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Fast Fault Simulation to identify subcircuits
involving faulty components

B. Tasić, J.J. Dohmen, E.J.W. ter Maten, T.G.J. Beelen, H.H.J.M. Janssen,
W.H.A. Schilders, M. Günther

Abstract Imperfections in manufacturing processes may cause unwanted connec-
tions (faults) that are added to the nominal, ”golden”, design of an electronic circuit.
By fault simulation we simulate all situations: new connections and each with dif-
ferent values for the newly added element. We also consider ”opens” (broken con-
nections). During the transient simulation the solution of a faulty circuit is compared
to the golden solution of the fault-free circuit. A strategy is developed to efficiently
simulate the faulty solutions until their moment of detection. We fully exploit the
hierarchical structure of the circuit in the simulation process to bypass parts of the
circuit that appear to be unaffected by the fault. Accurate prediction and efficient
solution procedures lead to fast fault simulation in which the golden solution and all
faulty solutions are calculated over a same time step. Finally, we store a database
with detectable deviations for each fault. If such a detectable output ”matches” a
measurement result of a product that has been returned because of malfunctioning
it helps to identify the subcircuit that may contain the real fault.

1 Time integration of circuit equations

The electronic circuit equations can be written as [4, 10]
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d
dt

q(x)+ j(x) = s(x, t). (1)

Here s(x, t) represents the specifications of the sources. The unknown x = x(t) con-
sists of nodal voltages and of currents through voltage defined elements. We assume
that q(0) = 0, and j(0) = 0.
For time integration in circuit simulation we consider the BDF1, or Euler Back-
ward method. Assuming time points tk+1 = tk + hk (k ≥ 0) with stepsizes hk and
approximation xn at tn, BDF1 calculates xn+1 by

qn+1−qn

hn
+ jn+1 = sn+1. (2)

Here qk = q(xk), jk = j(xk), for k = n,n+ 1, and sn+1 = s(xn+1, tn+1). The system
is solved by a Newton-Raphson procedure. For efficient direct methods to solve the
intermediate linear systems, see [1]. A fixed Jacobian can reduce the number of LU-
decompositions, but, in general, will increase the number of iterations and thus the
number of (costly) evaluations. Also, in case of circuit simulation, the assembly of
the matrices does not need much more effort when compared to the function evalua-
tions. A fixed decomposed Jacobian can be efficient within some Picard-iteration [8]
in solving a linear system, or, more general, in using it as preconditioner within GM-
RES. When changing stepsizes during time integration similar remarks apply.
In case of an hierarchical linear solver one can profit from hierarchical bypass-
ing [3], which we will also exploit in this paper. When applying it also in the time
integration, it even supports a first form of multirate time-integration [13].

2 Fault simulation

We first consider the effect of adding faulty, linear elements to the circuit. F.i., in
[2, 12] we did add linear bridges (resistors) to the circuit. For each fault only one
element is added to the original, golden circuit. It may mean a new connection, while
also different values are considered. In [12] a novel time-integration was involved:
during each time-step, first the fault-less, golden solution was determined at the
next time step. Next, all faulty problems were integrated over this time-interval.
Hence, effectively, a parameter loop is placed inside the time integration. Also the
hierarchical structure was enhanced such that the hierarchical solver could deal with
all new elements. This enables to exploit an enhanced form of bypassing.
The golden solution at each new time point provides an estimate for the solution of
a faulty problem (in addition to the one using extrapolation by Nordsieck vectors).
Each faulty problem uses the stepsize of the golden solution as a maximum one.
When the faulty solution really needs a stepsize that is significantly smaller then
used by the golden solution, the traditional time integration is invoked, even without
bypassing, until the time moment of synchronization with the golden solution.
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In this paper we enhance the algorithm in also considering the case of adding linear
capacitors. However, in practise, the linear resistor case is by far more important.
Hence, we either have1

j(x(t, p), p) = j0(x(t, p))+ puvT x(t, p), or (3)
q(x(t, p), p) = q0(x(t, p))+ pabT x(t, p). (4)

For simplicitly, to reduce notation and the amount of partial derivatives further on,
we use p, both in (3) and in (4). Fault Analysis consists of simulations for a large
number of pairs of vectors (u,v), or (a,b) and various values of p, and compare the
result xp(t) of (1) at specific time points with the ”golden” solution x(t) of the fault-
free circuit (corresponding with p = 0). If the deviation exceeds some treshold, the
fault triple (u,v, p), or (a,b, p), is marked as detectable and is taken out of the list.
Clearly, for each fault we have a new contribution puvT x(t, p), or pabT x(t, p), as
low-rank modification to the system of the golden solution, either added to j0 or
to q0, see (3)-(4). Here p ≥ 0 is just a scalar, by which the p-sensitivity ’matrix’
x̂p(t, p) = ∂x(t,p)

∂ p reduces to a vector.
The golden solution x(t) used j(x(t, p), p)= j0(x(t, p)), and q(x(t, p), p)=q0(x(t, p)).
Let xk

p = xk(p) ≈ x(tk, p) be the numerical approximations for k = n,n+ 1 of the

faulty system and x̂k
p be the corresponding sensitivities. Then with Ck

p ≡
∂q(xk

p)

∂x ,

Gk
p ≡

∂ j(xk
p)

∂x (and including the effect of the rank-one term with the factor p) and

Sk
p ≡

∂ s(xk
p,tk)

∂x , by sensitivity analysis [6, 11], we obtain

[
1
hn

Cn+1
p +Gn+1

p −Sn+1
p ]x̂n+1

p = − 1
hn

abT (xn+1−xn)−uvT xn+1
p +

1
hn

Cn
px̂n

p. (5)

For p = 0, (5) gives the limit sensitivity x̂k = x̂k
0 for the golden, fault-free, solution

xk = xk
0 (k = n,n+1)

[
1
hn

Cn+1 +Gn+1−Sn+1]x̂n+1 = − 1
hn

abT (xn+1−xn)−uvT xn+1 +
1
hn

Cnx̂n, (6)

where Ck = Ck
0 (k = n,n+1), Gn+1 = Gn+1

0 and Sn+1 = Sn+1
0 . By Taylor expansion

we additionally have

xk
p = xk + p x̂k +O(p2) (k = n,n+1). (7)

The golden solution satisfies the linearized equations of the fault-free circuit up to
a term R that indicates the deviation from linearity (note that in (1) we did assume
that q(0) = 0 and j(0) = 0)

1 Note that for inductors and for voltage-defined resistors we need two rank-one updates to describe
the total contribution.
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[
1
hn

Cn+1 +Gn+1−Sn+1]xn+1 = r(tn+1,xn,xn+1), (8)

where r(tn+1,xn,xn+1) = sn+1 + 1
hn

Cnxn +R. With (7) and (6) this gives

[
1
hn

Cn+1 +Gn+1−Sn+1]xn+1
p =

= [
1
hn

Cn+1 +Gn+1−Sn+1]xn+1 + p [
1
hn

Cn+1 +Gn+1−Sn+1]x̂n+1 +O(...),

= r(tn+1,xn,xn+1)− p
hn

abT (xn+1−xn)− puvT xn+1 +
p
hn

Cnx̂n +O(...),

=− p
hn

abT (xn+1−xn)− puvT xn+1 +
1
hn

Cn(px̂n)+ r(tn+1,xn,xn+1)+O(...),

=− p
hn

abT (xn+1
p −xn)− puvT xn+1

p +
1
hn

Cn(xn
p−xn)+ r(tn+1,xn,xn+1)+O(...),

in which all O(...) terms are of the form O(p2 + p2

hn
). Hence

[
( 1

hn
Cn+1 +Gn+1−Sn+1)+ p

hn
abT + puvT ]xn+1

p =

=
p
hn

abT xn +
1
hn

Cn(xn
p−xn)+ r(tn+1,xn,xn+1)+O(p2 +

p2

hn
), (9)

= r(tn+1,xn,xn+1)+O(p2 +
p2

hn
+

p
hn

). (10)

Note that (9) may be a more accurate alternative then (10). However, for simplicity,
we just used (10), after ignoring the O(·) terms at the right-hand side. This invites
for applying the Sherman-Morrison formula [5]. Let A =

( 1
hn

Cn+1 +Gn+1−Sn+1
)
,

and Aw= pu, Ac= p
hn

a, and Ay= p
hn

Cnx̂n. Then the sensitivity predictions for xn+1
p

become

for (3): xn+1
p = xn+1− vT xn+1

1+vT w
w, or (11)

xn+1
p = (xn+1 +y)− vT (xn+1 +y)

1+vT w
w, (12)

for (4): xn+1
p = xn+1− bT xn+1

1+bT c
c, or, (13)

xn+1
p = (xn+1 +y)− bT y

1+bT c
c. (14)

Note that the first term in (9) has a simplyfying effect in (14) (when compared to
(12)). In this case one really needs y to get a first estimate that is different from xn+1.
The advantage of the right-hand side in (10) is that it is independent of the solution
xk

p at the previous time steps. Of course, when followed by further Newton-Raphson



Fast Fault Simulation to identify subcircuits involving faulty components 5

iterations, xn
p is still needed. To judge the accuracy of the linear sensitivity prediction

the nonlinear solver evaluates the circuit at the sensitivity solution and updates the
solution. The difference in the initial sensitivity solution and the nonlinear update is
a measure for the truncation error.
If we just stick to the prediction, we may calculate the prediction of the fault at
a few selected time points, which significantly reduces the work load for the fault
sensitivity analysis. We finally remark that in (11), (13) the sensitivity matrix x̂n is
not explicitly calculated.

2.1 Modeling faulty ”opens”

Next we consider a faulty resistor, with value R, in series with another, linear resis-
tor, with value r. Clearly, this introduces an extra node ne. If the golden system used
R(n1,n2) = r, the faulty system uses R(n1,ne) = R, R(ne,n2) = r. The voltage at this
new node can be simply eliminated by noting that v(ne) = (r v(n1)+Rv(n2))/(r+
R). Doing this directly, the remaining system can be formulated as in (3) in which
p = R/(r(R+ r)). If R→ ∞ we obtain an ”open” between the nodes n1 and ne and
v(ne)→ v(n2). In [12] we did introduce an extra port to model bridges between
models. This extra node can also become functional in providing the extra node.
For modeling a broken joint (or weld) at a node n, it is, mathematically, convenient
to first split the node n into two nodes n1 and n2, with a simple voltage source in
between for the golden circuit: E(n1,n2) = 0. Clearly this satisfies our assumption
j(0) = 0. The faulty system uses R(n1,ne) = R, E(ne,n2) = 0. We assume local co-
ordinates that correspond with v(n1), v(n2), i(E). We deduce that the faulty system
perturbs the golden system with u1vT

1 (R)+u2vT
2 (R), in which, in local coordinates,

uT
1 = (1,0,0), vT

1 = (−1/R,1/R,1), uT
2 = (0,0,1), vT

2 = (1,−1,R). This can be
treated in a similar way as before.

3 Results

The FFS-algorithm has been implemented in Pstar2. For fault simulations in DC-
simulations a significant speed-up (> 100) was obtained by exploiting bypassing
and abandoning only, but inclusion of sensitivity analysis appeared essential to get
significant speed up for a broad class of problems during transient simulation. Ta-
ble 1 shows the speed-up by including sensitivity prediction for a LIN Converter
IP Block (first part), as well as for a nonlinear control DAC (2nd part). Clearly, the
linear sensitivity estimate offers an interesting speed-up. Following nonlinear cor-
rections do reduce this effect. For the LIN Converter IP Block the effect of more
iterations remains quite bounded (with 100 iterations still a speed-up of more than

2 Pstar: in-house circuit simulator of NXP Semiconductors.
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10 was found, see [12]). For the nonlinear control DAC until 5 iterations a speed-up
of 10 was obtained. Further speed-up scenarios are currently considered by initiat-
ing the fault later. If one can simply skip the initial integration of the faults until
t1 > 0, for a large collection of faults no initial simulations have to be made. The
scenarios differ in how the fault is started: suddenly, or using a smooth start-up, sim-
ilar as for the source-stepping-by-transient method as described in [12]. Because of
the many faults that are possible, a short start-up is a balance between efficiency and
robustness.

Analysis LIN Converter IP Block Control DAC
#iterations CPU Time Speed up #iterations CPU Time Speed up
per step ∆ t [sec] per step ∆ t [sec]

Standard AS/DOTSS - 100437 1 - 52513 1
Linear Sensitivity 0 458 219 0 916 58
Nonlinear Correction 5 2341 43 1 4808 11

Table 1 Speed-up by including sensitivity prediction. Left: a LIN Converter IP Block, #faults=412.
Right: a Control DAC, #faults=100. See also [12].

4 Relation to Uncertainty Quantification

Interchanging the time integration loop with a parameter-sweep loop for a given
pair of connection nodes, also has an interesting opportunity for Uncertainity Quan-
tification [7, 9, 14]. F.i., when considering Stochastic Collocation in which all L2
inner-products in parameter space are replaced by quadrature, a list of deterministic
parameter values pk, k = 1, . . . ,K, is defined for which the solution x(t, pk) has to be
calculated. Then x(t, p) = ∑m

i=0 vi(t)φi(p), in which vi(t) = ∑K
k=1 wkx(t, pk)φi(pk).

This expansion is a so-called generalized Polynomial Chaos expansion, using poly-
nomials φi(p) that are orthogonal with respect to some probability density function
f in the parameter space for p. For FFS, where parameter values are positive, one
may think about an exponential decay (for an infinite range; here one generates La-
guerre polynomials), or a (α,β )-density function (when considering a finite range
for p; here one generates Jacobi-polynomials). Now, first, one can simulate the K de-
terministic solutions (in which one can exploit the sensitivity estimate, as described
before). Next, the actual FFS is done as a post-processing action in which one com-
pares x(t, p) with x(t,0), at specific time moments and at circuit nodes. Note that
mean and variance are cheaply provided by the vi(t). During the time-integration
one also has at each completed time-level t x(t, p) and ∂x(t, p)/∂ p available from
the expansion.Clearly, FFS is just an example for varying particular parameters.
Also more general, Stochastic Collocation, can benefit by moving the parameter
loop inside the time integration loop.
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