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Abstract

This article deals with artificial boundaries which you encounter when a large spatial
domain is confined to a smaller computational domain. Such an artificial boundary
condition should not preferably interact with the fluid at all. Standard boundary
conditions, e.g., a pressure or velocity condition, result in unphysical reflections. So
far, existing artificial boundary conditions for the lattice Boltzmann method (LBM)
are transferred from macroscopic formulations.
In this work we propose novel discrete artificial boundary conditions (ABCs) which
are tailored on the LBM’s mesoscopic level. They are derived directly for the chosen
LBM with the aim of higher accuracy. We describe the idea of discrete ABCs in a
three velocity (D1Q3) model governing the Navier-Stokes equations in one dimen-
sion. We emphasize the fact that our approach has the approved potential to be
generalized to higher dimensions and general collision models. Numerical results fi-
nally demonstrate the superiority of our new boundary condition in terms of accuracy
compared to previously used ABCs.

Keywords: lattice Boltzmann method, artificial boundary conditions, unbounded
domain, D1Q3, characteristic boundary conditions, impedance boundary condition

1. Introduction

The lattice Boltzmann method (LBM) is an established numerical method of
computational fluid dynamics (CFD) [1, 2, 3]. In this theoretical work we consider
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the method only in one spatial dimension. In higher dimensions the LBM has shown
to be attractive for real-world simulations not only for its ease of implementation but
also for its applicability to complex flows. Examples of applications can be found,
e.g., in [4, 5, 6]. Nevertheless, this theoretical work in one spatial dimension is the
inevitable first step to develop our new strategies, which we will transfer to higher
space dimensions afterwards.

In simulations often non-physical boundaries occur, e.g., if a large fluid domain
is confined to a smaller computational domain. Like all boundaries, also these non-
physical boundaries, so-called artificial boundaries, need boundary conditions in a
numerical implementation. Ideally, they should be chosen such that they do not
interact with the fluid in an unwanted way, i.e., that no spurious effects influence
the simulation results. Boundary conditions for the LBM are usually derived from
known macroscopic physical conditions. Anyway, the problem of the correct bound-
ary condition for artificial boundaries is also given on the macroscopic scale.

On the macroscopic scale, several studies on artificial boundary conditions (ABCs)
in CFD were performed. The pioneering work for absorbing boundary conditions
for wave equations was established by Engquist and Majda [7]. Hedstrom [8] and
Thompson [9] developed non-reflecting characteristic boundary conditions (CBCs)
in the field of nonlinear hyperbolic equations. Kröner [10] derived approximate ex-
act absorbing boundary conditions for the two-dimensional linear Euler equations.
Non-reflecting boundary conditions (NRBCs) for the Navier-Stokes equations were
presented by Poinsot and Lele [11]. A review on absorbing boundary conditions for
hyperbolic systems can be found in [12].

Artificial boundary conditions for the lattice Boltzmann method are less fre-
quently studied. A macroscopic formulation (i.e., PDE-based) of an ABC cannot
be applied directly. If at all possible, it has to be transferred to the mesoscopic
level of the LBM. Such a transfer was done by Izquierdo and Fueyo [13] and Kim et
al. [14]. These authors formulated non-reflecting boundary conditions for the LBM
by adapting macroscopic CBCs. In these articles, an analysis of the characteristics of
a system for macroscopic quantities is performed to construct a system with reduced
unphysical reflections.

Another approach of an ABC for the LBM was pursued recently by Schlaffer
[15]. He formulated a so-called impedance boundary condition, in which the acoustic
impedance of the fluid is chosen appropriately.

Furthermore, Najafi-Yazdi and Mongeau [16] as well as Tekitek et al. [17] de-
veloped an absorbing layer technique for the LBM which is based on the perfectly
matched layer (PML) concept of Bérenger [18]. To be more precisely, the PML
technique is not a boundary condition as such. It introduces a damping zone in
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the computational domain, a boundary condition is still required. Best results with
damping zones are expected in hybrid approaches, when the PML technique is com-
bined with ABCs.

In an earlier work [19], we derived a first exact ABC for the D1Q2 LBM on
the discrete level. It is based on a linear collision operator, which results in an
advection problem on the macroscopic scale. The main goal of the current work is to
extend the ABC [19] to non-linear collision operators. To this end, we only consider
the D1Q3 model, that is the simplest lattice Boltzmann model capable of simulating
1D-Navier-Stokes flows. As a further objective, this theoretical one-dimensional work
will be the basis for future works on discrete ABCs, including those in more space
dimensions [20]. Thus, for the first time, this work presents a one-dimensional ABC
for the (Navier-Stokes) LBM which is constructed purely on the discrete level. In
fact, our tree representation is applicable to any non-linear collision operator and
thus is some sense an universal approach.

This article is structured as follows. In Section 2 we give a short recapitulation
of the LBM, in which we focus on the three velocity model in 1D (D1Q3). The tree
interpretation for a description of the evolution of populations introduced in [19] is
generalized for arbitrary collision models in Section 3. Section 4 states the present
boundary condition. Afterwards in Section 5 we explain an efficient implementation
of it and also enhance the basic algorithm to improve the efficiency. This paper ends
with a presentation of numerical tests in Section 6 and conclusions in Section 7.

2. The D1Q3 lattice Boltzmann method

We consider the LBM in one spatial dimension with discrete velocities c0 = 0,
c1 = −1 and c2 = 1 (D1Q3). Given an equidistant grid (lattice), where space and
time points are referred to as xn and ts, respectively. The so-called populations fi
give the number density of fictitious particles with velocity ci at each lattice node
(xn, ts). The notation fi(n, s) := fi(xn, ts) is used as abbreviation for the populations
at the lattice node (xn, ts). For each node a vector can be created by grouping all
populations:

~f(n, s) =
(
f0(n, s), f1(n, s), f2(n, s)

)>
.

Now, the lattice Boltzmann equation (LBE) defines an update rule of the populations
via an explicit formula:

fi(n+ ci, s+ 1) = fi(n, s) + Ci

(
~f(n, s)

)
, for i = 0, 1, 2. (1)

The right-hand side term Ci(~f) denotes the collision operator, which models the local
particle interaction. Here we use the popular single time BGK collision model (due
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to Bhatnagar, Gross and Krook [21])

Ci

(
~f(n, s)

)
= −ω

(
fi(n, s)− Ei(n, s)

)
, (2)

with relaxation parameter τ = 1
ω

. The local equilibrium distribution Ei (i ∈ {0, 1, 2})
with weights w0 = 2

3
and w1 = w2 = 1

6
reads:

Ei

(
ρ(n, s), u(n, s)

)
:= wiρ

[
1 + 3ciu+

9

2
(ciu)2 − 3

2
u2
]
. (3)

Ei is chosen such that the mass density

ρ = ρ(n, s) = f0(n, s) + f1(n, s) + f2(n, s)

and the fluid velocity

u = u(n, s) =
1

ρ(n, s)

(
f2(n, s)− f1(n, s)

)
,

evolve according to the Navier-Stokes equations [22].
Instead of using the BGK approximation (2), another popular choice for the

collision operator Ci(~f) is given by a multi relaxation time model. By this model
also the Navier-Stokes equations can be recovered. Also other macroscopic evolution
equations than the Navier-Stokes equations can be realized. In the BGK approxi-
mation this is done by substituting the equilibrium distribution (3). By this, e.g.,
an advection-diffusion equation can be realized. What have all collision models in
common, is that the LBE (1) consists of two basic steps:

• collision – the evaluation of the right-hand side,

• transport – time propagation / assignment to left-hand side.

With the above introduced collision operator (2)–(3) the complete collision process
can be described with non-linear functions in terms of populations:

g0(~f) = g0(f0, f1, f2) = f0 −
ω

3

f0
2 + f1

2 + f2
2 − f0(f1 + f2)− 10f1f2
f0 + f1 + f2

,

g1,2(~f) = g1,2(f0, f1, f2) = f1,2 +
ω

6

f0
2 + f1

2 + f2
2 − f0(f1 + f2)− 10f1f2
f0 + f1 + f2

.

Here the gi’s are post-collision populations. In the upcoming section the gi’s can be
any post-collision populations, that means there is no restriction to the Navier-Stokes
collision operator (2)–(3). I.e., they are evaluations of the right hand side terms of
the LBE (1).

gi(~f) = fi + Ci(~f). (4)
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3. The evolution of populations

To get a better understanding of the populations, we consider space-time dia-
grams to track their evolution. Without loss of generality we focus on the com-
putation of an f1 population at an arbitrary lattice node (n, s). The deterministic
LBE (1) expresses the pre-collision population f1(n, s) as a function of the three
pre-collision populations from node (n + 1, s − 1). This is visualized in Fig. 1(a),
where the directed edge symbolizes the transport of the post-collision population
g1
(
~f(n + 1, s− 1)

)
. The source node of a directed edge shall always contain a local

time

space

(n, s)

(n+ 1, s− 1)

(a) Computation in terms of fi(n +
1, s− 1).

time

space

(n, s)

(n
+

2,
s−

2)

(n
+

1,
s−

2)

(n
, s
−

2)

(b) Computation in terms of fi(m, s − 2)
with m ∈ {n, n+ 1, n+ 2}.

Figure 1: Space-time diagrams visualizing the computation of a population (here f1(n, s)) in terms
of populations of past nodes.

collision according to (4), i.e., it holds:

f1(n, s) = g1
(
f0(n+ 1, s− 1), f1(n+ 1, s− 1), f2(n+ 1, s− 1)

)
. (5)

This formulation assumes that the populations at node (n+ 1, s− 1) are known.
Now, we assume that only populations up to time level t = s − 2 are known.

Then each fi(n+ 1, s− 1) has to be represented in terms of pre-collision populations
fi(m, s− 2), m ∈ {n, n+ 1, n+ 2}. We get:

f1(n, s) = g1

(
g0
(
~f(n+ 1, s− 2)

)
, g1
(
~f(n+ 2, s− 2)

)
, g2
(
~f(n, s− 2)

))
.

The corresponding space-time diagram is shown in Fig. 1(b). If, as a last exemplary
case, the population f0(n + 1, s − 1) is known, but neither f1(n + 1, s − 1) nor
f2(n+ 1, s− 1), we obtain

f1(n, s) = g1

(
f0(n+ 1, s− 1), g1

(
~f(n+ 2, s− 2)

)
, g2
(
~f(n, s− 2)

))
5
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time

space

(n, s)

(n
+

2,
s−

2)

(n
, s
−

2)

Figure 2: Space-time diagram analog to the previous figure. Here the population f1(n, s) is visual-
ized in terms of f0(n+ 1, s− 1) and fi(m, s− 2), for m ∈ {n, n+ 2} and i ∈ {0, 1, 2}.

and Fig. 2 as the corresponding diagram.
To sum up, we can read our space-time graphs as follows: A directed edge from

(n+1, s−1) to (n, s) (south-western direction) represents the pre-collision population
f1(n, s) in the destination node. In fact, that edge represents the population f1 in
terms of the pre-collision populations at the source of the edge (n + 1, s − 1) as
stated by (5). Similarly, an edge of southern direction represents the f0 and an edge
in south-eastern direction represents the f2 population in the destination node. By
induction, we can traverse any graph several layers into the past. To this end, at each
node three populations have to be used in the collision. Now, a missing incoming
edge signifies that the corresponding population is known at the corresponding node.
Thus, given a directed graph in a space-time diagram, the observations above are
sufficient to state the calculation rules.

4. Construction of a discrete artificial boundary condition

Without loss of generality we consider a right boundary of the computational
domain to formulate a discrete artificial boundary condition (DABC) for the D1Q3
lattice Boltzmann model. The right boundary shall be located at the node with
position x = xN . A (right) boundary condition has to provide the inward populations
f1(N, s) for all time levels s ∈ N+. To compensate the lack of right neighbors, we
assume to have fictitious nodes in the exterior domain x > xN . These nodes shall be
initialized by known populations, e.g., equilibrium distributions, which are computed
from a suitable and given density ρext and velocity uext ∈ R. I.e., we assume

fi(m, 0) = Eext
i := Ei(ρext, uext), for i = 0, 1, 2, and m > N. (6)

For simplicity we assume (6) holds in the sequel.

6
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Theoretically, we can formulate an exact DABC based on the given assumptions,
where one has to consider a set of directed edges going back to the initial layer like
shown in the space-time diagram of Fig. 3.

b
ou

n
d
ar

y

time

space

computational part of
the fluid domain (inte-
rior)

not computed part of
the fluid domain /
fictitious nodes

t = ts

t = t0

Figure 3: This space-time diagram explains the basic idea of an exact DABC. In the exterior of the
computational domain some fictitious nodes are introduced (marked by circles). Interior nodes of
the computational domain are denoted by filled circles. The unknown population is expressed in
terms of initial information (triangles) and past boundary information (squares).

The exact DABC for the inward population f1(N, s) (diamond marked node)
depends on populations of two types of nodes:

(i) boundary nodes at previous time levels (square marked nodes): fi(N, `) with
0 ≤ ` < s− 2 (excluding the time level s− 1) as well as

(ii) exterior (fictitious) nodes (marked by triangles): Eext
i .

In both cases holds i ∈ {0, 1, 2}, since each edge includes a collision at its source
node, see Section 3. In other words, the usual lattice Boltzmann approach is also
applied for the fictitious nodes in the exterior domain, cf. Fig. 3.

However, this formulation is not efficient at all, since the required effort increases
rapidly with the number of time steps simulated. For a more efficient approximation
of the inward populations f1(N, ·), we propose to incorporate boundary populations
of at most Hmax ∈ N past levels. The number Hmax is called the maximal history

7
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depth of the approximate DABC. More precisely, in order to compute the inward
population f1(N, s), we incorporate the boundary populations fi(N, `), with s −
H(s) ≤ ` ≤ s − 2, see Fig. 4. Furthermore, f1(N, s) may still depend on Eext

i . The

b
ou

n
d
ar

y

time

space

computational part of
the fluid domain (inte-
rior)

not computed part of
the fluid domain /
fictitious nodes

H(s)− 1

H(s)

t = ts

t = ts−10

t = ts−H(s)

t = ts−2

s-th subproblem
with history
depth H(s)

Figure 4: This space-time diagram visualizes the approach of (approximate) DABC. The unknown
population is expressed in terms of past boundary information (squares) and some fictitious nodes
(pentagons). A truncation parameter H (history depth) controls the quantity of nodes entering the
computation.

number H(s) (with H(s) ≤ Hmax) is the history depth at time level s. Thus, as a
function of the time level s the history depth is allowed to vary during the simulation.
The history depth H(s) must not exceed the time level s, i.e., we require H(s) ≤ s.
The above exact boundary condition is achieved by adapting the history depth in
each time step as H(s) = s. One basic realization of the algorithm with Hmax reads:

H(s) = min
{
s, Hmax

}
. (7)

Due to diffusion it is reasonable to assume that the larger the history depth Hmax

the better our BC approximates the exact BC.
Based on the general description given in Section 3, the exterior populations

of Fig. 4 at the earliest involved time level s − H(s), i.e., fi
(
m, s − H(s)

)
, m ∈

{N + 1, . . . , N +H(s)} (nodes marked with pentagons in) are assumed to be given.
In fact these populations are unknown, and thus finding appropriate populations is

8
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indeed the crucial task of this boundary condition. We preliminary suggest to set
those populations according to an equilibrium distribution EBC

i . Several possible
ideas for this equilibrium immediately arise, e.g.:

• Initial exterior populations of the original problem:

EBC
i = Eext

i = Ei(ρext, uext) (8)

• Constant extrapolation of macroscopic boundary quantities:

EBC
i = Ei

(
ρ
(
N, s−H(s)

)
, u
(
N, s−H(s)

))
. (9)

Of course, other realizations are also conceivable. One further approach is described
below.

5. Algorithmic aspects and further refinement

We discuss our DABC as a series of subproblems and its efficient implementation.
Furthermore, we aim at enhancing our basic algorithm to improve the efficiency.

5.1. Interpretation as subproblems

For an algorithmic perspective, let all populations (of the computational domain)
up to time level s − 1 be computed. The computation of the inward population
f1(N, s) with history depth H(s) is equivalent to performing H(s) iterations of an
LBM subproblem. This subproblem is referred to as the s-th subproblem, see also the
dashed box in Fig. 4. We denote the populations of the s-th subproblem by hsi (m, k)
with m ∈ {0, . . . , H(s)} and k ∈ {0, . . . , H(s)}. Hence, in the s-th subproblem we
have a lattice consisting of H(s)+1 nodes, where the time-level starts at k = 0. Like
in the original problem (fi’s) the populations hsi are seen as pre-collision quantities.
The subproblem is initialized as

hsi (0, 0) = fi
(
N, s−H(s)

)
, (10)

hsi (m, 0) = EBC
i for m ∈ {1, . . . , H(s)}. (11)

Moreover, in this case the interior node at x = xN (m = 0, from the subproblem’s
view) represents the left boundary of the subproblem. There, the already computed
populations are used in a boundary condition which reads:

hsi (0, k) = fi(N, s−H(s) + k) for k ∈ {1, . . . , H(s)− 1}. (12)

9
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A usual collision step is done also in this node after the assignment. In the end, after
the last streaming step of the subproblem we obtain the boundary condition for the
original problem by

f1(N, s) = hs1
(
0, H(s)

)
. (13)

Note, that the populations at the other boundary of the subproblem for k ≥ 1 are
irrelevant, since they do not influence the final relevant population hs1

(
0, H(s)

)
. We

can even omit the computation of populations at the nodes in the lower triangle
within the dashed box in Fig. 4.

For an efficient implementation of the DABC we propose to begin the compu-
tation of the s-th subproblem at time-level s − H(s). Then each iteration of the
subproblem (LBM with hsi ) can be done in alignment to an iteration of the original
problem (LBM with fi). By this, one has to handle several subproblems simulta-
neously, but one inherits the computational benefits of the LBM. We give a more
detailed explanation below.

5.2. Error sources of the discrete artificial boundary condition

To measure the accuracy of our DABC, we need a reference solution. To this
end, we perform a lattice Boltzmann simulation on a sufficiently extended domain,
such that at any investigated time level s the interior and boundary populations are
unaffected from the boundary conditions of the extended domain. The corresponding
populations shall be denoted by f ref

i . Their initialization has to be done in the same
way as fi and the fictitious exterior nodes (which are real nodes of f ref

i ), i.e., by Eext
i .

Boundary populations of an ideal (transparent) boundary condition are then given
by f ref

1 (N, s), s ∈ N+. Thus, we measure the error of the DABC by δi:

δi(n, s) :=
∣∣fi(n, s)− f ref

i (n, s)
∣∣ , (0 ≤ n ≤ N, s > 0).

Notice, if all subproblems were initialized by

hsi (m, 0) = f ref
i

(
N +m, s−H(s)

)
for m ∈ {1, . . . , H(s)},

the DABC would be still exact for any possible history depths H(s). Thus, errors
are only introduced by assigning non-exact data to the subproblems:

i) the assignment of non-exact initial values in the s-th subproblem, i.e., errors
in hsi (m, 0), m ∈ {1, . . . , H(s)}, and

ii) non-exact initial values in the preceding time levels (k < s) led to errors in the
boundary populations f1(N, k) (for k < s), which enter the s-th subproblem
as boundary conditions, cf. (12).

10
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5.3. Initialization of subproblems’ populations

Next we aim at improving the above introduced basic strategy H(s) = Hmax for
s ≥ Hmax, see (7). To this end, we fix certain initial populations for J successive
subproblems. After the corresponding J time steps we will perform a refresh of the
initial populations. As we will see, these initial values are given by intermediate
results of a certain subproblem with a larger history depth.

Firstly, we consider the s-th subproblem when using a larger history depth H2(s)
than H(s) (i.e., H2(s) > H(s)): The subproblem with history depth H2(s) can be
interpreted as a subproblem with history depth H(s) plus a number of H2(s)−H(s)
additional preceding iterations. Generated by these first H2(s)−H(s) iterations, the
populations at the leftmost nodes, m = 0, . . . , H(s), are only relevant for the desired
value (13). Also, they are sufficient to serve as initial populations in the subproblem
with history depth H(s). Thus, taking them as initial populations would finally give
the same boundary population f1(N, s). Meaning, the subproblems with history
depths H(s) and H2(s) are equivalent if the initialization of the subproblem with
smaller history depth is done with appropriate intermediate results of the other one.

In this way computed initial populations can also be used for the initialization up
to the (s+ J − 1)-th subproblem provided H(s+ k) ≤ H(s), k ≤ J − 1. Notice that
information of the leftmost node (m = 0) is not used. In fact, it is overwritten by (10)
and only (11) is replaced. Thus, J is a refreshing parameter of initial populations,
stating how often new initial populations for subproblems are computed. The value
J = 1 is equivalent to use a larger history depth H2(s) at all time levels. The
initialization of the subproblems with enlarged history depth can for instance be
done with the above mentioned possibilities (8)-(9).

In Fig. 5 we illustrate the procedure, where for the first 9 iterations the exact
boundary condition H(s) = s is taken. Then, starting at time level s = 10 we use a
history depth of H(s) = 5 and an enlarged history depth H2(s) = 10 together with
J = 7. This means for every seventh time level two subproblems are considered, one
with an enlarged history depth H2(s) = 10 and afterwards one with history depth
H(s). The former is simulated for H2(s)−H(s) iterations and after the final iteration
populations are stored. They are used for initialization of subsequent subproblems.
For example, the initialization of subproblems 10 (with H(s)) to 16 is given by the
results after H2(10)−H(10) = 5 iterations of the 10-th subproblem using the enlarged
history depth H2(10) = 10.

5.4. Efficient implementation

We have mentioned already above that an efficient implementation will compute
several subproblems simultaneously, all aligned by collision and streaming with the

11
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Figure 5: Illustration of history depth H(s): First we have the start-up phase (s = 1, . . . , 10), then
initial conditions for the subproblems s = 11, . . . , 16 are fixed. The initial conditions are refreshed
at s = 17, s = 24, and so on. This gives the possibility to better adapt the initial conditions of the
subproblems to the actual flow.

original problem. Next, we discuss this in more detail.
Recall that the s-th subproblem yields the inward boundary population at time

level s. This is visualized in Fig. 6, where a black box indicates that a certain sub-
problem (ordinate) gives the inward boundary population of the original problem at
the corresponding time level (abscissa). Furthermore, the figure shows that bound-
ary populations of previous time levels enter a certain subproblem depending on the
history depth. A box with label j states that information from time level s−j is used
in the computation of the s-th subproblem. Hence, the numbers count the (relative)
ancestors. The same history depths as in Fig. 5 are used for this illustration. The
boxes filled by gray refer to the simulations on an enlarged lattice to compute initial
populations. Inspecting a fixed time level in Fig. 6, e.g., k = 17, we see that there
are multiple subproblems using data from that time level. All these subproblems
should be computed simultaneously.

As commonly known, the lattice Boltzmann equation is split into two steps,
collision (C) and streaming (S), see also Section 2. And at the boundary points
there is a lack of populations after each streaming step. Each boundary condition

12
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Figure 6: Figure represents different subproblems and illustrates how data of different time levels
is used. This shows the potential to simultaneously compute one time step of several subproblems.
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(BC) has the task to compensate this lack. Generally, a lattice Boltzmann simulation
is structured as

. . .→ C → S → BC → C → S → BC → C → S → BC → . . . .

Now, we focus on the boundary condition steps of this alternating procedure. We
have to describe the approach for several subproblems as well as the original problem.
For the starting point of the description we assume that the inward population of the
original problem is already given. This is true at the beginning of the simulation (by
initialization) or at an arbitrary time level after solving the corresponding subprob-
lem. There are several subproblems using data of the current time level, but also
additional subproblems have to be created, which depend on the current time level.
In the example of Fig. 6 at k = 17 the subproblems 18 − 21 and 24? exist already,
whereas 22 has to be created. The star denotes the subproblem solved to create ini-
tial data for later subproblems. For all new subproblems a lattice of corresponding
size has to be created and initialized according to (10)-(11). The other subproblems
simply copy information from the original problem according to (12). This finishes
the boundary condition step. After the subsequent collision and streaming steps,
the inward population of the original problem can be copied from the corresponding
subproblem, according to (13). Thus, the assumption of the description is again
restored.

Given a fixed history depth H, there are H simultaneous subproblems, each
having a lattice size of H + 1. When neglecting the effort done by copying data,
costs of enlarged subproblems and the creation of subproblems, the total effort of
the discrete artificial boundary condition is at most as high as a lattice extension
by H2 + H nodes. Thus, the complexity of the DABC is determined by the history
depth H.

6. Numerical results

For qualitative statements we compare results of the DABC with those by non-
reflecting characteristic boundary conditions (CBCs) [13, 14] as well as those by an
impedance boundary condition (IBC) [15].

The non-reflecting CBC for a right boundary in 1D is summarized as follows:
In each iteration, we first compute at the right boundary node the wave amplitude
variation

L = (u+ cs)

[
c2s
∂ρ

∂x
+ csρ

∂u

∂x

]
, (14)
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where cs = 1√
3

denotes the speed of sound in D1Q3. Then a Dirichlet boundary
condition for macroscopic quantities is imposed by solving the ODE system

∂

∂t

(
ρ
u

)
= −L

(
(2c2s)

−1

(2ρcs)
−1

)
. (15)

In the simulations below we use a one-sided second order finite difference quotient for
the derivatives in the wave amplitude variation (14). Moreover, we solve (15) by using
an explicit Euler scheme. Here, the corresponding boundary populations fCBC

i (N, ·)
are obtained from an evaluation of the equilibrium distribution (3) employing the
numerical approximation of (15) for ρ and u. This transfer can be improved, e.g.,
by using numerical lifting operators [23].

The impedance boundary condition (IBC) of Schlaffer [15] is derived under the
assumption that any pressure variation travels with a velocity of |cs|. Unlike the
CBC, only the unknown population is computed. The inward population at a right
boundary for time level s is determined by

f IBC
1 (N, s) =

(1− ū)f IBC
2 (N, s)− f IBC

0 (N, s)ū

1 + ū
.

Here, the velocity ū is derived from a balance equation for the incoming momentum
flux and the rate of momentum change in a control volume, such that both terms
compensate one another. That is

ū = u(N, s− 1) + c2sρz + cs

−
√

(c2sρz + cs)
2 + 2c2sρz

[
1 + u(N, s− 1)

]
− 2c2s ,

where

ρz =
ρ(N, s− 1)

f IBC
0 (N, s) + 2f IBC

2 (N, s)
.

Although populations enter the above computation, we emphasize that the IBC is
not derived from discrete considerations. See [15] for further details.

There is no free parameter controlling the complexity neither in the CBC nor in
the IBC. Hence, we see that in contrast to the DABC both, the CBC and the IBC,
have a fixed effort.
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6.1. Simple density pulse
For the first numerical test, we consider a Cauchy problem with initial data for

the mass density (at t = 0, cf. [24])

ρ0(x) =


1 for x ≤ 0.3,

1 + 0.4 · exp
(
−15−2

(x−0.3)2

)
· exp

(
−15−2

(x−0.7)2

)
for 0.3 < x < 0.7,

1 for 0.7 ≤ x,

such that ρ0 ∈ C∞(R). The fluid velocity is initialized uniformly by u0. To evaluate
our DABC we introduce a finite spatial domain I := [−10, 1], such that we have
effects of the artificial boundary only at x = 1 in the first iterations of the LBM. To
this end, the interval I is discretized with step size h = 0.005. Hence, the computa-
tional grid is given by Gx := {x0, x1, . . . , xN} with N = 11/h. Then corresponding
initial populations in the computational domain are computed by an evaluation of
the equilibrium distribution (3):

fi(n, 0) = wiρ0(xn)

[
1 + 3ciu0 +

9

2
(ciu0)

2 − 3

2
u20

]
.

To begin, we illustrate the evolution of the signal in a simulation with u0 = 0, τ = 1
and history depth (7) with Hmax = 20. All subproblems are initialized by (8) or (9),
respectively. The initialization strategy given in Section 5 is not applied, yet. In
Figs. 7 and 8 the density and velocity profiles are plotted, respectively. Note that
the scaling of the y-axes are adapted.

One can see that due to the initial profile, two pressure waves are generated, one
traveling in negative and the other in positive direction, respectively. We clearly see
some reflection generated at the boundary, the reflected wave is traveling leftwards
into the computational domain. The ideal level of the signals (density and velocity)
after the pulse has left the computational domain are reached neither by the IBC nor
the CBC nor the DABC with (8), which can be seen best at the plots corresponding
to time level 500. The DABC with (9) is much closer to the ideal level, however it
has a larger reflection. What can be hardly seen in these plots is a tiny oscillating
behavior of the DABC with (9). This becomes more pronounced when enlarging
the history depth. A corresponding plot for Hmax = 60 is given in Fig. 9. Notice,
the enlargement of Hmax reduces the error peak of the reflection but increases the
oscillations for the DABC with (9).

To further investigate the effect of the history depth in the DABC in more detail,
we measure the spatial absolute error:

AbsErrz(t) := max
x∈Gx

|z(x, t)− zref(x, t)| , (16)
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Figure 7: Density profile at time step 0, 100, 200, 250, 300, 500: using history depth (7) with
Hmax = 20 (scaling of the y-axis is adapted): From the time on, when the density wave hits the
artificial boundary (time level 100), artificial reflections occur for all approximations (see time level
200 following). CBC and IBC initiate a wave (with peak and trough) during the interaction. In
contrast, the DABC introduces merely a trough (on the largest error scale).
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Figure 8: Velocity profile at time step 0, 100, 200, 250, 300, 500: using history depth (7) with
Hmax = 20 (scaling of the y-axis is adapted): One can observe similar reflections as for the density.
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Figure 9: Density profile (left) and velocity profile (right) at time step 500. For the DABC Hmax =
60 is used.

where z is either ρ or u. The absolute errors (16) of the DABC for different history
depths H(s) = min

{
s,Hmax

}
with 5 ≤ Hmax ≤ 75 are visualized in Fig. 10. We can

see that a larger history depth reduces the errors. Also the errors of the CBC and
the IBC are shown (transparent surfaces), demonstrating that the DABC with (8)
is superior starting from a certain history depth.

From the errors shown in Fig. 10 it is reasonable to concentrate on the maximal
error:

Errz := max
t
{AbsErrz(t)}

where z is again either ρ or u. By this simplified view we can more easily visualize
the dependencies on τ and u0. The plots in Fig. 11 show this maximal error for
different combinations of history depths H(s) and velocities u0. We see that for all
velocities u0 the error can be decreased by increasing the maximal history depth.
Similarly, the plots in Fig. 12 show the influence of the relaxation parameter τ to
the maximal error. Here the same positive effect of the maximal history depth to
the error can be observed.

Up to now we have not made use of the initialization strategy given in Section 5
in our numerical tests. To demonstrate its influence, we consider the test case with
τ = 1.4 and u0 = 0. As reference values we use the DABC with (8) without the
initialization strategy of Section 5. The corresponding maximal errors are shown for
different history depths in Fig. 13 by the thin gray line. It clearly shows oscillations,
the thick gray line is the average of two consecutive values. For the range of history
depths we repeat the simulations using the initialization strategy of Section 5. The
dashed lines show the averaged maximal errors with an enlarged history depth H2 =
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Figure 10: Absolute errors in the density: DABC with (8) (left) and with DABC (9) (right). The
transparent surface gives the absolute error of the CBC. Errors in the velocities behave similarly.
There is an even-odd (zig-zag) behavior. Thus, one should use odd history depths.

H+10, whereas the solid black lines refer to the choice H2 = 2H. The two selections
J = 5 and J = 20 for the refresh parameter are chosen for illustration. Note, that for
clarity the lines show only the average of two consecutive values, since oscillations
are also present in the other data. The maximal errors are always smaller than the
reference values except for odd history depths in the case H2 = 2H and J = 20.

6.2. Acoustic sinusoidal signal

In the second numerical test an acoustic wave is temporary generated by a point
source at x = −1. We follow the simple approach given in [25]. The populations
at the corresponding source node are computed by the equilibrium distribution (3)
determined by velocity u(0, t) = 0 and an oscillating density according to

ρ(0, t) = 1 + ρsrc sin

(
2π

T
t

)
. (17)

The period of the waves is determined by T and the amplitude is controlled by ρsrc.
It is a drawback of this approach that the real amplitude is not equal to ρsrc. A more
sophisticated and effective approach for generating acoustic waves is presented by
the same author in [26]. For our testing purposes the simple approach is sufficient
and we employ the point source (17) with parameters ρsrc = 0.03 and T = 100.

For the spatial domain, we consider the interval J := [−5, 1] with step size
h = 0.005. At the right boundary at x = 1 the DABC is applied. The point source
is activated from the beginning of the simulation up to time level 1000 and we use in
this section always τ = 1. The first variations generated from the point source arrive
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Figure 11: Maximal error in density (left) and velocity (right) for different history depths H(s) and
velocities u0 (τ = 1). Plots in the top row correspond to the DABC with (8) and with (9) in the
bottom row. Clearly, the higher u0, the faster the wave travels through the artificial boundary and
the smaller the errors. Notice, the error in DABC with (8) decreases also for decreasing negative
velocities u0.

at the right boundary not before time level 400, see also Fig. 14 for an illustration of
the test case. The plots show the reference solution computed on a sufficiently larger
domain. Moreover the errors of the IBC, CBC and DABC are plotted. We clearly see
that the DABC with (9) is not stable. We like to mention that the instabilities (in this
test) are related to the choice of Hmax, when taking odd numbers, e.g., Hmax = 25, no
instabilities are observed. This needs further investigation, however by (8) we have
an initialization with a generally better behavior than by (9). Similarly, a qualitative
different behavior for even/odd history depths is also visible for initialization by (8)
above, e.g., Fig. 13. We conclude again that the initialization of the subproblems is
very crucial and that odd history depths should be preferred.

To underline the effect of the history depth, we consider the absolute error (16) for

21



P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt

0.5

1

1.5

2

0
20

40
60

80

0

0.002

0.004

0.006

0.008

0.01

0.012

history depthrelaxation parameter

m
ax

im
al

 e
rr

or

0.5

1

1.5

2

0
20

40
60

80

0

1

2

3

4

5

6
x 10

−3

history depthrelaxation parameter

m
ax

im
al

 e
rr

or

0.5

1

1.5

2

0
20

40
60

80

0

0.005

0.01

0.015

0.02

history depthrelaxation parameter

m
ax

im
al

 e
rr

or

0.5

1

1.5

2

0
20

40
60

80

0

0.002

0.004

0.006

0.008

0.01

history depthrelaxation parameter

m
ax

im
al

 e
rr

or

Figure 12: Maximal error in density (left) and velocity (right) for different history depths H(s) and
relaxation parameters τ (u0 = 0). Plots in the top row correspond to the DABC with (8) and with
(9) in the bottom row. — The smaller the relaxation parameter τ the smaller the error.

different history depths. We omit the DABC with (9), due to its instable behavior.
Fig. 15 indicates that the maximal error is reduced when Hmax is increased. We
also tested different parameter combinations, which all confirm a reduced error by a
larger history depth.

7. Conclusions

For D1Q3 in LBM, we explained a tree interpretation for the evolution of popula-
tions. This allowed us to formulate a discrete artificial boundary condition (DABC)
based on fictitious nodes in the exterior domain and based on a variable history
depth. We showed that these DABCs are equivalent to solve LBM subproblems. A
key role in the DABC approach is the initialization of corresponding subproblems.
For this task we introduced two natural possibilities, whereof only one showed to be
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Figure 13: Maximal errors for initialization strategy of Section 5. For the left plot the refresh
parameter is J = 20, and J = 5 for the right one. For the reference line, the maximal error of an
odd history depth is significantly smaller than the two adjacent even history depths.

suitable, based on the results of numerical tests. We briefly discussed the possibility
of an efficient implementation.

The two numerical tests demonstrated that the history depth controls the ac-
curacy of the DABC. Moreover, the tests showed that we can improve upon the
characteristic boundary condition (CBC) as well as the impedance boundary con-
dition (IBC) in terms of accuracy. For achieving the same accuracy, the CBC and
IBC have a smaller effort. However the DABC has the advantage of an adjustable
accuracy, which is aligned with a changing complexity. In future work, we will extend
our DABC to LBM models for higher spatial dimensions.
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Figure 14: Evolution of the reference density profile ρref in the acoustic test example (left ordinate
axis); errors of different boundary conditions (right ordinate axis); Hmax = 18.
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