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Multirate GARK schemes for multiphysics
problems

Michael Günther1, Christoph Hachtel1, and Adrian Sandu2

Abstract Multirate GARK schemes define a multirate extension of GARK schemes,
generalized additive Runge-Kutta schemes. These allow for exploiting multirate be-
haviour in both the right-hand sides and in the components in a rather general set-
ting, and are thus especially useful for coupled problems in a multiphysics setting.
We apply MGARK schemes to a benchmark example from thermal-electrical cou-
pling, characteried by a slow and fast part with a stiff and non-stiff characteristic,
resp. We test two MGARK schemes: (a) an IMEX method, which completely uti-
lizes the dynamics and differing stability properties of the coupled subsystem; and
(b) a fully implicit schemes, which inherits the stability properties from both under-
lying schemes without any coupling constraint.

1 Introduction

Multiphysical systems are often characterized by a very different dynamical behav-
ior in the subsystems, with time constants differing by orders of magnitude. To be
efficient, numerical time integration scheme have to exploit this multirate behavior,
which is physically given and allows for a static partitioning of the subsystems into
slow and fast parts, resp.

Multirate time integration schemes aim at exploiting this property by applying
different time step sizes to the subsystems, according to their different activity level.
To get higher order schemes, these schemes have to fulfill additional order condi-
tions, and at the same time preserve the stability properties of the respective subsys-
tems.
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This paper discusses the application of a new class of multirate schemes, mul-
tirate GARK [3] schemes based on a generalzed view on additive Runge-Kutta
schemes [2], to a multiphysical problem from electro-thermal coupling.

The paper is organized as follows: Section 2 gives a synopsis on multirate GARK
schemes and their relation to GARK schemes. Section 3 introduces two multirate
GARK schemes, based on an explicit-implicit and implicit-implicit pair of order-2
basis schemes. Section 4 discusses the numerical results obtained for both schemes.
The last Section concludes with final remarks and an outlook.

2 Multirate GARK schemes

We consider a two-way partitioned system

y′ = f (y) = f {s}(y)+ f {f}, y(t0) = y0 , (1)

with a slow component {s}, and an active (fast) component {f}. Note that this set-
ting contains component-wise splitting as a special case:

y =
(

ys
yf

)
, f s =

(
fs
0

)
, f f =

(
0
ff

)
.

The slow component is solved with a large step H, and the fast one with small
steps h=H/M. We will consider the multirate generalization of GARK schemes [2]
with M micro steps h = H/M, as given in the following

Definition 1 (Multirate GARK method [3]). One macro-step of a generalized ad-
ditive multirate Runge-Kutta method with M equal micro-steps reads

Y {s}i = yn +H
s{s}

∑
j=1

a{s,s}i, j f {s}
(

Y {s}j

)
+h

M

∑
λ=1

s{f}

∑
j=1

a{s,f,λ}i, j f {f}
(

Y {f,λ}j

)
,

Y {f,λ}i = yn +h
λ−1

∑
l=1

s{f}

∑
j=1

b{f}j f {f}
(

Y {f,l}j

)
+H

s{s}

∑
j=1

a{f,s,λ}i, j f {s}
(

Y {s}j

)
+

+h
s{f}

∑
j=1

a{f,f}i, j f {f}
(

Y {f,λ}j

)
, λ = 1, . . . ,M,

yn+1 = yn +h
M

∑
λ=1

s{f}

∑
i=1

b{f}i f {f}
(

Y {f,λ}i

)
+H

s{s}

∑
j=1

b{s}i f {s}
(

Y {s}i

)
.

The base schemes are Runge-Kutta methods,
(A{f,f},b{f}) for the slow component and
(A{s,s},b{s}) for the fast component. The coefficients A{s,f,λ} and A{f,s,λ} for
λ = 1, . . . ,M realize the coupling between the two components.
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2.1 Order conditions

The MGARK scheme can be written as a GARK scheme [2] over the macro-step
H with the fast stage vectors Y {f} := [Y {f,1} T , . . . ,Y {f,M} T ]T . The corresponding

Butcher tableau reads

1
M A{f,f} 0 · · · 0 A{f,s,1}

1
M 1b{f} T 1

M A{f,f} · · · 0 A{f,s,2}

...
. . .

...
1
M 1b{f} T 1

M 1b{f} T . . . 1
M A{f,f} A{f,s,M}

1
M A{s,f,1} 1

M A{s,f,2} · · · 1
M A{s,f,M} A{s,s}

1
M b{f} T 1

M b{f} T . . . 1
M b{f} T b{s} T

Therefore the order conditions for MGARK schemes can be derived from the
corresponding ones for GARK schemes [2]. Up to order two the order conditions
given in Table 1 have to be fulfilled.

p order condition

1 b{s} T 11 = 1

b{f} T 11 = 1

2 b{s} T A{s,s}11 = 1
2

b{s} T
(
∑

M
λ=1 A{s,f,λ}

)
11 = M

2

b{f} T A{f,f}11 = 1
2

b{f} T
(
∑

M
λ=1 A{f,s,λ}11

)
= M

2

Table 1 Order conditions for MGARK schemes.

2.2 Stability

We consider systems (1) where each of the component functions is dispersive (with
constants ν{s} < 0, ν{f} < 0):〈

f {s}(y)− f {s}(z) , y− z
〉
≤ ν

{s} ‖y− z‖2 ,〈
f {f}(y)− f {f}(z) , y− z

〉
≤ ν

{f} ‖y− z‖2 ,

with respect to the same scalar product 〈·, ·〉. As for two solutions y(t) and ỹ(t) of (1),
each starting from a different initial condition, the norm of the solution difference
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∆y(t) = ỹ(t)− y(t) is non-increasing, we demand a similar property from the nu-
merical approximationos: the MGARK scheme is said to be nonlinearly stable, if
the inequality

‖yn+1− ỹn+1‖ ≤ ‖yn− ỹn‖

holds for any two numerical approximations yn+1 and ỹn+1 obtained by applying the
scheme to the ODE (1) with dispersive functions and with initial values yn and ỹn.

As a consequence of stablity theory for GARK schemes, an MGARK scheme
applied to a component-wise partitioned right-hand side is nonlinearily stable, if
both base schemes are algebraically stable [3].

3 Two basic GARK schemes for multiphysics application

In general, one is interested in a rough approximation of coupled multiphysics prob-
lems, which reflect the impact of the couplings of both systems. Hence we restrict
to MGARK schemes of order 2. As we are interested in the nonlinear stability prop-
erties of MGARK schemes, and how the stability properties of both base schemes
influence the stability of the overall scheme, we define two new IMEX and IMIM
schemes as basic methods:

• MGARK-IMEX-2: The implicit-explicit version solves the fast, stiff part with
an implicit base scheme, and the slow, non-stiff part with an explicit one. The
coefficients are given by

b{s} =
( 1

2
1
2

)
, A{s,s} =

(
0 0
1 0

)
, A{s,f,1} =

(
0
M

)
,

A{s,f,λ} =
(

0
0

)
∀λ = 2, . . . ,M,

b{f} = 1, A{f,f} =
1
2
, A{f,s,λ} =

( 1
2 0
)
∀λ = 1, . . . ,M.

Note that only the fast part is algebraically stable, but neither the slow part nor
the joint system.

• MGARK-IMIM-2: To get an overall stable scheme, both parts are solved by an
implicit base scheme. The coefficients are given by

b{s} =
(

0
1

)
, A{s,s} =

(
0 0
0 1

2

)
, A{s,f,1} =

(
0
M
2

)
,

A{s,f,λ} =
(

0
0

)
∀λ = 2, . . . ,M,

b{f} = 1, A{f,f} =
1
2
, A{f,s,λ} =

( 1
2 0
)
∀λ = 1, . . . ,M.
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As both base schemes are algebraically stable, the MGARK method inherits this
property for a component-wise partitioning.

4 Numerical test results for a benchmark example

We will test both MGARK implementations for a thermal-electrical multiphysics
system, for specifications see [1]; its circuit diagram is given in Fig. 1. The thermal
component defines the slow (and non-stiff) part, the electrical component the fast
(and stiff) part of the system.

The distributed temperature T of the resistor (wire) is described by the 1-D heat
equation, which is semi-discretised using a finite volume approach, see Fig. 2. Due
to the electric current, the resistor is heated and so the resistance of this device
changes: R = R(T ). The characteristic curve of the diode is also temperature depen-
dent. The voltages are modeled by a nodal analysis using Kirchhoff’s laws. Finally
we get a partitioned system of ordinary differential equations like in (1). The vector
unknowns y comprises the voltages u3 and u4 at node 3 and 4, resp., the dissipated
energy e in the thermally dependent resistor and the vector of temperatures T in
the semi-discretised resistor. The multirate behaviour of this system is given by the
physical properties: the voltages and the dissipated energy change very fast (with
source of the network), and the temperature in the resistor changes much slower.
Hence the partitioning according to the dynamical behaviour is quite natural:

y{f} :=

 u3
u4
e

 , y{s} := T.

The numerical results for both Multirate GARK schemes are given in Fig. 3. The
IMIM scheme nicely shows in both fast and slow subsystems an order-2 behavior
for all step sizes. The accuracy of the IMEX scheme in the slow part (which is
computed explicitely), however, seems to be reduced for small step sizes.

Fig. 1 Circuit diagramm
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Fig. 2 Finite Volume Discretised Resistor
resistor
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Fig. 3 Numerical results for the fast and slow subsystems (macro step size vs. achieved accu-
racy, measured in Euclidean norm): MGARK-IMIM-2 (left) and MGARK-IMEX-2 (right) with
parameters H = 10−3, m = 5. The solid lines represent the slope of order 2.

5 Conclusion

By testing Multirate GARK schemes on a multiphysical test example from electro-
thermal coupling, we have shown the feasibility of this multirate approach for both
implicit-implicit and implicit-explicit pairing of basic schemes. Whereas the IMIM
scheme shows an order-2 behavior for both subsystems at all step sizes, the IMEX
schemes has a reduced accuracy in the slow system for small step sizes only. This
behavior fits to the theoretical properties of both schemes: the IMIM scheme is
algebraically stable in both subsystems, whereas the IMEX scheme is only stable in
the fast (electric) part.

As next steps, we will follow three directions: (a) we will apply MGARK
schemes to a range of multiphysical problems in a more realistic setting; (b) we
will further analyze the stability of IMEX-MGARK schemes and its dependence
on the coupling structure for both weak and slow coupling; (c) the excellent sta-
bility properties of IMIM-MGARK schemes suggest to use these schemes as basic
schemes in a Multirate-MOR approach.
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