach for DAEs is achieved by considering
the limit to zero of the artificial parameter.

We consider a simplified, semi-explicit DAE system to illustrate some concepts
only

ẏ(t) = f(y(t),z(t)), y : R→ Rk,

0 = g(y(t),z(t)), z : R→ Rl ,
(4.184)

with differential and perturbation index 1 or 2. For the construction of numeri-
cal methods to solve initial value problems of (4.184), a direct as well as an in-
direct approach can be used. The direct approach applies an ε-embedding of the
DAEs (4.184), i.e., the system changes into

ẏ(t) = f(y(t),z(t))

ε ż(t) = g(y(t),z(t))
⇔

ẏ(t) = f(y(t),z(t))

ż(t) = 1
ε g(y(t),z(t))

(4.185)

with a real parameter ε 6= 0. Techniques for ODEs can be employed for the singu-
larly perturbed system (4.185). The limit ε → 0 yields an approach for solving the
DAEs (4.184). The applicability and quality of the resulting method still has to be
investigated.

Alternatively, the indirect approach is based on the state space form of the
DAEs (4.184) with differential and perturbation index 1 or 2, for nonlinear cases
see [135], i.e.,

ẏ(t) = f(y(t),Φ(y(t))) (4.186)

with z(t) = Φ(y(t)). To evaluate the function Φ , the nonlinear system

4 Section 4.4 has been written by: Kasra Mohaghegh, Roland Pulch and E. Jan W. ter Maten. For an
extended version we refer to the Ph.D.-Thesis [132] of the first author and to the papers [131,133].
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g(y(t),Φ(y(t))) = 0 (4.187)

is solved for given value y(t). Consequently, the system (4.186) represents ODEs
for the differential variables y and ODE methods can be applied. In each evaluation
of the right-hand side in (4.186), a nonlinear system (4.187) has to be solved. More
details on techniques based on the ε-embedding and the state space form can be
found in [128].

Although some MOR methods for DAEs already exist, several techniques are
restricted to ODEs or exhibit better properties in the ODE case in comparison to the
DAE case. The direct or the indirect approach enables the usage of MOR schemes
for ODEs (4.185) or (4.186), where an approximation with respect to the original
DAEs (4.184) follows. The aim is to obtain suggestions for MOR schemes via these
strategies, where the quality of the resulting approximations still has to be analyzed
in each method.

In this section, we focus on the direct approach for semi-explicit system of DAEs,
i.e., the ε-embedding (4.185) is considered. MOR methods are applied to the sin-
gularly perturbed system (4.185). Two scenarios exist to achieve an approximation
of the behavior of the original DAEs (4.184) by MOR. Firstly, an MOR scheme
can be applied to the system (4.185) using a constant ε 6= 0, which is chosen suffi-
ciently small (on a case by case basis) such that a good approximation is obtained.
Secondly, a parametric or parameterized Model Order Reduction (pMOR) method
yields a reduced description of the system of ODEs, where the parameter ε still rep-
resents an independent variable. Hence the limit ε → 0 causes an approach for an
approximation of the original DAEs.

We investigate the two approaches with respect to MOR methods based on an
approximation of the transfer function, which describes the input-output behavior
of the system in frequency domain.

4.4.1 Model Order Reduction and ε-Embedding

We restrict ourselves to semi-explicit DAE systems of the type (4.188)-(4.189)
and introduce w(t) as an output instead of y(t) with exact the same condition. Ac-
cording to (4.184), after linearizing, we can write the system as

Cẋ = −Gx+Bu(t), (4.188)
w(t) = Lx(t). (4.189)

The solution x and the matrix C exhibit the partitioning:

x =

(
y
z

)
, C =

(
Ik×k 0

0 0l×l

)
.

w(t) is the output of the system. The order of the system is n = k+ l, where k and
l are the dimensions of the differential part and the algebraic part (constraints), re-
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spectively, defined in the semi-explicit system (4.184). B ∈ Rn×m; L ∈ Rp×n. After
taking the Laplace transform, the corresponding p×m matrix-valued rational trans-
fer function is

H(s) = L · (G+ sC)−1 ·B = L ·
(

G+ s
(

Ik×k 0
0 0l×l

))−1

·B,

provided that det(G+ sC) 6= 0 and x(0) = 0 and u(0) = 0. Following the direct
approach [132], the ε-embedding changes the system (4.188)-(4.189) into:

{
C(ε) dx(t)

dt = −Gx(t)+Bu(t), x(0) = x0,

w(t) = Lx(t),
(4.190)

where

C(ε) =
(

Ik×k 0
0 εIl×l

)
for ε ∈ R

with the same inner state and input/output as before. For ε 6= 0, the matrix C(ε) is
regular in (4.190) and the transfer function reads:

Hε(s) = L · (G+ s ·C(ε))−1 ·B

provided that det(G+ sC(ε)) 6= 0. For convenience, we introduce the notation

M(s,ε) := sC(ε) = s
(

Ik×k 0
0 εIl×l

)
.

It holds M(s,0) = sC with C from (4.188).
Concerning the relation between the original system (4.188)-(4.189) and the reg-

ularized system (4.190) with respect to the transfer function, we achieve the follow-
ing statement. Without loss of generality, the induced matrix norm of the Euclidean
vector norm is applied.

Lemma 4.1. Let A, Ã ∈ Rn×n, det(A) 6= 0 and ‖A− Ã‖2 = ‖∆A‖2 where ∆A is
small enough. Then it holds:

‖A−1− Ã−1‖2 ≤
‖A−1‖2

2 · ‖∆A‖2

1−‖A−1‖2 · ‖∆A‖2
.

Proof. It holds
‖A−1− Ã−1‖2 = max

‖x‖2=1

∥∥A−1x− Ã−1x
∥∥

2 .

Suppose y :=A−1x, ỹ := Ã−1x, then the sensitivity analysis of linear systems yields
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‖∆y‖2
‖y‖2

≤ κ(A)

1−κ(A)
‖∆A‖2
‖A‖2



‖∆A‖2
‖A‖2

+
‖∆x‖2
‖x‖2︸ ︷︷ ︸
= 0


 ,

where the quantity
κ(A)≡

∥∥A−1∥∥
2 ‖A‖2

is the relative condition number. So by substituting the value of κ(A) we have:

‖y− ỹ‖2 ≤
∥∥A−1

∥∥
2 · ‖∆A‖2 ·

∥∥A−1
∥∥

2 ‖x‖2

1−‖A−1‖2 · ‖∆A‖2

then

‖A−1− Ã−1‖2 ≤
‖A−1‖2

2 · ‖∆A‖2

1−‖A−1‖2 · ‖∆A‖2
. �

We conclude from Lemma 4.1 that

lim
∆A→0

Ã−1 = A−1,

for example.

Theorem 4.1. For fixed s ∈ C with det(G+M(s,0)) 6= 0 and ε ∈ R satisfying

|s| · |ε| ≤ c
‖(G+M(s,0))−1‖2

(4.191)

for some c ∈ (0,1), the transfer functions H(s) and Hε(s) of the systems (4.188)-
(4.189) and (4.190) exist and it holds

‖H(s)−Hε(s)‖2 ≤ ‖L‖2 · ‖B‖2 ·K(s) · |s| · |ε|

with
K(s) =

1
1− c

∥∥(G+M(s,0))−1∥∥2
2 .

Proof. Let A = G+M(s,0) and Ã = G+M(s,ε). The condition (4.191) guarantees
that the matrices Ã are regular. The definition of the transfer functions implies:

‖H(s)−Hε(s)‖2 ≤ ‖L‖2 ·
∥∥A−1− Ã−1∥∥

2 · ‖B‖2 .

We obtain:

∥∥A− Ã
∥∥

2 = ‖M(s,0)−M(s,ε)‖2 = |s| ·
∥∥∥∥
(

0 0
0 εIl×l

)∥∥∥∥
2
= |s| · |ε| .

Applying the Lemma 4.1, the term at the right-hand side of the expression above
becomes:
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∥∥A−1− Ã−1
∥∥

2 ≤
∥∥A−1

∥∥2
2 · ‖M(s,0)−M(s,ε)‖2

1−‖A−1‖2 · ‖M(s,0)−M(s,ε)‖2

≤ 1
1− c

∥∥A−1∥∥2
2 · ‖M(s,0)−M(s,ε)‖2

≤ K(s)‖M(s,0)−M(s,ε)‖2 .

Thus the proof is completed. �
It is clear that for inequality (4.191) we have:

s 6= 0 ∈ C : |ε| ≤ c
|s| · ‖(G+M(s,0))−1‖2

s = 0 ∈ C : ε arbitrary

We conclude from Theorem 4.1 that

lim
ε→0

Hε(s) = H(s)

for each s ∈ C with G+ sC regular. The relation (4.191) gives feasible domains of
ε

|s| ≤ 1 : |ε| ≤ c
‖(G+M(s,0))−1‖2

,

|s|> 1 : |ε| ≤ c
|s| · ‖(G+M(s,0))−1‖2

.

We also obtain the uniform convergence

‖H(s)−Hε(s)‖2 ≤ K̂ |ε| for all s ∈ S

in a compact domain S⊂ C and ε ≤ δ with:

δ = c ·min
s∈S

1
‖(G+M(s,0))−1‖2

for S̃ = /0,

δ = c ·
[

min
s∈S

1
‖(G+M(s,0))−1‖2

]
·
[

min
s∈S̃

1
|s|

]

︸ ︷︷ ︸
≤1

for S̃ 6= /0,

with S̃ := {z ∈ S : |z| ≥ 1}. Furthermore, Theorem 4.1 implies the property

lim
s→0

H(s)−Hε(s) = 0

for fixed ε assuming detG 6= 0. However, we are not interested in the limit case of
small variables s.

For reducing the DAE system (4.188)-(4.189), we have two ways to handle the
artificial parameter ε , which results in two different scenarios. In the first scenario,
we fix a small value of the parameter ε . Thus we use one of the standard techniques
for the reduction of the corresponding ODE system. Finally, we achieve a reduced
ODE (with small ε inside). The ODE system with small ε represents a regularized
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DAE. Any reduction scheme for ODEs is feasible. Recent research shows that the
Poor Man’s TBR (PMTBR), see [134], can be applied efficiently to the ODE case.
Figure 4.37 indicates the steps for the first scenario.

 

            
              

                      
            ODE

                 Reduced ODE

                 for ODEs

   MOR 

        
       DAE

 
   

 dimension 

constant ε

dimension n n

constant ε

dimension   q << n

constant ε

Fig. 4.37 The approach of the ε-embedding for MOR in the first scenario.

In the second scenario, the parameter ε is considered as an independent vari-
able (value not predetermined). We can use the parametric MOR for reducing the
corresponding ODE system. The applied parametric MOR is based on [124, 125]
in this case. The limit ε → 0 yields the results in an approximation of original
DAEs (4.188)-(4.189). The existence of the approximation in this limit still has to
be analyzed. Figure 4.38 illustrates the strategy for the second scenario.

Theorem 4.1 provides the theoretical background for the both scenarios. We ap-
ply an MOR scheme based on an approximation of the transfer function to the sys-
tem of ODEs (4.190). Let H̃ε(s) be a corresponding approximation of Hε(s).

It follows

‖H(s)− H̃ε(s)‖2 ≤ ‖H(s)−Hε(s)‖2 +‖Hε(s)− H̃ε(s)‖2 (4.192)

for each s ∈ C with det(G+ sC) 6= 0. Due to Theorem 4.1, the first term becomes
small for sufficiently small parameter ε . However, ε should not be chosen smaller
than the machine precision on a computer. The second term depends on the ap-
plicability of an efficient MOR method to the ODEs (4.190). Thus H̃ε(s) can be
seen as an approximation of the transfer function H(s) belonging to the system of
DAEs (4.188)-(4.189).
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Fig. 4.38 The approach of the ε-embedding for MOR in the second scenario.

4.4.2 Test Example and Numerical Results

We consider a substitute model of a transmission line (TL), see [127], which
consists of N cells. Each cell includes a capacitor, an inductor and two resistors,
see Figure 4.39. This TL model represents a scalable benchmark problem (both in
differential part and algebraic part but not separately), because we can select the
number N of cells. The used physical parameters are

C = 10−14 F/m, L = 10−8 H, R = 0.1 Ω/m, G = 10 S/m.

We apply modified nodal analysis, see [126], to the RLC circuit and then the state

Fig. 4.39 One cell of the RLC transmission line.

variables x ∈ R3N+3 consist of the voltages at the nodes, the currents traversing the
inductances L and the currents at the boundaries of the circuit:
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(V0,V1, . . . ,VN), (I1/2, I3/2, . . . , IN−1/2),
(V1/2,V3/2, . . . ,VN−1/2), (I0, IN).

So far we have 3N + 3 unknowns and only 3N + 1 equations. Thus two boundary
conditions are necessary. Equations for the main nodes and the intermediate nodes
in each cell are

h
2CV̇0 + h

2 GV0 + I1/2 − I0 = 0,
hCV̇i + hGVi + Ii+1/2 − Ii−1/2 = 0, i = 1, . . . ,N−1,
h
2CV̇N + h

2 GVN + IN − IN−1/2 = 0,

−Ii+1/2 +
Vi+1/2−Vi+1

hR = 0,
hLİi+1/2 + (Vi+1/2−Vi) = 0, i = 0,1, . . . ,N−1,

where the variable h > 0 represents a discretization step size in space. We apply the
boundary conditions

I0 − u(t) = 0,
L1 İN + VN = 0

with L1 > 0 and an independent current source u. Now a direct approach (ε-
embedding) is used. For the first simulation the variable ε is fixed to 10−14 and
10−7, respectively, and the PMTBR method [134] is used as a reduction scheme for
the ODE system. For all runs we selected the number of cells to N = 300, which
results in the order n = 903 of the original system of DAEs (4.188)-(4.189). Figure
4.40 shows the transfer function both for the DAE and the ODE (including ε) and
the reduced ODE with fixed ε for frequencies s = iω with ω ∈ R. The number in
parentheses shows the order of the systems.

Finally the second scenario with parametric MOR is studied. We apply the
PIMTAB parametric MOR following [129, 130]. The limit ε → 0 gives the result
for the reduced DAE.The error plot for the parametric reduction scheme is shown in
Figure 4.41. The error plot shows an overall nice match for the case of ε = 0,10−10

and as the value for the parameter ε increases, the accuracy of the method and of the
reduction algorithm decreases. It is also important to mention that the order of the
reduced system in the second scenario is nearly half of the one in the first scenario.
Table 4.4 shows which value for the parameter ε is acceptable for the both scenarios.

Table 4.4 Acceptance of the method: different values for ε are mentioned. A dash indicates that
the error is not calculated; A. and N.A indicate accepted and not accepted, respectively.

Value used for ε : 0 10−14 10−10 10−7

Scenario with fixed ε Same as DAE A. A. N.A.
Scenario with parametric ε A. - A. N.A.
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Fig. 4.40 Original transfer function for DAE and ODE and reduced transfer function of PMTBR
in case of three different parameters ε . The frequency ω ranges from 10−8 to 108.
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Fig. 4.41 Absolute error plot for the transfer function in the ε-embedding, reduction carried out
by parametric MOR with PIMTAB, ε = 0,10−10,10−7.

4.4.3 Conclusions

In this section we applied the ε-embedding to approximate a linear system of
DAEs by a system of ODEs. We did consider the transfer function in the frequency
domain as a function of ε and proved uniform convergence for frequencies s in a
compact region S where the matrix G+ sC is regular (and thus its inverse uniformly
bounded). This motivated the usage of MOR methods for ODEs. Most of the reduc-
tion schemes are designed and adopted for linear ODEs. Well-known methods are
PMTBR (Poor Man’s Truncated Balanced Realization [134]) and the spectral zeros
preservation MOR of Antoulas [122].
In the first scenario we applied a fixed ε and studied for a transmission line model
the behavior of the transfer functions of the DAE, of the ODE and of the reduced
model obtained with PMTBR for ε = 10−14, 10−10, 10−7. Already for the last value
the transfer functions between DAE and ODE differ significantly. If we choose big-
ger values for ε , the system is more friendly but the error is larger and the solution
will be changed. On the other hand the transfer function obtained by PMTBR is able
to approximate quite well the transfer function of the ODE.
In the second approach we applied the parametric MOR technique PIMTAB [129,
130] to the parameterized ODE. Here we do not need to predefine the value of the
ε . We obtain a parameterized MOR that gives a reduced model for ε = 0 for which
the transfer function approximates well the one for the DAE [132, 133].
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