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Abstract

High-order parabolic approximations for the Helmholtz equation can be ob-
tained by the multiple-scale method. These approximations have the form of
the hierarchies of parabolic equations, where the solution of the n-th equa-
tion is used as an input term for the n + 1-th equation. The transparent
boundary conditions for such systems of coupled parabolic equations are de-
rived. The well-posedness of the initial boundary value problem with the
derived boundary conditions is established and a finite difference scheme for
its solution is proposed.
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1. Introduction

The wide-angle parabolic equations (WAPEs) presently are considered a
main computational tool for many problems of wave propagation [1, 2]. The
most important applications probably include acoustics [1], geophysics [3]
and radiowave propagation problems [2] to mention only a few. The WAPEs
are traditionally derived by means of the operator square root approximation
with a Padé series (hereafter they are referred to as Padé WAPE). Recently

∗Corresponding author
Email addresses: petrov@poi.dvo.ru (P.S. Petrov), ehrhardt@uni-wuppertal.de

(M. Ehrhardt)

Preprint submitted to Wave Motion February 14, 2015

*Manuscript (Marked)
Click here to view linked References

http://ees.elsevier.com/wamot/viewRCResults.aspx?pdf=1&docID=2312&rev=0&fileID=71086&msid={E2F8FA83-367E-4237-8A47-6DE900909FEA}


another approach to the wide-angle parabolic approximations was proposed
in [4]. This derivation relies upon the systematic use of the multiple-scale ex-
pansion method, and the resulting high-order parabolic approximations have
the form of the system of parabolic equations (PEs), where the input term of
the n-th PE is obtained from the solution of n− 1-th PE [4]. It is important
that for such parabolic approximations consistent interface and boundary
conditions may be easily derived using the same multiple-scale asymptotic
expansions [4]. In order to solve numerically the practical problems of wave
propagation on the unbounded domains using these new parabolic approxi-
mations one has to truncate the domain with artificial boundaries.

For more than two decades many research efforts were made to develop
the methods of the artificial domain truncation for the Schrödinger-type
equations (including the acoustical parabolic equation and optical paraxial
equation). This domain truncation may be accomplished either by imposing
the transparent boundary conditions (TBC) or by extending the computa-
tional domain with so-called perfectly matching layers (PMLs). For a review
of different approaches to TBCs and PMLs see [5] and numerous references
therein. There are also some works concerning the TBCs for the conventional
Padé WAPEs, e.g. the TBCs for the rational-linear WAPEs were derived in
[6, 7] while the case of general Padé WAPE is dealt with in [8, 9, 10].

In this paper we derive the TBCs for the parabolic approximations pro-
posed in [4]. These conditions are basically a natural but non-trivial gen-
eralization of the classical Baskakov-Popov TBCs [11]. We also show that
the initial-boundary value problems (IBVPs) for the coupled PEs constitut-
ing the system from [4] with the derived TBCs are well posed and that its
solution coincides with the solution of the same system on the unbounded
domain. The derived TBCs may be also used for the solution of the wide
angle mode parabolic equations.

We also propose a finite-difference scheme for the solution of the PEs
system from [4] supplied with the derived TBCs. It is again a generaliza-
tion of the numerical scheme of Baskakov and Popov [11]. In the interior
of the computational domain the PEs are discretized using a second-order
implicit Crank-Nicholson finite-difference method which is unconditionally
stable for the unbounded domain or homogeneous Dirichlet conditions [5].
The incorporation of the TBCs into a numerical scheme may however render
it only conditionally stable [12]. Sun and Wu [13] proved however that the
Baskakov and Popov discretization of the TBCs leads to an unconditionally
stable scheme. We adapted their proof for our new numerical scheme which
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also turns out to be unconditionally stable.

2. Wide angle parabolic approximations

Let us consider the problem of sound propagation in a 2D acoustical
waveguide Ω = {(x, z)|z ≥ 0} consisting of the water layer and one or more
layers of bottom (which is assumed to be liquid), where z is the depth and
x is the horizontal variable (here we use the acoustical notation following
[4], although the same results may be reproduced for the open waveguides
in optics and radiowave propagation theory). The acoustical pressure p(x, z)
due to a point source located at x = 0, z = zs then satisfies the Helmholtz
equation

∂

∂x

(

1

ρ

∂p

∂x

)

+
∂

∂z

(

1

ρ

∂p

∂x

)

+
1

ρ
κ2p =

1

ρ
δ(x)δ(z − zs) , (2.1)

where the medium parameters are the density ρ = ρ(x, z) and the wavenum-
ber κ = κ(x, z) = ω2/c2. A pressure-release Dirichlet-type boundary condi-
tion

p(x, 0) = 0 (2.2)

is usually imposed at the ocean surface z = 0, while for sufficiently large
values of depth (say for z ≥ L) the medium is assumed to be homogeneous,
i.e. ρ(x, z) = ρb and κ(x, z) = κb for all z ≥ L. In order to correctly set a
BVP for the equation (2.1) one also requires certain radiation conditions to
be satisfied at infinity R =

√
x2 + z2 → ∞ (see e.g. [1]). The propagation

problems in the shallow-water acoustics usually feature additional compli-
cation associated with the presence of interfaces, i.e. surfaces z = H(x)
where media parameters have finite jump discontinuities (e.g. water-bottom
interface). The following coupling conditions are imposed at the interface
z = H(x) (see e.g. [1]):

p|z=H(x)+0 = p|z=H(x)−0 ,
1

ρ

∂p

∂n

∣

∣

∣

∣

z=H(x)+0

=
1

ρ

∂p

∂n

∣

∣

∣

∣

z=H(x)−0

. (2.3)

The bottom relief described by the function z = H(x) in practical problems
is often very complicated.

Usually the BVP (2.1)-(2.2)-(2.2) is too complicated to be solved directly,
and the high-order parabolic equations are used [1] to approximate the so-
lution of the Helmholtz equation (2.1). While sacrificing some relatively
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unimportant propagation features, thus we obtain mathematical formulation
of the problem which is much more efficient and easier for the numerical
implementation.

Among the shortcomings of the traditional approach to the PEs derivation
(the one based on the operator square root approximation) is its inability to
systematically account for the sloping and variable bottoms. Strictly speak-
ing the very Helmholtz operator factorization which leads to the equations
for the forward- and backward-propagating waves (containing the operator
square root) relies upon the assumption of waveguide range-independence
[1]. It is also well-known that even the simplest boundary and interface con-
ditions for the case of the sloping bottom may lead to the ill-posedness of
the IBVP for the parabolic equation [14]. Although some efforts we made to
derive the proper interface and boundary conditions for the PEs in the case
of the sloping bottoms [15, 14], to our knowledge they were only partially
successful. For example, in the paper [15] authors consider the case of the
rational-linear wide-angle PE and the sloping pressure-release bottom, while
for the general n-th order Padé WAPE and the arbitrarily sloping penetrable
bottom no interface conditions were proposed so far. Usually the piecewise-
linear approximation of the bottom is used for the computations involving
these high-order WAPEs [1].

At the same time, the consistent interface and boundary conditions may
be successfully obtained within another approach to the WAPE derivation
[4]. This approach is based on the multiple-scale asymptotic expansion of
the acoustic pressure p(x, z). Here we outline the main results of this theory
following closely [4].

2.1. System of PEs

We assume that the medium properties variation in x is much slower
than in z and that κ = κ0(x) + ν(x, z) (|ν(x, z)| ≪ κ0(x)). Under these
assumptions the complex acoustical pressure p(x, z) may be approximated
by the formula (see [4])

pn(x, z) = exp

(
∫ x

0

κ0(x)dx

) j=n
∑

j=0

Aj(x, z) ,
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where

2i
1

ρ
κ0

∂Aj

∂x
+

∂

∂z

(

1

ρ

∂Aj

∂z

)

z

+

[

i

(

1

ρ
κ0

)

x

+
1

ρ
ν

]

Aj +
∂

∂x

(

1

ρ

∂Aj−1

∂x

)

= 0 ,

(2.4)
and A−1(x, z) = 0. System (2.4) consists of Schrödinger-type equations, and
the input term of the j-th equation is determined from the solution of the
j − 1-th equation. Hence the whole system may be solved iteratively. The
quantity pn(x, z) is called hereafter the wide-angle parabolic approximation
of the order n to the solution p(x, z) of the equation (2.1). It requires the
solution of n+ 1 parabolic equations (2.4) to be computed. It is interesting
to note that the system of PEs (2.4) for the case of the Gaussian beams
propagation in the free space was derived earlier in the paper of Grikurov
and Kiselev [16].

2.2. Initial conditions

To approximate the point-source solution of the Helmholtz equation, i.e.
the solution of (2.1) with the right-hand side replaced by δ(x, z − zs), one
needs to define a proper Cauchy problem for the system (2.4). The Cauchy
initial conditions Aj(0, z) may be set up as follows. For the first equation of
(2.4) which is solved for A0 one may use any of the standard analytical or
numerical starters S(z) developed for the narrow-angle PEs or Padé WAPEs
(e.g. Gaussian starter, Greene source, modal starter, etc, see [1] for a compre-
hensive study). All other equations of the PE system (2.4) are subsequently
solved with zero Cauchy initial conditions:

A0(0, z) = S(z) ,

Aj(0, z) = 0, j = 1, 2, . . . .
(2.5)

It is shown [4] that for any fixed xmax approximations pn(x, z) obtained from
such Cauchy problem for the system (2.4) converge to the normal mode
solution of (2.1) as n → ∞ uniformly in x ∈ [0, xmax].
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2.3. Interface conditions

Using the same asymptotic expansion as was used to derive (2.4), we ob-
tain from (2.3) the following interface conditions for the parabolic equations

Aj|z=H(x)+0 = Aj|z=H(x)−0 ,
[

1

ρ
(Aj,z + in0HxAj +HxAj−1,x)

]∣

∣

∣

∣

z=H(x)+0

=

[

1

ρ
(Aj,z + in0HxAj +HxAj−1,x)

]
∣

∣

∣

∣

z=H(x)−0

.

(2.6)

Similarly the boundary conditions at the sloping nonpenetrable bottom may
be derived [4]. These conditions are the generalization of the Abrahamsson-
Kreiss BCs [14].

It is also worthwhile to note that for parabolic approximations pn(x, z)
and the consistent interface and boundary conditions (2.6) the proof of the
asymptotic energy flux conservation may be established [4] in a very natural
way. It is interesting to observe that the WAPA of the order n requires n+1
interface conditions (or boundary conditions at the nonpenetrable bottom).
This is the reason why the authors of [15] found that an additional condition
is necessary to establish the well-posedness of the IBVP for the rational-
linear WAPE (and for higher-order Padé approximants there should be more
depending on the degrees of the numerator and the denominator).

Also we note that the solutions to (2.4) are sought in C([0, xmax], L
2([0,∞))).

3. Transparent boundary conditions for the system of PE

The modeling of sound propagation in the typical problems of underwater
acoustics requires the solution of the PEs system (2.4) in the domain Ω =
{(x, z)|z ≥ 0, 0 ≤ x ≤ xmax}, where the field vanishes at the ocean surface
z = 0 and the medium is assumed to have constant acoustical properties for
sufficiently large values of depth z (i.e. there exists L such that ρ(x, z) = ρb,
κ(x, z) = κb and ν(x, z) = νb for z ≥ L). For computing the numerical
solution of (2.4) it is therefore natural to truncate the computational domain
at z = L introducing a TBC at this fictitious boundary.

Without any loss of generality we consider in this paper the following
problem. Let A = (A0(x, z), A1(x, z), . . . , An(x, z)) be a solution to the
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reference IBVP for the system

2iκ0Aj,x + Aj,zz + νAj + Aj−1,xx = 0 ,

A0(0, z) = S(z) , Aj(0, z) = 0 , j = 1, 2, . . . ,

Aj(x, 0) = 0 ,

lim
z→∞

|Aj(x, z)| = 0 .

(3.1)

(here the subscript indices x, z denote partial derivatives) in the domain Ω
with the initial conditions S(z) compactly supported on [0, L] .

We seek to construct the artificial boundary conditions of the form

B(Aj) = 0 , (3.2)

for (3.1) at z = L such that the solutionAt = (At
0(x, z), A

t
1(x, z), . . . , A

t
n(x, z))

to the IBVP for the system (3.1) on the truncated domain Ωt = {(x, z)|0 ≤
z ≤ L, 0 ≤ x ≤ xmax} with initial conditions (2.5) and boundary conditions
(3.2) at z = L coincides with the solution of the reference IBVP. Recall that
conditions (3.2) ensuring At = A for all (x, z) ∈ Ωt are called transparent
boundary conditions (TBCs) for (3.1).

Note that we use the simplified form (3.1) of the equation (2.4) since in
the halfspace z ≥ 0 ρ and κ are assumed to be independent on z, x. From
the TBC derivation in the next section it will be clear that it can be used
without any changes for general case of the system (2.4). We assume also
that the initial condition S(z) vanishes for all z ≥ L.

3.1. Construction of the TBCs

The reference IBVP in the halfspace z ≥ 0 is obviously equivalent to the
two coupled systems of IBVPs:















2iκ0A
t
j,x + At

j,zz + νAt
j + At

j−1,xx = 0 , (x, z) ∈ Ωt ,
At

0(0, z) = S(z) , At
j(0, z) = 0, j = 1, 2, . . . ,

At
j(x, 0) = 0, j = 0, 1, . . . ,

At
j,z(x, L) = Aj,z(x, L) ,

(3.3)

and














2iκ0A
r
j,x + Ar

j,zz + νbA
r
j + Ar

j−1,xx = 0 , (x, z) ∈ Ωr ,
Ar

j(0, z) = 0, j = 0, 1, . . . ,
Ar

j(x, L) = At
j(x, L) ,

limz→∞ |Ar
j(x, z)| = 0 .

(3.4)
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Here (3.3) is the problem on the truncated domain Ωt and (3.4) is the right
exterior problem on the halfspace Ωr = [0, xmax] × [L,∞). For the given
boundary input At

j(x, L) the right exterior problem may be solved explicitly
and At

j,z(x, L) is then computed from the solution. Thus we consider the so-
lution of (3.4) as an operator relating At

j(x, L) to At
j,z(x, L). This relation is

called Dirichlet-to-Neumann map, it could be used as a boundary condition
for (3.3). Note that according to (3.3),(3.4) there are no density discontinu-
ities at z = L. The technique allowing to account for the density jumps is
described in [6, 7].

For a given function At
j(x, L) the problem (3.4) may be solved explicitly.

We now apply the Laplace transform L : f(x) 7→ f̂(ξ) to all equations and
BCs in (3.4) and arrive at the following BVP:







Âr
j,zz + (2iκ0ξ + νb)Â

r
j = −ξ2Âr

j−1 , z ∈ [L,∞) ,

Âr
j(ξ, L) = Ât

j(ξ, L) ,

limz→∞ |Âr
j(ξ, z)| = 0 .

(3.5)

Introducing a new variable t = z−L and setting Âr
j(ξ, z) = uj(t), 2iκ0ξ+νb =

−w2, ξ2 = v, Ât
j(ξ, L) = aj in (3.5), we rewrite the BVP (3.5) as







u′′

j − w2uj = −vuj−1 , t ∈ [0,∞) ,
uj(0) = aj ,
limt→∞ |uj| = 0 .

(3.6)

Note that v, w are independent of t, and w = +
√
−2iκ0ξ − νb denotes the

branch of the square root with the positive real part. This system of BVPs
may be easily solved using the variation of parameters, and its solution has
the general form

uj(t) = e−wt
(

aj + aj−1vP1(t, w) + aj−2v
2P2(t, w) + · · ·+ a0Pj(t, w)

)

,
(3.7)

where Pk(t) for k ≥ 1 are polynomials such that u(t) = e−wtPk(t) is a par-
ticular solution to the BVP with homogeneous BCs, i.e.:







u′′ − w2u = −e−wtPk−1(t) ,
u(0) = 0 ,
limt→∞ |u| = 0 .
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Substituting u(t) into the latter BVP, we obtain a BVP for Pk(t)






P ′′

k − 2wP ′

k = −Pk−1 ,
Pk(0) = 0 ,
limt→∞ |Pk(t)e

−wt| = 0 .
(3.8)

It is easy to verify explicitly that the BVPs (3.8) have solutions of the form

Pk(t) =
k
∑

j=1

αk,j
tj

w2k−j
, (3.9)

where the set of coefficients ᾱk+1 = {αk+1,j} may be computed from the set
ᾱk by solving the following system of linear algebraic equations:






−2(k + 1)αk+1,k+1 = −αk,k ,
−2(j + 1)(j + 2)αk+1,j+2 − 2(j + 1)αk+1,j+1 = −αk,j, j = 1, . . . , k − 1 ,
2αk+1,2 − 2αk+1,1 = 0 .

(3.10)
The solution of the system (3.10) by Gaussian elimination is an easy task; it
requires the recursive evaluation of αk+1,j from αk+1,j+1 by the formulae







αk+1,k+1 =
1

2(k+1)
αk,k ,

αk+1,j =
j+1
2
αk+1,j+1 +

1
2j
αk−1,j, j = 2, . . . , k ,

αk+1,1 = αk+1,2 .

(3.11)

Now we have all necessary ingredients to solve the BVP (3.5). In the
Laplace domain (ξ, z) we have the following expression for Âr

j in the halfspace
z ≥ 0:

Âr
j(ξ, z) = e−w(ξ)(z−L)

(

j
∑

k=0

ξ2kPk(z − L,w(ξ))Ât
j−k(ξ, L)

)

,

where we write Pk(z−L,w(ξ)) instead of Pk(z−L) to stress the dependence
of the polynomial coefficients on ξ. To obtain a Dirichlet-to-Neumann (DtN)
condition, we differentiate the last equation with respect to z

∂Âr
j(ξ, z)

∂z
= e−w(z−L)

(

j
∑

k=0

ξ2k(P ′

k(z − L)− wPk(z − L))Ât
j−k(ξ, L)

)

.

(3.12)
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Let us recall that the coupling condition in the IBVP (3.3) reads asAt
j,z(x, L) =

Ar
j,z(x, L). Next we substitute the expression for Ar

j,z(ξ, z) from (3.12) into
this condition. Observing that

w(ξ)e−w(ξ)(z−L)

(

j
∑

k=0

ξ2kPk(z − L,w(ξ))Ât
j−k(ξ, L)

)∣

∣

∣

∣

∣

z=L

= w(ξ)Ât
j(ξ, L) ,

and

j
∑

k=1

ξ2kP ′

k(z − L,w)Ât
j−k(ξ, L)

∣

∣

∣

∣

∣

z=L

=

j
∑

k=1

ξ2k

(

∂

∂z

k
∑

m=1

αk,m
(z − L)m

w2k−m

)∣

∣

∣

∣

∣

z=L

Ât
j−k(ξ, L)

=

j
∑

k=1

ξ2k

(

αk,1

w2k−1
+

k
∑

m=2

mαk,m
(z − L)m

w2k−m

)∣

∣

∣

∣

∣

z=L

Ât
j−k(ξ, L)

=

j
∑

k=1

ξ2k
αk,1

w2k−1
Ât

j−k(ξ, L) ,

we obtain the following DtN TBC in the Laplace domain:

∂Ât
j(ξ, z)

∂z

∣

∣

∣

∣

∣

z=L

= −w(ξ)Ât
j(ξ, L) +

j
∑

k=1

ξ2k
αk,1

w2k−1
Ât

j−k(ξ, L) . (3.13)

For the sake of completeness we note that an analogous condition for the left
artificial boundary at z = 0 reads

∂Ât
j(ξ, z)

∂z

∣

∣

∣

∣

∣

z=0

= w(ξ)Ât
j(ξ, 0)−

j
∑

k=1

ξ2k
αk,1

w(ξ)2k−1
Ât

j−k(ξ, 0) . (3.14)

In order to obtain the TBCs in the physical domain we now apply the inverse
Laplace transform L−1 : f̂(ξ) 7→ f(x) to the conditions (3.13)-(3.14) using
the well-known properties of L−1:

L−1(ξ2kf̂(ξ)) =
d2kf

dx2k
,
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L−1(ĝ(ξ − a)f̂(ξ)) = eax
∫ x

0

g(x− y)e−ayf(y)dy = eaxL−1(ĝ(ξ)L(e−axf(x))) ,

L−1

(

+
√
ξ

ξk
f̂(ξ)

)

=
d

dx

∫ x

0

dy√
x− y

∫ y

0

∫ yk

0

. . .

∫ y2

0

f(y1)dy1dy2 . . . dyk ,

and observing that

1

w(ξ)2k−1
=

ei
π

4
(2k−1)

(2κ0)
k− 1

2

+

√

ξ − iνb
2κ0

(

ξ − iνb
2κ0

)k
.

Thus we straightforwardly arrive at the following TBCs

∂At
j(x, z)

∂n
= −

√

2κ0

π
e−iπ

4 e
i
νb

2κ0
x d

dx

∫ x

0

dy√
x− y

(

At
j(y, z)e

−i
νb

2κ0
y

−
j
∑

k=1

αk,1(−2iκ0)
−k

∫ y

0

∫ yk

0

. . .

∫ y2

0

e
−i

νb

2κ0
y1

∂2kAt
j−k(y1, z)

∂y2k1
dy1dy2 . . . dyk

)

(3.15)

at z = L and z = 0 (n denotes the outward unit normal vector at z = L,
z = 0 respectively). It is reasonable to tabulate the first coefficients αk,1:

α1,1 =
1

2
, α2,1 =

1

8
, α3,1 =

1

16
, α4,1 =

5

128
, α5,1 =

7

256
, . . .

since in practice it is enough to keep only the first few terms of the sum in
(3.15).

The TBCs (3.15) simplify significantly if we choose the reference wavenum-
ber κ0 in such a way that νb = 0 (this condition is fulfilled if we set κ0(x) = κb

in (2.4) ). Under this assumption the multiple integral on the right-hand side
of (3.15) vanishes, and the TBC becomes

∂At
j(x, z)

∂n
= −

√

2κ0

π
e−iπ

4

j
∑

k=0

αk,1(−2iκ0)
−k d

dx

∫ x

0

∂kAt
j−k(y, z)

∂yk
dy√
x− y

,

at z = 0, L ,

(3.16)

where α0,1 = −1.
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Note that the TBCs (3.15) are a natural generalization of the TBC for
the single parabolic equation (see e.g. [5]), while its simplified form (3.16) is
a generalization of the TBC for the PE with the potential vanishing at the
artificial boundary [11, 13].

4. Well-posedness of the IBVP and the uniqueness of its solution

In this section we first prove the uniqueness of the solution of the IBVP
supplied with the TBC (3.15) and then show that the resulting problems for
At

j(x, z) are well-posed. For the sake of simplicity we restrict our attention
to the problem with the right transparent boundary condition:

2iκ0A
t
j,x + At

j,zz + νAt
j + At

j−1,xx = 0 , (x, z) ∈ Ωt ,

At
0(0, z) = S(z) , At

j(0, z) = 0, j = 1, 2, . . . ,

At
j(x, 0) = 0, j = 0, 1, . . . ,

∂At
j(x, z)

∂z
= −

√

2κ0

π
e−iπ

4

j
∑

k=0

αk,1

(−2i)kκk
0

d

dx

∫ x

0

∂kAt
j−k(y, z)

∂yk
dy√
x− y

at z = L.

(4.1)

4.1. Existence and uniqueness

The uniqueness proof relies on the following standard result for the ho-
mogeneous Schrödinger-type equation [7]

Lemma 4.1. [7] An IBVP

2iκ0Bx +Bzz + νB = 0 , (x, z) ∈ Ωt ,

B(0, z) = S(z) , S(z) = 0 for z ≥ L ,

B(x, 0) = 0 ,

∂B(x, z)

∂z
= −

√

2κ0

π
e−iπ

4α0,1
d

dx

∫ x

0

B(y, z)dy√
x− y

at z = L

(4.2)

for the standard PE with the TBC at z = L and compactly supported initial
data S(z) ∈ H2[0, L] has unique solution B(x, z) ∈ L2[0, L].

This lemma immediately implies the following result:

Proposition 4.1. If there exist two solutions A1
j(x, z) and A2

j(x, z) of the
IBVP (4.1) then A1

j(x, z) = A2
j(x, z) for all (x, y) ∈ Ωt.

12



Proof. If A1
j(x, z) and A2

j(x, z) satisfy (4.1) then A1
j(x, z)−A2

j(x, z) satisfies
IBVP (4.2) with S(z) = 0 for all z. From the uniqueness of the solution of
IBVP (4.2) it follows that A1

j(x, z)− A2
j(x, z) ≡ 0.

To prove the existence of the solution of IBVP (4.1) and its well-posedness
we first consider a general inhomogeneous IBVP of the form

2iκ0Ax + Azz + νA+ ζ = 0 ,

A(0, z) = 0 ,

A(x, 0) = 0 ,

lim
z→∞

|A(x, z)| = 0 ,

(4.3)

The following result may be then established [17, 18]:

Lemma 4.2. If the input term ζ(x, z) ∈ C([0, xmax], H
2(R)) and the poten-

tial ν(x, z) ∈ C([0, xmax], H
2(R)) and ν(x, z) = 0 for z ≥ L then the IBVP

(4.3) has a unique classical solution

A(x, z) ∈ C([0, xmax], H
2(R)) ∩ C1([0, xmax], L

2(R)) .

Note that S.-i. Doi [18] proved that the solution also belongs to C([0, xmax],
Hk(R)) for sufficiently smooth initial data and potential. Hereafter we as-
sume that these conditions are fulfilled, i.e. that ζ(x, z) ∈ C([0, xmax], C

M(R))
and ν(x, z) ∈ C([0, xmax], C

M(R)) for sufficiently largeM such thatAjxx(x, z)
in (3.1) belongs to C([0, xmax], H

2(R)) for all j = 1, 2, . . . , n. Although this
requirement is somewhat too restrictive, the more tedious formulation of nec-
essary conditions for S(z) and ν(x, z) would lead us too far from the subject
of this study. The function S(z) in most PE starters is in C∞(R), but the po-
tential may actually be piecewise smooth in z (usually piecewise linear), and
the well-posedness proof given here does not cover this case. Summarizing
the arguments above we formulate

Lemma 4.3. For ν(x, z) ∈ C([0, xmax], C
M(R)) and S(z) ∈ CM(R) where

M is sufficiently large the IBVP (3.1) has a unique classical solution A =
(A0(x, z), A1(x, z), . . . , An(x, z)) where Aj(x, z) ∈ C([0, xmax], H

2(R)).

This lemma immediately implies

Proposition 4.2. If the conditions of Lemma 4.3 are fulfilled and addition-
ally ν(x, z) = 0 and S(z) = 0 for all z ≥ L then there exist a classical
solution of the IBVP (4.1) (which is unique according to Proposition 4.1).
This solution coincides with the solution of (3.1) for all (x, z) ∈ Ωt.
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Proof. By construction of the conditions (3.16), any solution Aj(x, z) of the
halfspace problem (3.1) satisfies the TBC (3.16). Thus the solution from the
Lemma 4.3 also solves (4.1).

4.2. Well-posedness

Since the solution of the IBVP with the TBC (4.1) is merely a restriction
of the halfspace problem (3.1) solution to the truncated domain Ωt, the well-
posedness of (4.1) also follows from the well-posedness of the IBVP (3.1).
The latter fact is established by the following proposition

Proposition 4.3. For the solution of the IBVP (3.1) under the assumptions
of Lemma 4.3 the following inequality holds for j = 1, 2, . . .

2κ0 (N(x)−N(0)) ≤
∫ x

0

η(ξ)dξ , (4.4)

where

N(x) = ‖Aj(x, z)‖L2
z
=

(
∫

∞

0

|Aj(x, z)|2dz
)1/2

,

η(x) = ‖∂2Aj−1(x, z)/∂x
2‖L2

z
=

(
∫

∞

0

|∂2Aj−1(x, z)/∂x
2|2dz

)1/2

.

Proof. For convenience we use the notation from (4.3): A(x, z) = Aj(x, z)
and ζ(x, z) = ∂2Aj−1(x, z)/∂x

2.
Let us recast the parabolic equation from (4.3) in the form

2κ0Ax = iAzz + iνA+ iζ ,

multiply it by A∗ (the star denotes complex conjugation) and take the real
part of the resulting expression. After obvious transformations we obtain

κ0
∂

∂x
|A|2 = ℜ(iA∗Azz) + ℜ(iν|A|2) + ℜ(iA∗ζ) .

Now let us integrate the last equation with respect to z:

κ0
d

dx
‖A‖2L2

z
= ℜ

(
∫

∞

0

iA∗Azzdz

)

+

∫

∞

0

ℑ(ν)|A|2dz + ℜ
(

i

∫

∞

0

A∗ζdz

)

.

14



Firstly using integration by parts we find that

ℜ
(
∫

∞

0

iA∗Azzdz

)

= ℜ
(

iA∗Az|∞0 − i

∫

∞

0

A∗

zAzdz

)

= ℜ
(

i

∫

∞

0

|Az|2dz
)

= 0 .

Secondly we observe that ℑ(ν) = 0 for the medium with no attenuation,
while for the lossy one ℑ(ν) < 0. We therefore conclude that

κ0
d

dx
‖A‖2L2

z
≤ ℜ

(

i

∫

∞

0

A∗ζdz

)

≤ ‖A‖L2
z
‖ζ‖L2

z
.

This inequality may be rewritten using our notation as

2κ0N
′(x)N(x) ≤ N(x)η(x) ,

and this concludes the proof of the proposition

2κ0(N(x)−N(0)) = 2κ0

∫ x

0

N ′(ξ)dξ ≤
∫ x

0

η(ξ)dξ .

5. Numerical scheme for the solution of the IBVP and its stability

In this section we construct a finite difference numerical scheme for the
solution of the IBVP (4.1). It is a simple generalization of the scheme de-
vised by Sun and Wu [13] which in turn reduces to the numerical method of
Baskakov and Popov [11]. This scheme enjoys a remarkable property of the
unconditional stability, and this fact was first proven in [13]. Our scheme
also inherits this property as we will show here.

We introduce a uniform grid xn = n∆x, zm = m∆z, n = 0, 1, . . . , N ,
m = 0, 1, . . . ,M , where ∆zM = L, ∆xN = xmax. Hereafter upper indices
are used to denote values of any given function U(x, z) in the grid points:

Un,m ≡ U(xn, zm) , Un+1/2,m ≡ 1

2

(

U(xn+1, zm) + U(xn, zm)
)

.
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For the parabolic equations (2.4) in the problem (4.1) we use the Crank-
Nicholson finite difference scheme modified to include the input term:

2iκ0

An+1,m
j − An,m

j

∆x
+
A

n+1/2,m+1
j − 2A

n+1/2,m
j + A

n+1/2,m−1
j

∆z2

+ νn+1/2,mA
n+1/2,m
j + (Aj−1,xx)

n+1/2,m = 0 ,

(5.1)

where the input term (Aj−1,xx)
n+1/2,m = ((Aj−1,xx)

n+1,m + (Aj−1,xx)
n,m) /2

is computed from the solution of the equation for Aj−1 using the standard
3-point finite difference approximation

(Aj−1,xx)
n,m ≈

An+1,m
j−1 − 2An,m

j−1 + An−1,m
j−1

∆x2
.

The scheme (5.1) is marching in x, i.e. it computes the vector An
j =

(An,0
j , An,1

j , . . . , An,M
j ) from the vector An−1

j . The initial condition (4.1) at
x = 0 yields the starter A0

j :

A0,m
0 = S(zm) , A0,m

j = 0, j = 1, 2, . . . . (5.2)

The Dirichlet initial condition Aj(x, 0) = 0 at z = 0 turns into

An,0
j = 0 , j = 0, 1, 2, . . . . (5.3)

We now describe the approximation of the TBC (3.16) in (4.1). Let us
first recast the convolution terms of the TBC in the following form

d

dx

∫ x

0

∂kAt
j−k(y, z)

∂yk
dy√
x− y

=
dk

dxk

∫ x

0

∂At
j−k(y, z)

∂y

dy√
x− y

.

For the the latter integral we use the approximation developed by Baskakov
and Popov [11]:

∫ (n+1)∆x

0

∂Aj(y, L)

∂y

dy√
x− y

≈
n
∑

k=0

γkA
n+1−k,M
j , (5.4)

where γ0 =
√
2/
√
∆x, while for k = 1, 2, . . .

γk =
−2

√
∆x
(√

k + 1 +
√
k
)(√

k − 1 +
√
k
)

(√
k + 1 +

√
k − 1

)

.
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To further simplify the notation, we define βk =
√

2κ0

π
e−iπ

4 γk and introduce

the following approximation for the input terms in the BC at z = L:

√

2κ0

π
e−iπ

4

j
∑

k=1

αk,1(−2iκ0)
−k d

dx

∫ ∆x(n+1)

0

∂kAt
j−k(y, z)

∂yk
dy√
x− y

≈
j
∑

k=1

αk,1(−2iκ0)
−k(Dx)

k

n
∑

s=0

βkA
n+1−s,M
j ,

(5.5)

where (Dx)
k is the k-th degree of the central difference operator Dx defined

by

DxU
n,m =

Un+1,m − Un−1,m

2∆x

for any function Un,m = U(xn, zm) on the grid xn, zm. The right-hand side
of (5.5) is denoted hereafter as W n

j . The discretized form of the TBC (3.16)
from the IBVP (4.1) can be written as

1

2∆z

(

A
n+1/2,M+1
j − A

n+1/2,M−1
j

)

= −
n
∑

k=0

βsA
n+1/2−s,M
j −W

n+1/2
j . (5.6)

Expressing the quantity A
n+1/2,M+1
j from (5.6) and substituting it into the

formula (5.1) (for m = M), we finally arrive at

2iκ0

An+1,M
j − An,M

j

∆x
+ 2

A
n+1/2,M−1
j − A

n+1/2,M
j

∆z2
+ νn+1/2,MA

n+1/2,M
j

− 2

∆z

(

n
∑

k=0

βsA
n+1/2−s,M
j +W

n+1/2
j

)

+ (Aj−1,xx)
n+1/2,M = 0 ,

(5.7)

Equations (5.1), (5.7) and (5.3) constitute together a linear system which
allows to obtain An+1

j from An
j .

Sun and Wu [13] have proved the following result for the numerical scheme
(5.1)-(5.7)-(5.3) with no input (i.e. for the case of Aj−1,xx = 0 and Wj = 0):

Proposition 5.1. In the case of the IBVP (4.2) the numerical scheme (5.1)-
(5.7)-(5.3) is unconditionally stable, i.e. the following inequality holds for all
n:

‖Bn‖ℓ2 ≤ ‖B0‖ℓ2 ,
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where Bn = (Bn,1, . . . , Bn,M), and ‖ · ‖ℓ2 denotes the discrete ℓ2-norm:

‖Bn‖2ℓ2 =
M
∑

m=0

|Bn,m|2 .

It is easy to see that in the case of the equation for Aj(x
n, zm) the in-

put terms may be considered as additional initial conditions (introduced at
x = x1, x = x2, . . . ). The resulting solutions for all of these additional ini-
tial conditions are combined in the inhomogeneous equation for Aj and by
Proposition 5.1 we conclude the following:

Proposition 5.2. The numerical solution of the IBVP (4.1) obtained us-
ing the numerical scheme (5.1)-(5.7)-(5.3) is unconditionally stable, and the
following inequality is satisfied for any N = 1, 2, . . . :

‖BN‖ℓ2 ≤ ‖B0‖ℓ2 + C1

N
∑

n=0

|W n
j |2 + C2

N
∑

n=0

M
∑

m=0

|(Aj−1,xx)
n,M |2 ,

where the constants C1 and C2 are independent on Wj, Aj−1,xx and N .

The proof of this result obviously follows from Proposition 5.1.

6. Test examples

In this section we conduct some numerical experiments in order to test
the derived TBCs for the equations (2.4). Since the performance of the TBCs
does not depend on the inhomogeneities in the interior of the computational
domain, we study here the simplest case of sound propagation in the ho-
mogeneous medium. Let us consider a halfspace z ≥ 0 with the parameters
c(x, z) = c and ρ(x, z) = 1. The source of the frequency f is located at x = 0,
z = zs (hence κ0 = 2πf/c). We set up an artificial boundary at z = L = 2zs
and solve the problem of sound propagation using the system of the IBVPs
(4.1) and the finite difference scheme (5.1)-(5.7)-(5.3).

We use the Gaussian initial condition [1] of the form

A0(0, z) = S(z) = Āe−
(z−zs)

2

σ2 (6.1)

in the IBVP (4.1) for A0 in order to simulate an acoustical field produced
by the point source. It easy to see that for such initial conditions all the
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Figure 1: ℓ2-errors EN
j computed for different mesh sizes ∆x for the solutions Aj(x, y),

j = 0, 1, 2.

equations of the system (3.1) in the homogeneous halfspace z ≥ 0 may be
solved analytically using the Fourier transform in z (cf. [1]). The solution
has a very simple form, e.g. AA

0 and AA
1 (subscript A for “analytical”) writes

as

AA
0 (x, z) = U0(x, z − zs)− U0(x, z + zs) ,

AA
1 (x, z) = U1(x, z − zs)− U1(x, z + zs) ,

(6.2)

where U0(x, z), U1(x, z) are the solutions for the unbounded media (i.e. for
−∞ ≤ z ≤ ∞) with the source located at z = 0:

U0(x, z) = Ā

√

σ2κ0

σ2κ0 + 2ix
exp

(

− κ0z
2

σ2κ0 + 2ix

)

,

U1(x, z) = ix
6x2 − 6iσ2κ0x+ 12iκ0z

2x− 2κ2
0z

4 + 6σ2κ2
0z

2 − 3
2
σ4κ2

0

κ0(σ2κ0 + 2ix)4
U0(x, z) .

(6.3)

The solutions of higher-order equations have similar form and may be ob-
tained in the same straightforward way. In the book [1], it is shown that the
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Figure 2: Contour plots of log
10

|Aj(x, z)| for j = 0 (top), j = 1 (middle), j = 2 (bottom).
The numerical solutions of the IBVP (4.1) are shown on the right, while their analytical
counterparts are presented on the left.

parameters in the initial condition (6.1) must be chosen as

Ā =
√
κ0 , σ =

√
2

κ0

.
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We may now compare the numerical solutions A0, A1, . . . of the IBVP
(4.1) against the analytical solutions AA

0 , A
A
1 , . . . (6.2) of the halfspace prob-

lem (3.1). The numerical solutions were computed for different pairs of
∆xq,∆zq, where

∆xq =
1

100.2q
∆x0 , ∆zq =

1

100.1q
∆z0 ,

and ∆z0 = 1 m, ∆x0 = 1 m. The ratio (∆zq)
2/∆xq = (∆z0)

2/∆x0 is there-
fore kept constant (this is standard practice for finite difference schemes for
parabolic equations). In order to estimate the quality of approximation, we
compute EN

j , the ℓ2-error at xmax = N∆x divided by the ℓ2-norm of the
exact solution in the domain [0, L]:

EN
j =

‖AN
j −A

A,N
j ‖ℓ2

‖AA,N
j ‖ℓ2

, (6.4)

where A
A,n
j =

(

AA
j (xn, z0) , AA

j (xn, z0) , . . . , AA
j (xn, z0)

)

All the numerical solutions Aj converge steadily to their analytical coun-
terparts, and the rate of convergence is the same as predicted by the esti-
mates of Sun and Wu [13] (i.e. the error is approximately linearly dependent
on ∆z). This convergence is illustrated in the Fig. 1, where errors EN

j are
plotted against the mesh sizes ∆zq for j = 0, 1, 2. The computed solutions
A0, A1, A2 and their analytical counterparts are shown in Fig. 2 in the form
of the log-contour plots (i.e. we plotted the contours 0,−1,−2, . . . for the
function log10 |Aj(x, y)|). These log-contours allow us to detect very small
levels of the reflection.

Note that although the level of accuracy decreases as j increases, this fact
is related mostly to the numerical differentiation on the right-hand side of
(2.4). In the paper [4] we suppressed these errors using the Lanczos low-noise
differentiation formulae. Here we did not use this technique, since the proper
TBCs (3.15) allowed us to use standard 3-point central difference formula.

7. Conclusion

In this work the TBCs for the system of the parabolic equations from
[4] were derived. The solutions of the equations (2.4) form the high-order
parabolic approximation to the solution of the Helmholtz equation describing
the propagation of acoustic waves. Therefore, in many practical situations
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TBCs are required in order to solve them numerically on the artificially
truncated domains. The TBCs were derived by the same method based on
the Laplace transform as was used in several classical papers (see [5]). We
considered the IBVP (4.1) for the system of PEs (2.4) with the presented
TBCs and proved the existence and uniqueness of its solution. Also the
well-posedness of the latter IBVP was established. We developed a finite
difference scheme for the numerical solution of this IBVP with the derived
TBC. This scheme, being a natural generalization of the one proposed by
Baskakov and Popov, is shown to be unconditionally stable. The efficiency
of the presented scheme and the convergence of the computed solutions to
the analytical ones (as ∆z → ∞) is confirmed by a numerical example.

It is important to note that since we must differentiate the numerical solu-
tionAj(x, z) with respect to x in order to obtain an input term in the equation
for Aj+1(x, z), even small reflections at the fictitious boundary may destroy
the method’s order of accuracy (small errors are inflated by differentiation).
This is the reason why it is necessary to make these undesirable reflections
as small as possible. One possible way to almost completely suppress them
is to use the fully-discrete TBCs consistent with the Crank-Nicolson scheme.
Such conditions for the usual parabolic equation (or Schrödinger equation)
were derived in [7], and in our future work we will attempt to generalize the
TBCs form [7] to the case of the system (2.4).

It would be also interesting to generalize the equations (2.4) to the 3D
case, and to investigate the TBCs for this case using e.g. the method of
Schädle [19].
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