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Abstract

Stochastic correlation models have become increasingly important in financial markets. In
order to be able to price vanilla options in stochastic volatility and correlation models, in
this work, we study the extension of the Heston model by imposing stochastic correlations
driven by a stochastic differential equation. We discuss the efficient algorithms for
the extended Heston model by incorporating stochastic correlations. Our numerical
experiments show that the proposed algorithms can efficiently provide highly accurate
results for the extended Heston by including stochastic correlations. By investigating the
effect of stochastic correlations on the implied volatility, we find that the performance of
the Heston model can be proved by including stochastic correlations.

Keywords Heston model, Stochastic Correlation process, Ornstein-Uhlenbeck process,
quadratic-exponential scheme.

1 Introduction

The Heston Model [7] is one of the most widely used stochastic volatility models. It is an
extension of the Black–Scholes [2] model by taking into account stochastic volatility given
by the Cox–Ingersoll–Ross (CIR) process. The attractiveness of the Heston model is its
analytical tractability and the consideration of the correlation between the underlying asset
price process and volatility process. Subsequently, a couple of papers on the numerically
stable and efficient computation of European-style option prices were published, e.g.,
[1, 4, 8, 9, 10, 11].

It has been pointed out, in many works (see, e.g., [3], [15]) that the Heston model is
unable to provide enough skew in the implied volatility as market required, especially
for a short maturity. Therefore, one tries to extend the Heston model. For example, one
way is to extend the Heston by introducing a more realistic stochastic volatility process,
which is the double Heston model [3] or by introducing a stochastic interest rate, which is
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the Hybrid–Heston–Hull–White model (HHW) [15]; another way is to adapt the Heston
model by allowing time-dependent parameters (see [6, 16]). Actually, the major factor
that affects the implied volatility skew is the correlation. However, in the pure Heston
model [7], and also in most of the extended Heston models, only a constant correlation
coefficient is used. It has been shown in [20, 21] that the calibration to market data can
be already improved by allowing a local time-dependent correlation model. Therefore,
in this work, we extend the Heston model by imposing a stochastic correlation model
cf. [18, 19, 24] and discuss its simulation methods. Furthermore, using Monte Carlo
simulation, we study how the implied volatility is affected by introducing stochastic
correlations.

In the next section, we impose a stochastic correlation model to the Heston model
and discuss in Section 3 a discretization for each path of the variance, correlation
and the log price process including numerical analysis. Section 4 is devoted to firstly
comparing different numerical algorithms, and secondly to recognizing the effect of
imposing stochastic correlation on implied volatility. Finally, Section 5 concludes this
work.

2 Stochastic Correlation in the Heston Model

We study the Heston model and its extension by incorporating a stochastic correlation
process. Heston’s stochastic volatility model under the risk-neutral measure reads

dSt = rStdt+
√
νtStdW

S
t , (1)

dνt = κν(µν − νt)dt+ σν
√
νtdW

ν
t , (2)

where St denotes the spot price of the asset and νt is the instantaneous variance, where
µν is the long-term variance, κν is the speed at which it reverts to µν and σν is the
volatility of the variance process. We note that the process (2) is strictly positive if the
parameters obey the Feller condition 2κνµν > σν . The Brownian motions (BMs) WS

and W ν are correlated with a constant ρSν by

dWS
t dW

ν
t = ρSνdt (3)

and under risk-neutral measure. By applying Itô’s Lemma with xt = log(St) (log-
transform), we obtain from (1) the log price process as

dxt = (r − 1

2
νt)dt+

√
νtdW

x
t , (4)

where W x
t is the same BM to WS

t in (1). We suppose an appropriate stochastic correlation
process of the form

dρt = ã(t, ρt)dt+ b̃(t, ρt)dW̃
ρ
t , (5)
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where ã(t, ρt) and b̃(t, ρt) are given functions depending on the chosen correlation process,
W̃ ρ
t is a standard BM with respect to the physical measure. By including the market

price of correlation risk, the correlation process (5) can be rewritten as

dρt = (ã(t, ρt)− λ(St, νt, ρt, t))dt+ b̃(t, ρt)dW
ρ
t , (6)

which is under risk-neutral measure, where λ(St, νt, ρt, t) represents the price of the
correlation risk and could be assumed to be λρt, with a constant λ. In what follows, we
set ã(t, ρt)− λ(St, νt, ρt, t) = a(t, ρt) and b(t, ρt) = b̃(t, ρt). With the aim of imposing a
stochastic correlation between the log price process dxt and the stochastic variance dνt,
we extend the Heston model as

dνt = κν(µν − νt)dt+ σν
√
νtdW

ν
t , (7)

dρt = a(t, ρt)dt+ b(t, ρt)dW
ρ
t , (8)

dxt = (r − 1

2
νt)dt+

√
νtdW

x
t , (9)

with
dW xdW ν = ρtdt, dW xdW ρ = ρxρdt, dW νdW ρ = ρνρdt, (10)

where ρt is given by (8), and ρxρ and ρνρ are assumed to be two constant correlations.

3 Path Simulation

We now discuss how to simulate the paths for (7)–(9) to compute the price of European
options in the extended Heston model applying Monte Carlo simulation. We need to
generate random paths of the triplet (νt, ρt, xt) for all t ∈ {ti}Ni=1 := T . To be more
precise, for an arbitrary time increment ∆, we need to generate a random sample of
(νt+∆, ρt+∆, xt+∆) for given (νt, ρt, xt). Repeated application of the resulting one period
scheme will generate a full path (νt, ρt, xt)t∈T .

3.1 Discretization for the Variance Process νt

To discretize the variance process νt, we employ the quadratic-exponential (QE) scheme
by Andersen [1]. The idea of the QE scheme is the approximation to the non-central chi-
square distribution. Let ν̂t denote a discrete-time approximation to νt, for sufficiently large
realized values of ν̂t, Andersen [1] suggested to approximate the non-central chi-square
random variable by the power function

ν̂t+∆ = α(β + Zν)2, (11)

where Zν is a standard Gaussian random variable, α and β are certain constants that
can be determined by moment-matching using the parameters in (7) and given in the
following Proposition 3.1; the detailed calculations can be found in [1].
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Proposition 3.1. The mean and the variance of the variance process (7) read

m = E[νt+∆|νt] = µν + (νt − µν)e−κν(T−t), (12)

s2 =
νtσ

2
νe−κν(T−t)

κν

(
1− e−κν(T−t)

)
+
µνσ

2
ν

2κν

(
1− e−κν(T−t)

)2
. (13)

If we set ψ := s2

m2 and choose

β2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0 (14)

and
α =

m

1 + β2
, (15)

then (11) has a mean equal to m and a variance equal to s2. Note that ψ ≤ 2.

However, the approximation (11) will not work well for small values of ν̂t, cf. [1]. For
small values of ν̂t, Andersen [1] suggested to use an approximated density for ν̂t+∆ of the
form:

P (ν̂t+∆ ∈ [x, x+ dx]) ≈ (pδ(0) + q(1− p)e−qx)dx, x ≥ 0, (16)

where δ is a Dirac delta function, and p ∈ [0, 1] and q > 0 are constants to be determined
by moment-matching. We integrate (16) and obtain

Ψ(x) = P (ν̂t+∆ < x) = p+ (1− p)(1− e−qx), x ≥ 0 (17)

and, by inverting, we obtain

Ψ−1(u) = Ψ−1(u; p, q) =

{
0, 0 ≤ u ≤ p,
q−1 ln( 1−p

1−u), p < u ≤ 1.
(18)

Thus, the sampling scheme for small values of ν̂t reads

ν̂t+∆ = Ψ−1(Uν ; p, q), (19)

where Uν is a uniform random variable.

Proposition 3.2. Let m, s2 and ψ be defined as in Proposition 3.1. For ψ ≥ 1, there
exist two parameters p and q such that (19) has a mean equal to m and a variance equal
to s2, which read

p =
ψ − 1

ψ + 1
∈ [0, 1) (20)

and

q =
1− p
m

=
2

m(ψ + 1)
> 0. (21)

We only need to select an arbitrary level ψc ∈ [1, 2] and choose either (11) or (19)
according to ψ ≤ ψc or ψ > ψc to do the sampling for the variance process (7).
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3.2 Discretization for the Correlation Process ρt

We know that several stochastic processes could be used for modelling stochastic cor-
relation, e.g., the bounded Jacobi process [13, 24], the sort of stochastic correlation
process produced by transformation [18, 19]. Moreover, for nice analytical tractability,
we might choose some other mean-reverting processes that exhibit simpler structure, e.g.,
the Ornstein–Uhlenbeck (OU) process [23]

dρt = κρ(µρ − ρt) dt+ σρ dW
ρ
t (22)

with the exact solution

ρt+∆ = ρte
−κρ∆ + µρ(1− e−κρ∆) + σρ

√
1− e−2κρ∆

2κρ
Zρ, (23)

where Zρ is a standard Gaussian random variable. Thus, the functions a(t, ρt) and b(t, ρt)
defined in (5) are known as κρ(µρ−ρt) and σρ, respectively. However, the major drawback
of using the OU process for stochastic correlation is that the process is not bounded.
This is to say the generated correlations can be out of the correlation interval [−1, 1],
especially with a small value of κρ and a large value of σρ. Moreover, it has been indicated
by Teng et al. in [21] that P (ρt < 1) = 1 is valid if and only if

√
κρ(1− µρ)

σρ
→∞, (24)

and the condition for P (ρt > −1) = 1 is

√
κρ(−1− µρ)

σρ
→ −∞. (25)

This does not necessarily means that σρ tends to zero. If one limits the mean value µρ
to be in (−1, 1), from (24) and (25), one can conclude that the OU process is bounded

in the interval with the condition
√
κρ
σρ
→ ∞. In practice, such a positive constant C

could be selected such that the condition
√
κρ
σρ
≥ C is already sufficient to ensure that

the generated correlations stay in (−1, 1), if the initial correlation ρ0 and the long-term
mean µρ are not close to −1 or 1.

3.3 Discretization for the Log Price Process xt

In this section, we discuss how to discretize the log price process (9). As indicated
by Andersen [1], a straight discretization of (9) may lead to the problem of “leaking
correlation”: suppose that we use directly a Euler scheme for simulating (9):

x̂t+∆ = x̂t + (r − 1

2
ν̂t)∆ +

√
ν̂tZx
√

∆. (26)
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We know that the true correlation between x̂t+∆ and ν̂t+∆ is always close to ρt given by
(8). However, ν̂t+∆ and Zν in (11) have a strong nonlinear relationship, which will imply
that the effective correlation between x̂t+∆ and ν̂t+∆ will be closer to zero than ρt for the
cases where the probability P (β + Zv < 0) is nonzero. To tackle this problem of “leaking
correlation”, we reformulate the stochastic differential equation (SDE) system (7)–(9) as
follows: first, we see that the SDE system (7)–(9) has a family of correlation matrices

Ct =

 1 ρνρ ρt
ρρν 1 ρρx

ρt ρxρ 1

 , t ≥ 0. (27)

To simplify notation, we set ρ1 := ρνρ(ρρν) and ρ2 := ρxρ(ρρx). One can thus perform a
Cholesky-decomposition Ct = LtL>t , where Lt is a family of lower triangular matrices
given by

Lt =


1 0 0

ρ1

√
1− ρ2

1 0

ρt
ρ2−ρ1ρt√

1−ρ2
1

√
1− ρ2

t −
(
ρ2−ρ1ρt√

1−ρ2
1

)2

 , t ≥ 0, (28)

which can be used to reformulate the SDE system (7)–(9) with respect to the independent
BMs W̃ ν

t , W̃
ρ
t and W̃ x

t as:

dνt = κν(µν − νt)dt+ σν
√
νtdW̃

ν
t , (29)

dρt = a(t, ρt)dt+ ρ1b(t, ρt)dW̃
ν
t +

√
1− ρ2

1b(t, ρt)dW̃
ρ
t , (30)

dxt = (r − 1

2
νt)dt+ ρt

√
νtdW̃

ν
t +

ρ2 − ρ1ρt√
1− ρ2

1

√
νtdW̃

ρ
t

+

√√√√1− ρ2
t −

(
ρ2 − ρ1ρt√

1− ρ2
1

)2
√
νtdW̃

x
t . (31)

Since our main aim is to impose a stochastic correlation between the asset process (31)
and the stochastic variance process (29), to simplify the model, we assume ρ1 = 0, and
the latter SDE system thus becomes

dνt = κν(µν − νt) dt+ σν
√
νt dW̃

ν
t , (32)

dρt = a(t, ρt) dt+ b(t, ρt) dW̃
ρ
t , (33)

dxt = (r − 1

2
νt) dt+ ρt

√
νtdW̃

ν
t + ρ2

√
νtdW̃

ρ
t +

√
1− ρ2

t − ρ2
2

√
νt dW̃

x
t . (34)

In the following, we will discuss two different ways to discretize (34).
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3.3.1 The Euler and Milstein Scheme (EM Scheme)

The most simple way of discretizing (34) is to use the Euler or Milstein scheme. The
discretization of (34) by applying the Euler scheme [5, 12] reads

x̂t+∆ = x̂t + (r − 1

2
ν̂t)∆ + ρ2

√
∆Z ρ̃

√
ν̂t

+ ρ̂t
√

∆Z ν̃
√
ν̂t +

√
1− ρ2

2 − ρ̃2
t

√
∆Z x̃

√
ν̂t,

(35)

where Z ρ̃, Z ν̃ and Z x̃ are independent standard Gaussian random variables. The dis-
cretization of (34) by applying the Milstein scheme [14] will be the same to (35), since all
the derivatives included in the coefficients of the double integral terms (with respect to
BMs) by the Milstein scheme are equal to zero. Moreover, we remark that Ŝt = exp(x̂t)
with the discretized process x̂t in (35) is a martingale, and any types of stochastic
correlation processes can be straightforwardly employed within this scheme.

3.3.2 The Hybrid Scheme (HB Scheme)

In this section, we introduce a new way to discretize (34) where several different approx-
imation techniques will be used. We thus call it the hybrid scheme. We take the OU
process as an example due to its analytical tractability and start with the integral form
of (34)

xt+∆ = xt + r∆− 1

2

∫ t+∆

t
νudu+

∫ t+∆

t
ρu
√
νudW̃

ν
u

+ ρ2

∫ t+∆

t

√
νudW̃

ρ
u +

∫ t+∆

t

√
1− ρ2

u − ρ2
2

√
νu dW̃

x
u ,

(36)

where ρt follows an OU process. For the integral
∫ t+∆
t ρu

√
νudW̃

ν
u , where the integrand is

not independent from the corresponding BM, we consider Itô’s product in the following

dρtνt = ρtκν(µν − νt) dt+ νtκρ(µρ − ρt) dt+ νtσρ dW̃
ρ
t + ρtσν

√
νt dW̃

ν
t , (37)

where it has been assumed that νt and ρt are independent from each other corresponding
to ρ1 = 0. This product implies that∫ t+∆

t
ρu
√
νudW̃

ν
u =

ρt+∆νt+∆

σν
− ρtνt

σν
− σρ
σν

∫ t+∆

t
νu dW̃

ρ
u

−
∫ t+∆

t

κνµνρu + κρµρνu − (κν + κρ)ρuνu
σν

du.

(38)
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Now, we insert (38) into (36)

xt+∆ = xt + r∆− 1

2

∫ t+∆

t
νudu+

ρt+∆νt+∆

σν
− ρtνt

σν

−
∫ t+∆

t

κνµνρu + κρµρνu − (κν + κρ)ρuνu
σν

du

+

∫ t+∆

t
ρ2
√
νudW̃

ρ
u −

∫ t+∆

t

σρ
σν
νudW̃

ρ
u +

∫ t+∆

t

√
1− ρ2

u − ρ2
2

√
νu dW̃

x
u .

(39)

For the integrals over the time in (39), we simply use the approximation

∆ (γ1νt + γ2νt+∆) , (40)

and

∆

(
γ1
κνµνρt + κρµρνt − (κν + κρ)ρtνt

σν

+γ2
κνµνρt+∆ + κρµρνt+∆ − (κν + κρ)ρt+∆νt+∆

σν

)
,

(41)

where γ1 and γ2 are given constants, e.g., we choose γ1 = γ2 = 1
2 for a central discretiza-

tion.

In all the Itô integrals in (39), the integrand is independent with the corresponding BM.
Thus, they can be approximated by

∫ t+∆

t

(
ρ2
√
νu −

σρ
σν
νu

)
dW̃ ρ

u ≈
√

∆

√
γ1

(
ρ2
√
νt −

σρ
σν
νt

)2

+ γ2

(
ρ2
√
νt+∆ −

σρ
σν
νt+∆

)2

Z ρ̃,

(42)
and∫ t+∆

t

√
1− ρ2

u − ρ2
2

√
νu dW̃

x
u ≈
√

∆
√
γ1νt

(
1− ρ2

t − ρ2
2

)
+ γ2νt+∆

(
1− ρ2

t+∆ − ρ2
2

)
Z x̃,

(43)
respectively, where Z ρ̃ and Z x̃ are independent standard Gaussian random variables.
With all the approximations mentioned above, we rearrange (39) as

x̂t+∆ = x̂t + r∆ +K1νt +K2ν̂t+∆ +K3ρ̂tν̂t +K4ρ̂t+∆ν̂t+∆ +K5ρ̂t +K6ρ̂t+∆

+

√
K1
ν ν̂t +K2

ν ν̂
3
2
t +K3

ν ν̂
2
t +K4

ν ν̂t+∆ +K5
ν ν̂

3
2
t+∆ +K6

ν ν̂
2
t+∆Z

ρ̃

+
√
K1
ρ ν̂t +K2

ρ ν̂tρ̂
2
t +K3

ρ ν̂t+∆ +K4
ρ ν̂t+∆ρ̂2

t+∆Z
x̃,

(44)
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where

K1 := −∆γ1

(
κρµρ
σν

+
1

2

)
, K2 := −∆γ2

(
κρµρ
σν

+
1

2

)
,

K3 :=
1

σν
(∆γ1(κν + κρ)− 1) , K4 :=

1

σν
(∆γ2(κν + κρ) + 1) ,

K5 := −∆γ1κνµν
σν

, K6 := −∆γ2κνµν
σν

,

K1
ν : = ∆γ1ρ

2
2, K2

ν := −2∆γ1ρ2σρ
σν

, K3
ν :=

∆γ1σ
2
ρ

σ2
ν

,

K4
ν : = ∆γ2ρ

2
2, K5

ν := −2∆γ2ρ2σρ
σν

, K6
ν :=

∆γ2σ
2
ρ

σ2
ν

,

K1
ρ : = ∆γ1

(
1− ρ2

2

)
, K2

ρ := −∆γ1,

K3
ρ : = ∆γ2

(
1− ρ2

2

)
, K4

ρ := −∆γ2.

A analysis of the convergence properties for (44) is difficult and complicated, since it may
not have any high-order moments. We will consider the analysis of weak consistency.

Proposition 3.3. Assume that γ1 + γ2 in (44) approach 1 for ∆→ 0. Conditional on
Ŝt, ν̂t and ρ̂t, we have for the HB scheme

lim
∆→0

E

[
x̂t+∆ − x̂t

∆

]
= r − 1

2
ν̂t, lim

∆→0
Var

[
x̂t+∆ − x̂t√

∆

]
= ν̂t + 2

(
σ2
ρ

σ2
ν

ν̂2
t − ρ2

σρ
σν
ν̂

3
2
t

)
,

(45)

lim
∆→0

E

[
ν̂t+∆ − ν̂t

∆

]
= κν(µν − ν̂t), lim

∆→0
Var

[
ν̂t+∆ − ν̂t√

∆

]
= σν ν̂t, (46)

lim
∆→0

E

[
ρ̂t+∆ − ρ̂t

∆

]
= κρ(µρ − ρ̂t), lim

∆→0
Var

[
ρ̂t+∆ − ρ̂t√

∆

]
= σ2

ρ, (47)

lim
∆→0

Cov

[
x̂t+∆ − x̂t√

∆
,
ν̂t+∆ − ν̂t√

∆

]
= ρ̂tσν ν̂t, lim

∆→0
Cov

[
x̂t+∆ − x̂t√

∆
,
ρ̂t+∆ − ρ̂t√

∆

]
= ρ2σρ

√
ν̂t.

(48)

Proof. The statements (46) and (47) are obvious. We consider Var
[
x̂t+∆−x̂t√

∆

]
in (45) and

calculate

Var

[
x̂t+∆ − x̂t√

∆

]
=
K2

2 Var [ν̂t+∆] +K2
4 Var [ρ̂t+∆ν̂t+∆] +K2

6 Var [ρ̂t+∆]

∆

+
K1
ν ν̂t +K2

ν ν̂
3
2
t +K3

ν ν̂
2
t +K4

ν E [ν̂t+∆] +K5
νE[ν̂

3
2
t+∆] +K6

ν E
[
ν̂2
t+∆

]
∆

+
K1
ρ ν̂t +K2

ρ ν̂tρ̂
2
t +K3

ρ E [ν̂t+∆] +K4
ρ E
[
ν̂t+∆ρ̂

2
t+∆

]
∆

9
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∆→0−−−→
K2

4 Var [ρ̂t+∆ν̂t+∆] + (K1
ν +K4

ν +K1
ρ +K3

ρ)ν̂t + (K2
ν +K5

ν )ν̂
3
2
t + (K3

ν +K6
ν )ν̂2

t + (K2
ρ +K4

ρ)ν̂tρ̂
2
t

∆

∆→0−−−−−→
γ1+γ2=1

ρ̂2
t ν̂t +

σ2
ρ

σ2
ν

ν̂2
t + ρ2

2ν̂t − 2ρ2
σρ
σν
ν̂

3
2
t +

σ2
ρ

σ2
ν

ν̂2
t + ν̂t − ρ̂2

t ν̂t − ρ2
2ν̂t = ν̂t + 2

(
σ2
ρ

σ2
ν

ν̂2
t − ρ2

σρ
σν
ν̂

3
2
t

)
.

The first part in (45) can be proved in the same way. Moreover, we calculate

Cov

[
x̂t+∆ − x̂t√

∆
,
ν̂t+∆ − ν̂t√

∆

]
=
K2

∆
Var [ν̂t+∆] +

K4

∆
Cov [ν̂t+∆, ρ̂t+∆ν̂t+∆] +

K6

∆
Cov [ν̂t+∆, ρ̂t+∆]

νt⊥ρt
= K2 Var

[
ν̂t+∆√

∆

]
+K4E [ρ̂t+∆] Var

[
ν̂t+∆√

∆

]
∆→0−−−→ 1

σν
ρ̂tσ

2
ν ν̂t = ρ̂tσν ν̂t.

In the same way, one can prove the second part in (48).

Obviously, Proposition (3.3) says the HB scheme is weakly consistent [17] whilst

E

∣∣∣∣∣σ2
ρ

σ2
ν

ν̂2
t − ρ2

σρ
σν
ν̂

3
2
t

∣∣∣∣∣
2
 ∆→0−−−→ 0, (49)

which will be satisfied with non-extreme parameter values.

3.4 HB Scheme with Martingale Correction (HBM Scheme)

We know that the price process St will be a martingale; however, the price process
St = exp(xt) in (44) is not a martingale. For this problem, on one side, we can reduce
the size of ∆; on the other side, the “martingale correction” proposed by Andersen [1]
can be employed.

The scheme (44) is equivalent to

Ŝt+∆ = Ŝt exp (r∆ +K1ν̂t +K3ρ̂tν̂t +K5ρ̂t) exp (K2ν̂t+∆ +K4ρ̂t+∆ν̂t+∆ +K6ρ̂t+∆)

exp

(√
K1
ν ν̂t +K2

ν ν̂
3
2
t +K3

ν ν̂
2
t +K4

ν ν̂t+∆ +K5
ν ν̂

3
2
t+∆ +K6

ν ν̂
2
t+∆Z

ρ̃

)
exp

(√
K1
ρ ν̂t +K2

ρ ν̂tρ̂
2
t +K3

ρ ν̂t+∆ +K4
ρ ν̂t+∆ρ̂2

t+∆Z
x̃
)
.

(50)
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Assuming that ρt+∆ is known, by iterated conditional expectations, we calculate that

E
[
Ŝt+∆|Ŝt, ρ̂t+∆

]
= E

[
E
[
Ŝt+∆|Ŝt, ρ̂t+∆, ν̂t+∆

]
|Ŝt, ρ̂t+∆

]
= Ŝt exp

(
r∆ + (K1 +

K1
ν

2
+
K1
ρ

2
)ν̂t +

K2
ν

2
ν̂

3
2
t +

K3
ν

2
ν̂2
t +K5ρ̂t +K6ρ̂t+∆ +K3ρ̂tν̂t

+K2
ρ ν̂tρ̂

2
t

)
E

[
exp

(
K2 +K4ρ̂t+∆ +

K4
ν

2
+
K3
ρ

2
+K4

ρ ρ̂
2
t+∆

)
ν̂t+∆ + exp

(
K5
ν ν̂

3
2
t+∆ +K6

ν ν̂
2
t+∆

)
|Ŝt, ρ̂t+∆

]
.

Clearly, it is not easy to compute the part underlined in the latter equation. However,
since both exponents of ν̂t in that part are greater than one, we might thus ignore this
part to obtain an approximated martingale correction. Therefore, we reformulate the
latter equation as

E
[
Ŝt+∆|Ŝt, ρ̂t+∆

]
≈ Ŝt exp (N)E

[
exp (A) ν̂t+∆|Ŝt, ρ̂t+∆

]
︸ ︷︷ ︸

:=M

, (51)

where

N : = r∆ + (K1 +
K1
ν

2
+
K1
ρ

2
)ν̂t +

K2
ν

2
ν̂

3
2
t +

K3
ν

2
ν̂2
t +K5ρ̂t +K6ρ̂t+∆ +K3ρ̂tν̂t +K2

ρ ν̂tρ̂
2
t ,

(52)

A : = K2 +K4ρ̂t+∆ +
K4
ν

2
+
K3
ρ

2
+K4

ρ ρ̂
2
t+∆. (53)

We assume that M in (51) is finite, and then E
[
Ŝt+∆|Ŝt, ρ̂t+∆

]
is also finite. In order to

force E
[
Ŝt+∆|Ŝt, ρ̂t+∆

]
will be a martingale, we require

exp(K0 +N)M = 1, (54)

which implies K0 = − lnM −N . Finally, we obtain the HBM scheme as

x̂t+∆ = x̂t + r∆ +K0 +K1νt +K2ν̂t+∆ +K3ρ̂tν̂t +K4ρ̂t+∆ν̂t+∆ +K5ρ̂t +K6ρ̂t+∆

+

√
K1
ν ν̂t +K2

ν ν̂
3
2
t +K3

ν ν̂
2
t +K4

ν ν̂t+∆ +K5
ν ν̂

3
2
t+∆ +K6

ν ν̂
2
t+∆Z

ρ̃

+
√
K1
ρ ν̂t +K2

ρ ν̂tρ̂
2
t +K3

ρ ν̂t+∆ +K4
ρ ν̂t+∆ρ̂2

t+∆Z
x̃.

(55)

Obviously, the challenge of using the HBM scheme is to compute K0, which is actually a
random variable conditional on Ŝt and ρ̂t+∆. Because νt and ρt are independent, hence,
we can directly adopt the recent approach by Andersen [1, Proposition 9] to compute K0

K0 =

{
− Aβ2α

1−2Aα + 1
2 ln(1− 2Aα)−N, ψ ≤ ψc,

− ln
(
q(1−p)
q−A

)
−N, ψ > ψc,

(56)
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where α, β, ψ, ψc, p, q are defined in Propositions 3.1 and 3.2, and N and A are defined
in (52) and (53).

4 Numerical Results

As mentioned before, we analyze the numerical results by pricing European call options.
We denote the exact option price C and the numerically approximated price with Ĉ that
can be computed using the expectation

Ĉ = E
[
(ŜT −K)+

]
= E

[
(ex̂T −K)+

]
(57)

and approximated by a Monte Carlo method

Ĉ ≈ 1

M

M∑
i=1

(
ex̂

i
T −K

)+
. (58)

Thus, we define the error of a discretization scheme as

ε = |C − Ĉ|, (59)

which will be dependent on ∆. For all of the numerical experiments, we assume S = 100,
r = 0 and three different levels of the strike K = [70, 100, 140].

4.1 A Comparison of the Numerical Methods EM, HB and HBM

In this section, we test the discretization schemes EM, HB and HBM described in
Section 3.2 for the log price process xt. It is well known that the OU process is a mean-
reverting process, i.e., whilst we initialize the stochastic correlation process so that it
can rapidly reach its mean value µρ, the option price computed in the extended Heston
model should be the same as the original Heston price with the constant correlation
ρ = µρ. In this case, we can take the original Heston price obtained by computing the
(semi-)analytical pricing formula in [7] as the benchmark.

To initialize the variance process, we take the parameters collection used in [1] and
given in Table 1. We see that all the parameters collection of Cases I, II, III are not
under the Feller condition. Hence, for Case IV, we choose parameters collection that
are under the Feller condition. In order to let the price be computed in the extended
Heston model to coincide with the pure Heston price, as mentioned above, e.g., we choose
κρ = 2, σρ = 10−3 and set the value for µρ and ρ0 to be same as the value of ρ in Table
1. Moreover, letting ρ2 = 0, γ1 = γ2 in (40) be 0.5, we use M = 106 for the Monte Carlo
method and report the errors for different time steps and for cases in Tables 2–5 by
varying the value of the time step ∆ from one year to 1/32 year.
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Case I Case II Case III Case IV

ν0 0.04 0.04 0.09 0.04
κν 0.5 0.3 1 2.6
µν 0.04 0.04 0.09 0.04
σν 1 0.9 1 0.2
ρ −0.9 −0.5 −0.3 −0.6

T (maturity) 10 15 5 10

Table 1: Parameters collection for dνt.

∆ EM HB HBM

K = 70

1 0.504 (0.046) −0.821 (0.023) −0.084 (0.022)
1/2 0.379 (0.036) −0.131 (0.023) 0.052 (0.023)
1/4 0.236 (0.030) −0.000 (0.023) 0.031 (0.022)
1/8 0.179 (0.027) 0.021 (0.022) −0.019 (0.022)
1/16 0.101 (0.025) −0.003 (0.022) −0.005 (0.022)
1/32 0.019 (0.024) −0.002 (0.022) −0.003 (0.022)

K = 100

1 −2.054 (0.040) −0.998 (0.013) −0.211 (0.013)
1/2 −1.265 (0.030) −0.332 (0.013) −0.120 (0.013)
1/4 −0.692 (0.023) −0.046 (0.013) 0.000 (0.013)
1/8 −0.361 (0.019) 0.019 (0.013) 0.027 (0.013)
1/16 −0.182 (0.017) −0.020 (0.013) −0.019 (0.013)
1/32 −0.074 (0.015) −0.003 (0.013) −0.003 (0.013)

K = 140

1 −5.264 (0.037) 0.076 (0.002) 0.084 (0.002)
1/2 −3.904 (0.021) 0.017 (0.003) 0.018 (0.003)
1/4 −2.517 (0.013) −0.004 (0.003) −0.005 (0.003)
1/8 −1.489 (0.008) −0.004 (0.002) −0.004 (0.002)
1/16 −0.814 (0.006) −0.008 (0.003) −0.008 (0.003)
1/32 −0.431 (0.004) −0.006 (0.003) −0.006 (0.003)

Table 2: A comparison of the relative errors in Case I using different schemes; numbers
in parentheses are standard deviations.

We consider first the results for Case I in Table 2 and find that both the discretization
schemes HB and HBM have an advantage over the EM scheme, and the advantage is
considerable for the out-of-money options with K = 140. By comparison to the HB scheme,
one can realize that it is beneficial by adding a martingale correction for computing the
in-the-money and at-the-money options with a simulation step of ∆ = 1 or ∆ = 1

2 .

Since the results for Cases II and III are qualitatively similar to those of Case I, one
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∆ EM HB HBM

K = 70

1 0.249 (0.072) −0.243 (0.048) −0.153 (0.049)
1/2 0.114 (0.063) −0.118 (0.047) −0.103 (0.047)
1/4 0.160 (0.052) 0.015 (0.046) 0.015 (0.046)
1/8 0.095 (0.050) −0.077 (0.077) −0.078 (0.077)
1/16 −0.035 (0.025) 0.006 (0.052) 0.005 (0.049)
1/32 −0.013 (0.052) 0.079 (0.047) 0.079 (0.047)

K = 100

1 −1.285 (0.064) 0.397 (0.044) 0.465 (0.044)
1/2 −0.774 (0.053) 0.153 (0.040) 0.164 (0.040)
1/4 −0.624 (0.051) 0.075 (0.044) 0.075 (0.044)
1/8 −0.410 (0.051) 0.053 (0.045) 0.052 (0.045)
1/16 −0.092 (0.046) 0.059 (0.041) 0.059 (0.041)
1/32 −0.072 (0.046) 0.023 (0.043) 0.023 (0.043)

K = 140

1 −3.259 (0.152) 0.224 (0.040) 0.182 (0.041)
1/2 −2.279 (0.069) 0.043 (0.035) 0.028 (0.035)
1/4 −1.365 (0.041) −0.013 (0.043) −0.018 (0.044)
1/8 −0.750 (0.040) 0.022 (0.037) 0.020 (0.036)
1/16 −0.475 (0.040) 0.056 (0.033) 0.055 (0.033)
1/32 −0.236 (0.046) −0.022 (0.039) −0.023 (0.040)

Table 3: A comparison of the relative errors in Case II using different schemes; numbers
in parentheses are standard deviations.

can reach the same conclusion that both the HB and HBM schemes outperform the EM
scheme. It is worth to noting, for the less challenging Case III, that the results for Case
III by using the EM scheme are better than those of Cases I and II.

Now, we turn to the Case IV where the parameters obey the Feller condition. The
performance of the HB scheme in this case is a bit poor, especially, with a large time step
∆. Actually, we have also tested the pure QE scheme in [1] for this case and obtained the
same output. By contrast, the performance of the EM scheme for this case is surprisingly
good. Fortunately, for this case, the martingale correction has brought a huge benefit so
that the HBM scheme still performs better.

About comparing the numerical efficiency, we check the average computation times of
the HB and HBM schemes relative to the EM scheme for all runs in Tables 2–5, which
are 0.61 and 0.79, respectively. Obviously, both HB and HBM schemes are more efficient
than the EM scheme because, compared to the EM scheme, we have one random variable
less to simulate with the HB and HBM schemes.
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∆ EM HB HBM

K = 70

1 0.097 (0.069) −0.286 (0.060) −0.111 (0.060)
1/2 0.040 (0.066) −0.111 (0.059) −0.063 (0.059)
1/4 0.085 (0.063) −0.042 (0.061) −0.030 (0.061)
1/8 0.090 (0.061) −0.033 (0.059) −0.030 (0.059)
1/16 0.030 (0.061) −0.077 (0.060) −0.076 (0.060)
1/32 0.147 (0.060) 0.037 (0.059) 0.038 (0.059)

K = 100

1 −0.634 (0.065) 0.362 (0.053) 0.480 (0.054)
1/2 −0.404 (0.060) 0.160 (0.052) 0.192 (0.052)
1/4 −0.183 (0.055) 0.029 (0.053) 0.036 (0.053)
1/8 −0.144 (0.073) −0.015 (0.052) −0.014 (0.052)
1/16 −0.099 (0.055) −0.011 (0.056) −0.011 (0.056)
1/32 0.037 (0.051) −0.022 (0.053) −0.022 (0.053)

K = 140

1 −1.249 (0.057) 0.593 (0.044) 0.567 (0.045)
1/2 −1.069 (0.064) 0.125 (0.044) 0.114 (0.044)
1/4 −0.652 (0.047) 0.094 (0.044) 0.090 (0.044)
1/8 −0.346 (0.045) 0.127 (0.044) 0.126 (0.044)
1/16 −0.308 (0.046) −0.062 (0.045) −0.062 (0.045)
1/32 −0.110 (0.045) 0.006 (0.044) 0.006 (0.044)

Table 4: A comparison of the relative errors in Case III using different schemes; numbers
in parentheses are standard deviations.

4.2 The Effect of Imposing Stochastic Correlation on Implied Volatility

In this section, we analyze the effect of imposing stochastic correlation on the implied
volatilities. To do this, we show the role of using stochastic correlation process in implied
volatility, namely to see how the values of parameters of the correlation process will
drive the implied volatilities. We display in Figure 1 the changes of implied volatilities by
varying each parameter of stochastic correlation process. For this experiment, we prefer
to use the HBM scheme.

We consider a Call-option with S = 120, T = 0.5 and the strikes from 114 to 126
in increments of 1, r = 1%. For the variance process, we set ν0 = 0.03, µν = 0.04,
κν = 2.1, σν = 0.4, and, for the correlation process, we choose κρ = 3.5, σρ = 0.1,
µρ = −0.6 (equal to the constant correlation) and set ρ0 = −0.4 except for the one that
is varying. Finally, we set ρ2 = 0.1 and use M = 106 for the Monte Carlo simulation.

From Figure 1, we realize that the parameters of correlation process can control the
skewness or smiles of the implied volatilities. Compared to using a constant correlation
parameter, including stochastic correlation provides more flexibility and can thus improve

15



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

∆ EM HB HBM

K = 70

1 0.108 (0.059) −3.989 (0.067) 0.089 (0.059)
1/2 −0.020 (0.059) −1.081 (0.061) 0.169 (0.059)
1/4 −0.071 (0.059) −0.447 (0.060) −0.088 (0.059)
1/8 0.015 (0.059) −0.117 (0.059) −0.020 (0.059)
1/16 0.008 (0.059) −0.001 (0.059) 0.024 (0.059)
1/32 0.079 (0.059) −0.005 (0.059) 0.002 (0.059)

K = 100

1 0.078 (0.050) −4.000 (0.058) −0.008 (0.050)
1/2 0.079 (0.050) −1.097 (0.052) 0.163 (0.050)
1/4 0.045 (0.050) −0.354 (0.051) 0.016 (0.050)
1/8 0.027 (0.050) 0.003 (0.051) 0.105 (0.050)
1/16 0.023 (0.050) −0.081 (0.051) −0.054 (0.051)
1/32 0.064 (0.050) −0.104 (0.051) −0.097 (0.051)

K = 140

1 0.091 (0.039) −3.330 (0.047) 0.003 (0.039)
1/2 −0.014 (0.039) −0.990 (0.042) 0.068 (0.039)
1/4 0.047 (0.039) −0.261 (0.040) 0.051 (0.039)
1/8 −0.066 (0.039) −0.136 (0.040) −0.049 (0.040)
1/16 0.021 (0.039) −0.017 (0.040) 0.006 (0.039)
1/32 −0.022 (0.039) 0.032 (0.039) 0.038 (0.039)

Table 5: A comparison of the relative errors in Case IV using different schemes; numbers
in parentheses are standard deviations.

the calibration to the real market data.

4.3 A Comparison with the Effect of Stochastic Correlation

In order to be able to compare with the pure Heston price, in the numerical experiments
above, we have initialized the stochastic correlation process such that it can rapidly
reach its mean value. Now, we want to test our numerical schemes including the effect of
stochastic correlations. [22] found the well approximated characteristic function of the
Heston model extended by including stochastic correlations driven by the OU process in
a closed-form, which can be used for analytical pricing purposes. Moreover, a comparison
to the EM scheme has already been provided in [22]; for more detailed information, we
refer to [22].

Next, we test all of the numerical schemes by comparing them to the method in [22]. For
this, we take a five years Call with S0 = 100 and report the price differences between
using the proposed numerical schemes and the approach in [22] in Table 6. The used
parameter values for dνt are not under the Feller condition. We thus obtain similar results
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(d) Varying ρ0
Figure 1: Comparison of implied volatilities for varying each parameter of stochastic
correlation processes.

to those of Case IV: the HB scheme does not perform well with a large time step ∆. From
all the numerical experiments, we conclude that: the HB and HBM schemes outperform
the EM scheme when the parameter values of dν are not subject to the Feller condition.
By contrast, under the Feller condition, the EM and HBM schemes are more favorable
since they outperform the HB scheme at a large time step ∆.

5 Conclusions

In this work, we extended the Heston model by imposing stochastic correlations driven by
a SDE. We have introduced different numerical algorithms including numerical analysis
and compared their merits. We showed which algorithms are more favorable for which
model parameterizations. Thereof, the HB and HBM scheme arose by adopting the QE
scheme in [1].

A couple of numerical results are provided. It has been shown that the numerical schemes
proposed in this paper can work so well for the extended Heston by including stochastic
correlations as the QE scheme in [1] for the pure Heston model. Moreover, we realized the
benefit of incorporating stochastic correlations by investigating the effect of stochastic
correlations on the implied volatility. Because of the increased number of model parameters
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∆ EM HB HBM

K = 70

1 0.072 (0.042) −6.246 (0.047) −0.153 (0.042)
1/2 −0.003 (0.042) −1.569 (0.043) 0.007 (0.042)
1/4 −0.089 (0.042) −0.339 (0.042) 0.061 (0.042)
1/8 0.013 (0.042) −0.071 (0.042) 0.020 (0.042)
1/16 0.033 (0.042) −0.014 (0.042) −0.000 (0.042)
1/32 0.033 (0.042) −0.005 (0.042) −0.011 (0.042)

K = 100

1 −0.006 (0.033) −4.924 (0.039) −0.182 (0.033)
1/2 0.018 (0.033) −1.225 (0.035) −0.011 (0.033)
1/4 −0.052 (0.033) −0.274 (0.033) 0.027 (0.033)
1/8 0.022 (0.033) −0.040 (0.033) 0.021 (0.033)
1/16 0.046 (0.033) −0.010 (0.033) −0.009 (0.033)
1/32 0.047 (0.033) (0.033) −0.011 (0.033)

K = 140

1 −0.063 (0.022) −2.900 (0.027) −0.156 (0.022)
1/2 −0.001 (0.022) −0.696 (0.023) −0.016 (0.022)
1/4 −0.033 (0.022) −0.184 (0.022) −0.019 (0.022)
1/8 −0.025 (0.022) −0.136 (0.022) −0.014 (0.022)
1/16 −0.015 (0.022) −0.014 (0.022) −0.017 (0.022)
1/32 0.031 (0.022) 0.005 (0.022) −0.005 (0.022)

Table 6: Paramter values of the stochastic volatility and correlation: κν = 2.3, ν0 = µν =
0.04, σν = 0.09, κρ = 2, ρ0 = −0.1, µρ = −0.5, σρ = 0.02, ρ2 = 0, r = 0.

through the correlation process, the extended Heston with stochastic correlations can
provide more than enough skews or smiles in the implied volatility as the market requires
than the pure Heston model.
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