
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 15/07

Martin Galgon, Lukas Krämer, Bruno Lang

Adaptive choice of projectors in projection based
eigensolvers

January 30, 2015

http://www.math.uni-wuppertal.de

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Adaptive choice of projectors in
projection based eigensolvers

Martin Galgon, Lukas Krämer, Bruno Lang∗†

January 30, 2015

We present a general framework for algorithms for the solution of Hermi-
tian eigenvalue problems, where eigenvalues in a given interval are sought.
One instance of this framework is Polizzi’s FEAST algorithm [E. Polizzi:
Density-matrix-based algorithm for solving eigenvalue problems. Phys.
Rev. B 2009; 79:115112], which is based on numerical integration. An-
other instance is based on polynomial approximation. We propose adap-
tive strategies for the choice of the polynomial degree and tolerance of the
linear solver, respectively. Numerical experiments reveal that these strate-
gies are able to improve the robustness of the resulting methods, while at
the same time achieving near-to-optimum efficiency.

Keywords. Eigenvalue method; projection method; Chebyshev approximation; FEAST;
numerical integration, iterative linear solver

1 Introduction

Matrix eigenvalue problems arise in a multitude of applications, ranging from physics to
chemistry to mechanical engineering, to name just a few [7, 17, 3]. Here the eigenvalues
typically represent energy levels or resonances, and the associated eigenvectors describe
the corresponding states or “modes”. Often the matrices are very large and sparse,
and therefore methods based on factorizations (such as variants of the QR algorithm;
see, e. g., [24]) cannot be applied.

In these cases one often does not need to know all eigenvalues and associated eigen-
vectors. Some applications require the knowledge of a fixed number of eigenvalues
closest to a prescribed “target” τ ∈ C or the smallest or largest ones, whereas in other

∗Bergische Universität Wuppertal, Fachbereich C – Mathematik und Naturwissenschaften, 42097
Wuppertal, Germany, E-mail: lang@math.uni-wuppertal.de

†This work was supported by the Deutsche Forschungsgemeinschaft through the priority programme
1648 “Software for Exascale Computing” (SPPEXA) under project ESSEX

1

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

applications all eigenvalues in a given “band” must be determined. The latter situation
is addressed in the present paper. More precisely, let the equation

AX = XΛ (1)

be given, where A ∈ Cn×n is a Hermitian matrix. The matrix X ∈ Cn×m, m ≤ n, is a
matrix whose columns are formed by eigenvectors of A, the corresponding eigenvalues
are supposed to be on the diagonal of the diagonal matrix Λ. We suppose that the
eigenvalues in the real interval Iλ =

[
λ, λ

]
are sought.

Methods for the solution of (1) under these circumstances typically aim at comput-
ing an approximation to the (orthogonal) spectral projector PΛ onto the space span(X)
corresponding to the eigenvalues collected in Λ. The projector is not computed ex-
plicitly but rather its effect on a set of test vectors Y, resulting in a basis Ũ of the so
called search space in which the eigenvectors are sought.

A widely used class of such methods is based on Krylov subspaces, i. e., those of
Lanczos or Arnoldi type [2, 14, 23]. Similar from a conceptual point of view are
methods of Jacobi–Davidson type [22]. Krylov and Jacobi–Davidson type methods

form the space span(Ũ) incrementally, i. e., column by column.
Recently, methods based on spectral projectors which are not of Krylov or Jacobi–

Davidson type have been studied. They include those based on numerical integration
[16, 20, 11] or rational approximation [10]. Another class of methods, known for a
long time, is based on polynomial approximation, e. g., [21, 27]. These methods have

in common that they aim at forming the whole space span(Ũ) together. In the sequel,
we will refer to such a method as a projection based method.

All methods mentioned before aim at approximating the eigenspace span(X). The
algorithms can be implemented such that they access the matrix only via matrix–vector
products. This makes them amenable for easy parallelization, supposed a suitable
library for the sparse matrix–vector products is available. Such techniques are also
developed in the context of the ESSEX project [1].

The article is structured as follows. Section 2 deals with the general structure of
projection based algorithms for eigenvalue problems. In Section 2.1 we review the
polynomial approach, in Section 2.2 the numerical integration approach. In Section 3,
we introduce the methodology for the adaptive approaches, accompanied by numerical
results. Section 4 presents the resulting algorithm and concludes the article.

2 Structure of projection based algorithms

Having an approximation to the projector PΛ at hand (formed by a Jacobi–Davidson,
polynomial or integration method), a simple eigenvalue algorithm can be formulated.
It makes use of a suitable Rayleigh–Ritz approach [24]. The prototype of the arising
algorithm, called ProjAlg in the following, is listed in Algorithm 2.1. It will be
substantiated later. Note that PΛ is not needed explicitly, but only its product with a
set of test vectors.

Typically, the computation in line 3 is done by the same rule in every iteration of
the algorithm. However, there is no need to do so. The projector PΛ can be chosen

2

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

dynamically in each iteration of Algorithm 2.1. In practice this amounts to choos-
ing certain parameters of the linear solver, the integration scheme or the polynomial
approximation dynamically. The reasons for doing so are efficiency and robustness,
as will be shown later. For instance, the required polynomial degree is not known in
advance, but by increasing the degree dynamically one can achieve an overall workload
that is close to the lowest possible. Sakurai and co-workers also worked on techniques
for parameter estimation in integration based algorithms [19].

Algorithm 2.1 Skeleton of projection based algorithm ProjAlg

Input: An interval Iλ =
[
λ, λ

]
and an initial estimate m̃ of the number of eigenvalues

in Iλ.
Output: m̂ ≤ m eigenpairs with eigenvalues in Iλ (m is chosen somewhat larger than

m̃).
1: Choose Y ∈ Cn×m of rank m.
2: while not converged do
3: Compute an approximation Ũ to

U := PΛY.

4: Form the Rayleigh quotients AŨ := Ũ?AŨ, BŨ := Ũ?Ũ.

5: Solve the size-m generalized eigenproblem AŨW̃ = BŨW̃Λ̃.

6: Compute the approximate Ritz pairs (Λ̃, X̃ := Ũ · W̃).

7: Check for convergence and set Y := X̃.

The goal of this paper is to identify and study potential for adaptivity in such
a projection based algorithm. We study two different ways of approximating the
projector PΛ, namely the approximation by polynomials and numerical integration of
the resolvent where the occurring linear systems are solved iteratively. The dynamic
in the computation of PΛ then is reached by choosing respectively the polynomial
degree or the accuracy of the linear solver adaptively. Besides the described adaptivity
approach, we study the effects of “locking” converged eigenpairs (i. e., they are saved
and not further considered in the iteration) and the resulting effect on the orthogonality
of the eigenvectors. Further, we include schemes for reducing the subspace dimension
to a reasonable value.

2.1 Polynomial approximation

A simple and well established way to approximate the projector PΛ in line 3 of Algo-
rithm 2.1 is by polynomials. For a given integer d > 0, a polynomial pd of degree d
is constructed that should fulfill pd(A) ≈ PΛ as well as possible. The polynomial pd
itself has to be chosen such that it approximates the characteristic function χIλ of the
search interval Iλ,

t 7→ χIλ(t) :=

{
1, t ∈ Iλ
0, t 6∈ Iλ

. (2)

3

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

The matrix pd(A) then has the same eigenvectors as A, where those belonging to
eigenvalues of A inside Iλ [outside Iλ, resp.] belong to eigenvalues ≈ 1 [≈ 0] of pd(A).
Typically, Chebyshev polynomials [15] are used to approximate (2). These polynomials
have been used for a long time in matrix computations due to their ability to magnify
certain parts of the spectrum. For examples, see [6, 21]. The approximation of (2)
then takes the form

χIλ(t) ≈ Cd(t) :=

d∑
`=0

c`T`(t), (3)

where T` denotes the Chebyshev polynomial of first kind [15] of degree ` and c` is
a certain coefficient. Other orthogonal polynomials such as Legendre polynomials
can also be used but are not as effective as Chebyshev polynomials [12]. Since the
approximation (3) only works on the interval [−1, 1], the spectrum of the matrix and
the interval boundaries have to be transformed to this interval via a simple linear
transformation [6]. In the sequel, we suppose that this preprocessing step has already
been done. The coefficients c` in (3) can be computed via the formula

c` =

arccos(λ)− arccos(λ)

π
, ` = 0

2
`π (sin(` arccos(λ))− sin(` arccos(λ))), ` > 0

;

see, e. g., [6] for a derivation of these coefficients. In order to suppress the unwanted
oscillations of Cd near the boundaries of Iλ, the coefficients c` can be multiplied by
certain other coefficients g`. There are several choices for these coefficients, we will
make use of those called Jackson coefficients [21, 12, 26]. The polynomials T` fulfill
the three term recursion

T0(t) = 1, T1(t) = t, T`+1(t) = 2tT`(t)− T`−1(t).

Hence, computing Cd(A)y for a vector y requires only d matrix–vector multiplications
with A.

In [12], a numerical study concerning the use of polynomials in the projection based
algorithm was conducted. The parameters included different kinds of factors g`, loca-
tions of the search interval, matrix sizes and polynomial degrees. It turned out that
the Jackson coefficients mentioned above work best and that the necessary polynomial
degree grows with the matrix size and nearness of the search interval to the center of
[−1, 1]. These findings can be found, to some extent, also in [21].

The problem still is the choice of the polynomial degree d. Although some facts
about possible degrees are known in theory [12, 21], it is not known in advance how
it should be chosen. If it is chosen too small, Algorithm 2.1 might not deliver all
wanted eigenpairs to the desired accuracy. Chosen too large, computation time is
wasted. The remedy is to use an adaptive approach, increasing d over the iterations
of Algorithm 2.1. This amounts to choosing different (approximate) projectors PΛ

in line 3 of the algorithm. The approach was briefly described in [12], here we will
present a further study. Increasing the degree d can lead to convergence if the initial
value of d was chosen too low and it sometimes even can decrease the overall number

4

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

of matrix–vector multiplications. The number of matrix–vector multiplications d ·m
in each iteration of Algorithm 2.1 is a useful quantity to assess the runtime of the
algorithm. This is due to the fact that most of the operations of ProjAlg with
polynomial approximation are spent in matrix–vector products. (Here, m denotes the
number of columns in the “current” Y, which may be lower than the initial m; see
Sections 3.1 and 3.2.)

2.2 Numerical integration

Another way of approximating the projector PΛ from line 3 of Algorithm 2.1 is by
using numerical integration. Let C be a curve in the complex plane surrounding the
interval Iλ, such that no other eigenvalues than those in Iλ reside in the interior of C.
Then, it can be shown that

PΛ =
1

2πi

∫
C

(zI− A)−1dz, (4)

i. e., the integral is exactly the projector onto the eigenspace belonging to the eigenval-
ues Λ. Hence, it is reasonable to approximate (4) with a numerical integration scheme
(see, e. g., [5]), resulting in an approximate projector. This approach was, for instance,
followed in [16, 20]. The integral in (4) can be approximated by a simple integration
scheme as the trapezoidal rule or the Gauß–Legendre rule, as was done in [16]. The
resulting algorithm from [16] is known by the name FEAST.

The formula for the approximation of PΛY takes the form

PΛY ≈ P̃ΛY :=
1

2πi

p∑
k=1

ωkϕ
′(tk)(ϕ(tk)I− A)−1Y, (5)

where ϕ : [0, 2π]→ C is a parametrization of C. The numbers tk ∈ [0, 2π], k = 1, . . . , p,
are the integration points, the numbers ωk, k = 1, . . . , p, are the integration weights.
Together they define the integration scheme. For each k, a linear system of the form

(zkI− A)V = Y,where zk = ϕ(tk), (6)

with m right hand sides has to be solved.
For large system sizes n, the systems (6) cannot be solved with a method based

on factorization, i. e., on some form of the Gauß method. This is at least the case
unless the matrix A has some special structure, e. g., banded form. (For solution of
the systems (6) in the banded case, see [7].)

The typical way for solution of (6) then is to use an iterative solver. A variety of those
is available [18]. The system matrix Mk := zkI − A in (6) is typically not Hermitian
since the shifts zk are complex, and since the zk may be close to the spectrum of A,
the matrices may be ill-conditioned. In [8], a method named CARP-CG was identified
that is capable to solve the systems. For details, see [8] and [9]. When assessing the
efficiency of the integration based method in combination with an iterative solver, it
is sensible to count the overall number of iterations taken by the linear solver.

5

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

When computing (5) with an iterative linear solver, the overall error in the approxi-
mation to the projector—and thus the achievable quality of the computed eigenpairs—
is determined by the discretization error of the integration method, together with the
error in the solution of the linear systems [12]. Besides, rounding errors are present. In
the following, we will also denote the computed quantity in the right hand side of (5)

by P̃Λ. This means that P̃Λ now also comprises the errors that are introduced by the
linear solver and by rounding errors. In [11] it was shown how the errors in the com-

puted eigenvalues and eigenvectors of A are bounded by the error ‖PY− P̃ΛY‖. If this

error is too large, no small residuals ‖Ax̃− x̃λ̃‖ can be expected. Hence it is reasonable

to decrease ‖PY − P̃ΛY‖ by increasing the accuracy of P̃Λ. This can be achieved by
adjusting the accuracy of the linear solver, which terminates when a certain residual
in the linear systems ‖Mkṽ− y‖ (either in relative or absolute sense) is reached. Here,
ṽ denotes the computed counterpart to a column of V and y denotes a column of Y.
This procedure is the analog to increasing the polynomial degree in Section 2.1.

Another way of introducing adaptivity is of course to increase the integration order
p in (5). However, a fixed value of p = 8 proved to be sufficient in most of our
experiments. This is why we keep p fixed in the following.

3 Adaptivity: Techniques and results

There are two ways to reduce the work spent in one iteration of the algorithm. The
first is to use a smaller search space, with fewer vectors to work on, and the other is to
spend less effort on each vector. Vectors may be removed from the search space either
if they are already converged (“locking”) or based on rank information. These two
techniques are discussed in Sections 3.1 and 3.2, respectively. They are independent
from the projector being applied via a (polynomial) approximation or with a contour
integral. The work spent on each vector is dominated by the degree of the polynomial
or the accuracy required for the solution of the linear systems. In Sections 3.3 and 3.4
we will discuss techniques for selecting these parameters suitably. All techniques will
be illustrated with numerical examples.

The numerical experiments have been performed with matrices of size WL ×WL,
resulting from modeling graphene strips with W ×L atoms [7, 4]. Our TestSet com-
prises twelve test problems Gra{I,II,III}-{1k,11k}-{A,B}, where the first parameter
refers to one of three underlying models, the second parameter indicates the matrix
size (n = 1152 for W = 12, L = 96 or n = 11604 for W = 12, L = 967), and the third
specifies the location of the search interval Iλ (centered at c = 0.1725 for A, and at
c = 1.0 for B). All search intervals have been chosen to contain roughly 300 eigenval-
ues each, and we always started with the estimate m̃ = 300 and m = 450. Most of
the experimental data given below were obtained with the two problems GraI-11k-A
and GraI-11k-B, that is, with the same “type-I”, size-11604 matrix GraI-11k whose
eigenvalues are shown in Figure 1. The two problems only differ in the location of the
search interval; see Table 1 for more details. Note that in GraI-11k-B the eigenvalues
are much denser and come closer to the boundaries of Iλ than in GraI-11k-A, making
the former problem much harder to solve. The number of iterations of the eigensolver

6

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

-4

-3

-2

-1

 0

 1

 2

 3

A B

Figure 1: Eigenvalues and search intervals for the matrix GraI-11k.

Table 1: The problems GraI-11k-A and GraI-11k-B.

Problem GraI-11k-A GraI-11k-B

[λ, λ] [−0.0475, 0.3925] [0.935, 1.065]
Eigenvalues closest to λ −0.049569 − 0.046663 0.934905 0.935025

Eigenvalues closest to λ 0.390239 0.392900 1.064481 1.065235
Eigenvalues in Iλ 298 289

was limited to 15, and the threshold for considering a Ritz pair (x̃j , λ̃j) converged was

set to ‖Ax̃j− x̃j λ̃j‖ ≤ 10−12 ·n·max{|λ|, |λ|} as suggested in [13]. All problems (A, λ, λ)
were scaled by 1/4 before calling the eigensolver to ensure spec(A) ⊂ [−1, 1].

3.1 Locking

If the degree of the Chebyshev polynomial is very high or the linear systems occurring
in the contour integration are solved to very high accuracy (e. g., with a direct solver)
then all Ritz pairs belonging to the sought eigenvalues may reach the residual threshold
in the same (typically the third or fourth) iteration of the algorithm. Otherwise,
convergence will occur during several iterations. Then it is natural to “lock” the
converged pairs, i. e., to freeze them and remove the vectors from the search space to
be used in later iterations.

Table 2 shows the convergence history for the problem GraI-11k-B when using
Chebyshev approximation with fixed degree d = 1600. Starting at iteration 8, con-
vergence sets in, leading to considerably smaller search spaces thereafter. This also
reduces the overall number of matrix–vector multiplications by roughly 27%. (It turns
out that reducing the search space also tends to slightly reduce the number of itera-
tions, in this case from 14 to 13.)

Locking, however, essentially amounts to computing the remaining eigenpairs inde-
pendently from the locked ones, and thus the orthogonality may suffer; cf. also [13].
Figure 2 shows the orthogonality of the vectors computed in the above example if
no measures for maintaining orthogonality are taken. Note that the final sorting
of the eigenvalues has been suppressed to better expose the sets of vectors that
have been locked in the same iteration. While these show excellent orthogonality

7

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Table 2: Dimension of search space and number of converged and locked eigenpairs for
problem GraI-11k-B (without SVD-based resizing, cf. Section 3.2).

Iteration 1–5 6 7 8 9 10 11 12 13 14
Without locking:

Search space dim 450 450 450 450 450 450 450 450 450 450
Converged pairs 183 247 267 281 280 288 289

With locking:
Search space dim 450 450 450 450 267 202 181 168 165
Pairs to be locked 183 65 21 13 3 4

(|̃x?i · x̃j | < 2 · 10−15 for i 6= j from the same set), the orthogonality between vectors
from different iterations can be worse by five orders of magnitude. Thus it is manda-
tory to orthogonalize the “current” vectors x̃j against all previously locked vectors.
Doing this yielded |̃x?i · x̃j | < 10−14 for all i 6= j.

3.2 SVD-based resizing

The eigenvectors x̃j computed by the projection-based algorithm should be orthonor-

mal. Because of X̃ = Ũ · W̃ this implies that Ũ must have full rank. If this is not the
case then Ũ should be replaced with a basis of range(Ũ).

A more aggressive resizing strategy also makes use of the facts that (i) the number
of eigenvalues to be found in the search interval is very well predicted by the number
of singular values of Ũ that are larger or equal to 1/2 and that (ii) the corresponding
left singular vectors determine a suitable space for the ensuing projection [7, 12, 25].
Note that the number 1/2 depends on the implementation of Algorithm 2.1, e. g., on
the used integration scheme. It can be shown that it is the correct choice for the
Gauß–Legendre rule [25] and the trapezoidal rule [12]. For the polynomial approach,
1/2 can also be used [12].

In practice, this approach should be modified in two aspects.
The first modification is aimed at avoiding the time-consuming SVD of the large

matrix Ũ ∈ Cn×m. As we actually do not need the full accuracy provided by a “true”
SVD, we instead consider the smaller matrix BŨ := Ũ?Ũ ∈ Cm×m and its eigendecom-
position BŨ =: VΣ2V?. Thus, we take the eigenvalues ≥ 1/4 of that matrix and the
corresponding eigenvectors (say V(:, 1 : s), after sorting the eigenvalues descendingly)

and replace Ũ with Ũ · V(:, 1 : s) [7, 12]. Relying on the eigendecomposition instead

of the SVD is particularly attractive if each column of Ũ is distributed over several
processors because the computation of BŨ requires only one global synchronization
and then the eigendecomposition can be determined redundantly in each processor.

Second, similarly to the initial situation, the search space should remain slightly
oversized to enable convergence. Thus, if the SVD (or eigendecomposition) predicts
that s eigenvalues still have to be found, we keep mnew = max{s · ϕmult, s + ϕadd}

8

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

50 100 150 200 250

50

100

150

200

250

−16

−15

−14

−13

−12

−11

−10

Figure 2: Orthonormality |̃x?i x̃j−δij | (on the log10 scale) of the eigenvectors computed
for problem GraI-11k-B (with locking, without SVD-based resizing, no or-
thogonalization against locked vectors).

vectors. In our experiments, we chose ϕmult = 1.5 and ϕadd = 10.
There are situations where the SVD count is not correct. At least in the very first

iteration, it may be zero, no matter how many eigenvalues there are in Iλ. Later on,
there may be fluctuations ±1 in the overall count, in particular if eigenvalues are close
to the boundary of Iλ and if convergence happens during several iterations. Thus we
apply SVD-based resizing only when we consider the SVD count to be reliable. In our
experiments, this meant that (i) we are beyond the first three iterations, (ii) the count
did not change during the previous two iterations, and (iii) the remaining Ritz pairs
with Ritz values in the search interval already “have begun to converge”, i. e. that the
smallest of their residuals is ≤ 10−6. While this compound criterion may be overly
pessimistic in most situations, it never allowed undersizing the search space.

Table 3 shows the convergence history for problem GraI-11k-B when SVD-based
resizing is enabled. In this example, the number of matrix–vector multiplications is
reduced by another 15%, as compared to the second run in Table 2.

3.3 Adjusting the degree of the Chebyshev polynomials

If the projector is applied to a size-m search space via a degree-d Chebyshev polynomial
then the computational work in one iteration of the eigensolver is dominated by the d·m
matrix–vector multiplications (MVMs). Figure 3 summarizes the convergence history
for solving the problems GraI-11k-A and GraI-11k-B with various fixed degrees d. The
pictures reveal that d = 150 is sufficient to find all eigenpairs of GraI-11k-A (taking 11
iterations) and that for very high degrees the overall number of MVMs grows linearly

9

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Table 3: Dimension of search space, estimate for the number of remaining eigenpairs,
and number of locked eigenpairs for problem GraI-11k-B (with SVD-based
resizing).

Iteration 1 2 3–5 6 7 8 9 10 11 12
Search space dim 450 450 450 450 433 429 212 71 35 11
SVD-based eigenvalue count 0 288 289 289 289 285 70 36 17 1
SVD-based resizing to dim 433 427 105 54 27
Pairs to be locked 4 215 34 19 16 1

with d. For moderate values of d this growth is to some extent balanced by a decreasing
number of iterations and by increased success in locking during earlier iterations. In
total, d ∼ 250 gave the best performance.

By contrast, degrees up to 500 did not lead to convergence of a single eigenpair of
GraI-11k-B within the maximum number of 15 iterations, and only for d ≥ 1400 all
eigenpairs were found.

This example shows that using the wrong degree may either lead to an unnecessarily
high computational effort (number of MVMs) or prevent convergence, and “suitable”
degrees can differ widely, even for the same matrix. (Note that locking and SVD-based
resizing have a smoothing effect on the MVM count. Without these, the curves show
significantly higher variation in the vicinity of the optimum.) An appropriate a priori
choice of the degree is difficult without very detailed knowledge about the eigenvalue
distribution.

Therefore we propose a strategy that starts with a low degree dstart in the first
iterations and increases d when the convergence is not “as expected”. It is based on
the following observations. If the degree is high enough (e. g., d = 2000 for GraI-11k-
A) then up to four orders of magnitude reduction can be achieved for the residuals
in a single iteration. Close to the optimum, however, convergence is somewhat slower
(more iterations at lower cost), roughly two orders of magnitude per iteration. This
is the convergence rate we are aiming at with our adaptive strategy. Starting with
dstart = 100, d is increased if the previous iteration did not reduce a particular residual
ρj by at least a factor of 100. If the reduction was “just too small” (by a factor between
10 and 100) then d is increased only moderately (to b

√
2 · dc), otherwise d is doubled.

Thus we try to avoid over-shooting too much, as well as taking too many iterations
to reach a suitable degree range. The index j is chosen to refer to the minimum
residual among the not-yet-converged pairs with Ritz value inside the interval. For
the example shown in Figure 4, j = 1 during the first nine iterations, and j = 250 in
the last iteration because 249 vectors were locked in iteration 9. Note that in this run
all remaining 60 pairs converged in the tenth iteration, but 20 of them were discarded
because their Ritz values were outside Iλ. It can be seen that the degree is increased
until the desired reduction rate for the residuals is reached.

The overall numbers of MVMs taken to solve the problems GraI-11k-A and GraI-

10

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

 0
 50

 100
 150
 200
 250
 300

 100 500 1000 3200 4800

Number of eigenvalues found vs degree

 0
 2
 4
 6
 8

 10
 12
 14
 16

 100 500 1000 3200 4800

Number of iterations vs degree

 1e+06

 1e+07

 100 500 1000 3200 4800

Overall number of MVMs vs degree

B, not converged
B, converged

B, adaptive
A, not converged

A, converged
A, adaptive

Figure 3: Convergence statistics and overall number of matrix–vector multiplications
in the solution of the problems GraI-11k-A (empty circles) and GraI-11k-B
(filled circles) using Chebyshev approximation of various fixed degrees. Iso-
lated circles mark runs that did not yield all the eigenpairs in Iλ, connecting
lines mark runs with correct results. The number of iterations was limited
to 15. The dotted horizontal lines in the bottom picture represent the two
runs with the adaptive strategy described in the main text.

11

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

100

200

400

800

1600
2262
3198

 1 2 3 4 5 6 7 8 9 10

Degree vs iteration number

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 2 3 4 5 6 7 8 9 10

Residuals vs iteration number

pair 289
pair 250
pair 249

pair 1

Figure 4: Degrees chosen (top) and residuals of selected pairs (bottom) for GraI-11k-B
with the adaptive strategy for the Chebyshev degree. The curves trace the
residuals of the first and last pair locked in iteration 9 (nos. 1 and 249) and
of the first and last remaining pair (nos. 250 and 289).

12

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

 0

 50000

 100000

 150000

 200000

1e-05 1e-06 1e-07 1e-08 1e-09 1e-10 1e-11 1e-12 1e-13 1e-14 1e-15

Overall number of (inner) GMRES iterations vs threshold

B, not converged
B, converged

B, adaptive
A, not converged

A, converged
A, adaptive

Figure 5: Overall number of GMRES iterations in the solution of the problems GraI-
11k-A and GraI-11k-B for various fixed accuracy thresholds. The dotted
horizontal lines represent the two runs with the adaptive strategy.

11k-B with this strategy are also marked in Figure 3 (dotted horizontal lines). In both
cases the adaptive strategy comes close to the MVM count of the best fixed-degree run.

3.4 Adjusting the accuracy of the iterative linear solver

If the projector is applied via contour integration then the solution of the linear sys-
tems Mkvj = yj with Mk = zkI − A dominates the time for each iteration of the
eigensolver. The situation is similar as with polynomial approximation, the require-
ment for terminating the linear solves (typically given as a threshold on the absolute
or relative residuals, ‖yj −Mkvj‖ ≤ τ and ‖yj −Mkvj‖/‖yj‖ ≤ τ , resp.) taking the
role of the polynomial degree. If the requirement is set too low (large τ) then the
resulting approximation to the projector is not good enough to make the eigensolver
converge. On the other hand, with small τ the linear solvers take more iterations—
and more time—to reach the solution; see Figure 5, which shows the total number of
(inner) iterations in the solution of the linear systems for the problems GraI-11k-A
and GraI-11k-B. Here we used restarted GMRES(16) with an incomplete LU precon-
ditioner [18] (droptol = 0.001) to solve the linear systems because for these problems
this combination was feasible and performed better than our default solver CARP-CG;
cf. Section 2.2. If the accuracy requirement is set too ambitiously then the linear solver
may run up to its maximum allowed number of iterations, leading to a sharp increase
in the overall time.

Our adaptive strategy for adjusting the accuracy threshold is similar to the one for
the Chebyshev degree: Starting with τstart = 10−8, τ is decreased by a factor of 4 if
the previous iteration did reduce the residual ρj by a factor of less than 10, and by a
factor of 2 if the residual was reduced by a factor between 10 and 100, with j chosen
as in Section 3.3. Again, the adaptive strategy came close to the best fixed-accuracy
runs for GraI-11k-A and GraI-11k-B; see the horizontal lines in Figure 5.

13

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

4 Conclusions

Combining the techniques described so far we arrive at the procedure given in Algo-
rithm 4.1. The algorithm comprises the polynomial based as well as the integration
based algorithm.

Both instantiations (Chebyshev polynomials with adaptive degree, as well as GM-

RES with variable tolerance) were able to solve all twelve problems from the Test-
Set. While these problems are not very large, they cover a broad range of “hardness”.
Together with a few (successful) runs with larger problems (W = 124, L = 967,
n = 119908, and W = 124, L = 9677, n = 1199948) this indicates that the adaptive
strategies are successful in automatically finding suitable degrees or residual thresh-
olds, yielding a robust overall method. According to the results from Section 3, they
may also come close to the performance that could be obtained with the best fixed
parameters, provided these were known beforehand.

However, the robustness of the integration based algorithm depends strongly on
the ability of the iterative solver to achieve small residuals, which in turn requires a
powerful preconditioner. In fact, relaxing droptol to 0.01 leads the adaptive GMRES-
based method to fail on one of the problems from the TestSet (GraII-11k-B), due
to integration points zk being very close to eigenvalues of the matrix. Therefore we
will continue our work on robust iterative schemes and preconditioners for the nearly
singular systems arising in the integration based algorithm.

In the future we will also work on more sophisticated adaptive schemes, including
the integration order p as a parameter. We also will consider the use of mixed precision
arithmetic. For instance, in earlier iterations of the methods, some or all computations
may be performed in single precision to save further computation time.

Acknowledgements. We thank Andreas Alvermann, Holger Fehske and Andreas
Pieper from Ernst-Moritz-Arndt-Universität Greifswald for providing us with the graphene
matrices and Jonas Thies and Achim Basermann from DLR Köln for providing us with
the CARP-CG code, which is the default iterative linear solver in our ProjAlg algo-
rithm.

References

[1] Andreas Alvermann, Achim Basermann, Holger Fehske, Martin Galgon, Georg
Hager, Moritz Kreutzer, Lukas Krämer, Bruno Lang, Andreas Pieper, Melven
Röhrig-Zöllner, Faisal Shahzad, Jonas Thies, and Gerhard Wellein. ESSEX:
Equipping Sparse Solvers for Exascale. Preprint BUW-IMACM 14/31, http:

//www.imacm.uni-wuppertal.de, 2014.

[2] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix
eigenvalue problem. Qart. Appl. Math., 9:17–29, 1951.

[3] Martin Braun. Differential Equations and Their Applications, volume 11 of Texts
in Applied Mathematics. Springer, New York, 1993.

14

http://www.imacm.uni-wuppertal.de
http://www.imacm.uni-wuppertal.de

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Algorithm 4.1 Projection based algorithm ProjAlg

Input: An interval Iλ =
[
λ, λ

]
and an estimate m̃ of the number of eigenvalues in Iλ

Output: m̂ ≤ m eigenpairs with eigenvalues in Iλ (m is chosen somewhat larger than m̃)

m := max{m̃ · ϕmult, m̃+ ϕadd}
choose Y ∈ Cn×m with orthonormal columns
while not done do

if degree/threshold adaptivity is enabled
adjust degree of approximation polynomial or threshold of linear solver

compute approximation Ũ to U := PΛY, using either polynomial approximation
or contour integration

{ SVD-based resizing: }
determine the singular values σ of the n-by-m matrix Ũ via the

m-by-m eigendecomposition Ũ?Ũ =: VΣ2V?

let r and s be the number of singular values ≥ threshrank and ≥ 1/2, resp.
mnew := r
if SVD-based resizing is enabled and the SVD count is considered reliable

mnew := min{mnew,max{s · ϕmult, s+ ϕadd}}
if mnew < m

replace Ũ with Ũ · V(:, 1 : mnew) and recompute (smaller) BŨ := Ũ?Ũ
m := mnew

{ project and solve small problem: }
compute AŨ := Ũ?AŨ

solve the size-m generalized eigenproblem AŨW̃ = BŨW̃Λ̃

compute the approximate Ritz pairs (X̃ := Ũ · W̃, Λ̃)

orthogonalize X̃ against Xlocked

for j = 1 : m

compute residual ρj = ‖Ax̃j − x̃j λ̃j‖
if λ̃j ∈ Iλ and ρj ≤ residual threshold and locking is enabled

remove x̃j from X̃ and append (x̃j , λ̃j) to (Xlocked,Λlocked)

check for convergence and set Y := X̃
end while
sort computed eigenvalues and rearrange converged eigenvectors accordingly

15

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A.K. Geim.
The electronic properties of graphene. Rev. Mod. Phys., 81:109–162, 2009.

[5] P. J. Davis and P. Rabinowitz. Methods of numerical integration. Academic Press,
Orlando, FL, second edition, 1984.

[6] V. L. Druskin and L. A. Knizhnerman. Two polynomial methods of calculat-
ing functions of symmetric matrices. U.S.S.R. Computational Mathematics and
Mathematical Physics, 29(6):112–121, 1989.

[7] Martin Galgon, Lukas Krämer, Bruno Lang, Andreas Alvermann, Holger Fehske,
and Andreas Pieper. Improving robustness of the FEAST algorithm and solving
eigenvalue problems from graphene nanoribbons. PAMM, 14(1):821–822, 2014.

[8] Martin Galgon, Lukas Krämer, Jonas Thies, Achim Basermann, and Bruno Lang.
On the parallel iterative solution of linear systems arising in the FEAST algorithm
for computing inner eigenvalues. Preprint BUW-IMACM 14/35, http://www.

imacm.uni-wuppertal.de/, 2014.

[9] Dan Gordon and Rachel Gordon. CARP-CG: A robust and efficient parallel
solver for linear systems, applied to strongly convection dominated PDEs. Parallel
Comput., 36(9):495–515, 2010.

[10] Stefan Güttel, Eric Polizzi, Peter Tang, and Gautier Viaud. Zolotarev quadrature
rules and load balancing for the FEAST eigensolver. The University of Manch-
ester, MIMS EPrint 2014.39, http://www.manchester.ac.uk/mims/eprints,
2014.

[11] Lukas Krämer. Convergence of integration based methods for the solution of
standard and generalized Hermitian eigenvalue problems. Preprint BUW-IMACM
14/30, http://www.imacm.uni-wuppertal.de, 2014.

[12] Lukas Krämer. Integration based solvers for standard and generalized Her-
mitian eigenvalue problems. PhD thesis, Bergische Universität Wupper-
tal, 2014. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:
468-20140701-112141-6.

[13] Lukas Krämer, Edoardo Di Napoli, Martin Galgon, Bruno Lang, and Paolo Bienti-
nesi. Dissecting the FEAST algorithm for generalized eigenproblems. J. Comput.
Appl. Math., 244:1–9, 2013.

[14] C. Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Nat. Bur. Stand., 45(4):255–282,
1950.

[15] G. G. Lorentz. Approximation of Functions. Chelsea Publishing Company, New
York, NY, 1986.

16

http://www.imacm.uni-wuppertal.de/
http://www.imacm.uni-wuppertal.de/
http://www.manchester.ac.uk/mims/eprints
http://www.imacm.uni-wuppertal.de
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[16] E. Polizzi. Density-matrix-based algorithm for solving eigenvalue problems. Phys.
Rev. B, 79:115112, 2009.

[17] Aubrey B. Poore. A model equation arising from chemical reactor theory. Arch.
Rat. Mech. Anal., 52(4):358–388, 1973.

[18] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA,
2nd edition, 2003.

[19] T. Sakurai, Y. Futamura, and H. Tadano. Efficient parameter estimation and
implementations of a contour integral-based eigensolver. J. Algo. Comput. Tech.,
7:249–269, 2013.

[20] T. Sakurai and H. Sugiura. A projection method for generalized eigenvalue prob-
lems using numerical integration. J. Comput. Appl. Math., 159:119–128, 2003.

[21] Grady Schofield, James R. Chelikowsky, and Yousef Saad. A spectrum slicing
method for the Kohn–Sham problem. Comput. Phys. Comm., 183(3):497–505,
2012.

[22] G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi–Davidson iteration method
for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17(2):401–425, 1996.

[23] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM J. Matrix Anal. Appl., 13:357–385, 1992.

[24] G. W. Stewart. Matrix Algorithms, volume II, Eigensystems. SIAM, Philadelphia,
PA, 2001.

[25] Ping Tak Peter Tang and Eric Polizzi. FEAST as a subspace iteration eigensolver
accelerated by approximate spectral projection. SIAM J. Matrix Anal. Appl.,
35(2):354–390, 2014.

[26] Alexander Weiße, Gerhard Wellein, Andreas Alvermann, and Holger Fehske. The
kernel polynomial method. Rev. Mod. Phys., 78:275–306, 2006.

[27] Y. Zhou and Y. Saad. A Chebyshev–Davidson algorithm for large symmetric
eigenproblems. SIAM J. Matrix Anal. Appl., 29(3):954–971, 2007.

17

	1 Introduction
	2 Structure of projection based algorithms
	2.1 Polynomial approximation
	2.2 Numerical integration

	3 Adaptivity: Techniques and results
	3.1 Locking
	3.2 SVD-based resizing
	3.3 Adjusting the degree of the Chebyshev polynomials
	3.4 Adjusting the accuracy of the iterative linear solver

	4 Conclusions

