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Abstract

Mayfield’s numerical implementation of transparent boundary condition for
the Schrödinger-type parabolic equations is revisited. An inaccuracy in the
original proof of the conditional stability for the resulting scheme is pointed
out. The highly unusual and impressive original result is reestablished and a
new proof is presented. Some further remarks and estimates on the instability
which occurs when the Mayfield condition is violated are given.
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1. Introduction

The methods for the artificial truncation of the computational domain for
the numerical solution of the Schrödinger-type parabolic equations are being
intensively developed for more than two decades. This domain truncation
may be accomplished either by imposing the transparent boundary conditions
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(TBC) or by extending the computational domain with so-called perfectly
matching layers (or PMLs). For a comprehensive review with the compari-
son of different implementations of TBCs and PML we refer to [1]. Among
the earliest works on nonlocal TBCs for the Schrödinger-type equations were
probably the thesis of Mayfield [2] and the article of Baskakov and Popov
[3]. Both works deal with the narrow-angle parabolic equations for the wave
propagation in acoustical and optical applications respectively (these equa-
tions are mathematically equivalent to the Schrödinger equation). In the
former thesis an implementation of the TBC in the Neumann-to-Dirichlet
(NtD) form was proposed while in the latter paper a different implementa-
tion of the TBC in the Dirichlet-to-Neumann (DtN) form was obtained. Very
recently it was shown that the numerical scheme incorporating the TBC of
Baskakov and Popov is unconditionally stable [4]. Mayfield [2] has shown
that her numerical scheme features only a conditional stability with a very
unusual instability condition (cf. Lemma 3). We observed that her proof
contains one inaccuracy and decided to fill this gap. Also we observed that
although the stability criterion used by Mayfield [2] is more restrictive than
is usually necessary, the numerical scheme fails to satisfy even a much less
restrictive one under her instability condition.

2. TBC for the parabolic equation and Mayfield’s implementation

Let us consider a narrow-angle parabolic equation (PE) describing sound
propagation in the ocean [5]

2ik0ur + uzz + k2

0(ν
2 − 1)u = 0 , (1)

where u = u(r, z) is the acoustical pressure envelope function (i.e. acousti-
cal pressure p(r, z) = H1

0 (k0r)u(r, z)), r is range variable, z is depth, k0 is
reference wavenumber and ν = ν(r, z) is refractive index). Hereafter we use
the acoustical notation following the original work of Mayfield [2], although
it is straightforward to rewrite our results for the case of a Schrödinger equa-
tion. The equation (1) in computational acoustics is usually complemented
by a pressure-release boundary condition u(r, 0) = 0 at the ocean surface
z = 0 and by an initial condition u(0, z) = u0(z) modeling a point source
field [5] to define an initial-boundary value problem (IBVP) in the domain
Ω = {(r, z)|r ≥ 0, z ≥ 0}. To solve such IBVP for (1) numerically, one must
artificially truncate the the domain z ≥ 0, r ≥ 0 at a certain depth z = zb,
e.g. at the sea bottom.
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In the thesis of Mayfield [2] the following Neumann-to-Dirichlet TBC was
used at the ocean bottom z = zb for the numerical solution of (1):

u(r, zb) =
− exp(iπ/4)√

2k0π

∫ r

0

exp(ik0(ν
2
b − 1)(r − ξ)/2)√
r − ξ

uz(ξ, zb)dξ , (2)

where νb = ν(zb). Mayfield [2] discretized the equation (1) using the Crank-
Nicholson scheme on the uniform grid rn = n∆r, zm = m∆z, n = 0, 1, . . . , N ,
m = 0, 1, . . . ,M , where ∆zM = zb, ∆zN = rmax

−ρun+1

m−1 + σn
mu

n+1

m − ρun+1

m+1 = ρun
m−1 − σ̄n

mu
n
m + ρun

m+1 , (3)

where un
m = u(rn, zm), ρ = ∆r/(∆z)2, σn

m = 2ρ + ζm, ζnm = −4ik0 −
k2
0∆r((νn

m)
2 − 1). The discretized TBC (2) was written as

un+1

M = ǫun+1

m−1 −
√
ǫSn , (4)

where

ǫ = exp

(−
√
2πk0∆z

2
√
i∆r

)

,

Sp =
n−1
∑

j=0

exp(ik0(ν
2

b − 1)(j + 1)∆r/2)(
√

j + 2−
√

j + 1)(uN−j
M − uN−j

M−1
) .

At the sea surface we employ a homogeneous Dirichlet BC un
0 = 0 for all

n = 0, 1, 2, . . . .

3. The Mayfield stability criterion

Now we combine the interior scheme (3) and the discretized TBC (4) into
a marching matrix form for a column vector ūn = (un

1 , u
n
2 , . . . , u

n
M)⊤, (where

⊤ stands for the transposition):

(Z + ρTǫ)ū
n+1 = (−Z̄ − ρTǫ)ū

n + w̄n , (5)

where we introduced the (tri-)diagonal matrices

Tǫ =















2 −1 0 . . . 0
−1 2 −1 . . . 0
...

. . . . . . . . .
...

0 . . . −1 2 −1
0 . . . 0 −1 2− ǫ















, Z =











ζn1 0 . . . 0
0 ζn2 . . . 0
...

...
. . .

...
0 . . . 0 ζnM
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Figure 1: The Mayfield stability set determined by (6).

and a vector w̄n = (0, . . . , 0,−ρ
√
ǫ(Sn +Sn−1))⊤. In the subsequent analysis

we assumed (following Mayfield) that ν ≡ 1 (and thus ζnm = −4ik0 and Z is
a scalar matrix).

The stability investigation by Mayfield [2] for the numerical scheme (5)
is based on the eigenvalue analysis for the error-propagating matrix P =
P (ǫ) = (Z + ρT )−1(−Z̄ − ρT ). Next we briefly summarize the results from
[2].

Lemma 1. ([2], Lemma 6.3) The eigenvalues λj of the error-propagating
matrix P (ǫ) satisfy the condition |λj| ≤ 1 if and only if eigenvalues µj of the
matrix Tǫ are such that Im(µj) ≤ 0.

Lemma 2. ([2], Lemma 6.4) All eigenvalues µj of the matrix Tǫ satisfy
Im(µj) ≤ 0 if and only if Im(ǫ) ≥ 0.

Lemma 3. ([2], Lemma 6.5) The condition Im(ǫ) ≥ 0 is fulfilled if and only
if the mesh ratio ρ = ∆r/(∆z)2 satisfies the following inequality

k0
4π(2n+ 1)2

≤ ∆r

(∆z)2
≤ k0

4π(2n)2
, where n = 0, 1, 2, . . . . (6)

The set of ρ values described by the Mayfield condition (6) is shown in Fig. 1.

If by the definition we accept the inequalities |λj| ≤ 1 for all j as the
stability criterion for the scheme (5), then it is stable whenever the meshsizes
are chosen to satisfy (6). This result is very elegant and unusual, however
the proof of Lemma 2 given in [2] is inaccurate (and this lemma is the least
trivial part of the criterion proof). More precisely, the eigenvalues µj(ǫ) were
represented in a perturbative form (with ǫ acting as a small parameter):

µj(ǫ) = µj(0)− ǫ(xj
m)

2 + α , j = 1, 2, . . . ,M , (7)

where µj(0) denotes an eigenvalue of the matrix T0, x
j
m is m-th coordinate of

the corresponding eigenvector x̄j and where α stands for higher-order terms
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in ǫ. Mayfield [2] proved that the first order perturbation theory actually
provides the exact values for the eigenvalues µj(ǫ), i.e. that α = 0. To this
end the equations (7) were summed up for all j to obtain

M
∑

j=1

µj(ǫ) =
M
∑

j=1

µj(0)−
M
∑

j=1

ǫ(xj
m)

2 +Mα . (8)

Note that
∑

j(x
j
m)

2 = 1, since the matrix T0 is symmetric and thus has the
complete orthonormal set of eigenvectors. Since

∑

j µj(ǫ) = tr(Tǫ) = 2m− ǫ
and

∑

j µj(0) = tr(T0) = 2m, this equation reduces to the mα = 0 which
implies α = 0. Note however that one must assume α in (7) to be the same
for all j to obtain (8). This assumption was not justified in [2] and in fact it is
wrong. It is therefore necessary to provide an alternative proof of Lemma 2.

4. The Proof of Lemma 2

Let DM = det(T0(M)− µE(M)) be the characteristic polynomial of the
matrix T0 of dimension M . E(M) stands for the identity matrix of the same
size. Using the row decomposition of the determinant it is easy to check that

det(Tǫ(M)− µE) = DM − ǫDM−1 .

It is also easy to see that the following recurrence relation holds for Dn:

DM = aDM −DM−1 ,

where for convenience a = 2− µ. This relation may be resolved in the form

DM = C1κ
M
1 + C2κ

M
2 ,

where κ1 and κ2 are the roots of the polynomial κ2−aκ+1 and the constants
C1 and C2 may be determined from the conditions D0 = 1 and D1 = a. After
some straightforward calculations we arrive at

DM =
1√

a2 − 4

(

a+
√
a2 − 4

2

)

− 1√
a2 − 4

(

a−
√
a2 − 4

2

)

.

The eigenvalues µ of the matrix Tǫ(M) (or the corresponding values of a)
may be determined from the equation

det(Tǫ(M)− µE) = DM − ǫDM−1 = 0 ,
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which may now be rewritten as

(a+
√
a2 − 4)M−1(a+

√
a2 − 4− 2ǫ) = (a−

√
a2 − 4)M−1(a−

√
a2 − 4− 2ǫ) .

In order to further simplify this equation we introduce the new variable
b = a/2 = 1− µ/2 to obtain

(b+
√
b2 − 1)M−1(b+

√
b2 − 1− ǫ) = (b−

√
b2 − 1)M−1(b−

√
b2 − 1− ǫ) . (9)

It is clear that all eigenvalues of Tǫ(M) are non-positive if and only if all
solutions bj of this equation satisfy Im(b) ≥ 0. Also note that the values
z1,2 = b±

√
b2 − 1 are the roots of the polynomial z2 − 2zb+ 1. Using these

definitions we now reformulate Lemma 2:

Lemma 4. Let z1 and z2 be the roots of polynomial z2 − 2zb + 1. Then

the quantity ǫ =
zM
1

−zM
2

zM−1

1
−zM−1

2

satisfies the condition Im(ǫ) ≥ 0 if and only if

Im(b) ≥ 0.

Note that the equivalence of Lemma 2 and Lemma 4 follows from (9) and
the relation b = 1− µ/2.

Proof. We use mathematical induction on M . We establish a basis for M =
2:

ǫ =
z21 − z22
z1 − z2

= z1 + z2 = 2b ,

and Im(ǫ) = 2 Im(b).

To prove the inductive step assume that sgn
(

Im
(

zk
1
−zk

2

zk−1

1
−zk−1

2

))

= sgn(b)

for k < M . Observe that

zk1 − zk2
zk−1

1 − zk−1

2

= z1 + z2 −
zk−2

1 − zk−2

2

zk−1

1 − zk−1

2

.

Indeed, multiplying both sides of this equality by zk−1

1 − zk−1

2 we obtain on
the left side zk1 − zk2 while the expression on the right side becomes

(z1 + z2)(z
k−1

1 − zk−1

2 )− zk−2

1 − zk−2

2 =

zk1 − zk2 + z2z
k−1

1 − z1z
k−1

2 − zk−2

1 + zk−2

2 = zk1 − zk2 ,
(10)

(since z1z2 = 1). We then have

zM1 − zM2
zM−1

1 − zM−1

2

= 2b−
(

zM−1

1 − zM−1

2

zM−2

1 − zM−2

2

)−1

. (11)
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By induction sgn
(

Im
(

zM−1

1
−zM−1

2

zM−2

1
−zM−2

2

))

= sgn(Im(b)) and this implies

sgn

(

Im

(

(

zM−1

1 − zM−1

2

zM−2

1 − zM−2

2

)−1
))

= − sgn(Im(b)) .

Consequently, the imaginary part of right-hand side of (11) has the same sign
as Im(b), and this completes the proof of the inductive step.

5. Uniform estimate on error growth

Now we estimate the rate of error growth in the case when the stability
criterion (6) is violated. To accomplish this we need first to obtain a different
estimation of the perturbed eigenvalues λj involving only ǫ and M (but not
the eigenvector x̄j as in (7)). Since the eigenvalues of the symmetric matrix
are differentiable functions of its elements, we assume that every solution bj
of the equation (9) may be written in the form

bj(ǫ) = bj(0) + ǫtj +O(ǫ2) , (12)

where bj(0) is some solution of (9) with ǫ = 0:

(bj(0) +
√

bj(0)2 − 1)M = (bj(0)−
√

bj(0)2 − 1)M . (13)

Note that all these solutions are related to the eigenvalues µj(0) ≡ µ0
j of the

unperturbed matrix T0 via µ0
j = 2 − 2bj(0) and therefore are all distinct.

Substituting bj from (12) into the equation (9), we then combine the terms
of the same order of ǫ. For ǫ0 we obtain the equation (13). For ǫ1 we
have the equation which may be solved for t to obtain tj = (1− bj(0)

2)/M .
From the perturbative formula (12) we may then easily express the first-order
perturbation for µj(ǫ) and then the perturbation for the eigenvalues λj(ǫ) of
the error-propagating matrix P (ǫ) reads:

λj(ǫ) =
ζ + ρµj(ǫ)

−ζ̄ − ρµj(ǫ)
= λ0

j +
−8ik0µ

0
j(µ

0
j − 4)

(4ik0 + ρµ0
j)

2

ǫ

M
+O(ǫ2) , (14)

where µ0
j = 4ik0(1 − λ0

j)/(1 + λ0
j), and λ0

j ≡ λj(0) is an eigenvalue of the
matrix P (0).

Note that under normal circumstances (i.e. when the parameter values
are typical for the acoustical problems) ǫ is indeed very small as compared
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to the elements of T . This is probably the reason why Mayfield [2] was able
to obtain a good agreement of the eigenvalues of Tǫ computed directly and
estimated via (7) assuming α to be 0. Although the perturbative estimation
(7) in her example is not exact, it is still very accurate. The requirement for ǫ
to be small however obviously puts an additional restriction on the values of
the mesh ratio ρ (since actually ǫ = ǫ(ρ)). Our proof removes this restriction.

Note that sometimes the requirement |λj| ≤ 1 is not necessary for the
stability. According to a more general definition [6], a numerical scheme

ūn+1 = Pūn

is stable is there exist non-negative numbers K and β such that

‖P‖N ≤ Keβrmax (15)

for any sufficiently small values ∆r and ∆z such that N∆r = rmax. We
now estimate the norm of the error-propagating matrix for the scheme (5).
Let λmax be the eigenvalue of P (ǫ) with the maximal magnitude. If the
condition (6) is violated then |λmax| = 1 + Cǫ/M + O(ǫ2) (C is a certain
positive constant determined from (14)). We have therefore the following
asymptotic equivalence for ‖P‖N (for small ǫ)

‖P‖N = |λmax|N ∼ (1 + Cǫ/M)N , ǫ → 0

Now let M tend to infinity while keeping the value of ρ = ρ0 constant (to
investigate what happens with (5) for very fine meshes). We have then the
following relation N = rmax

z2
b
ρ0
M2 and estimate ‖P‖N for large M and constant

ρ = ρ0 as follows:

‖P‖N ∼ (1 + Cǫ/M)N ∼ exp

(

rmaxCǫ

z2bρ
M

)

, M → ∞ . (16)

This expression for ‖P‖N clearly does not satisfy the stability criterion (15)
which is less restrictive than the one of Mayfield [2].

6. Conclusion

In this work we reestablished the classical result of Mayfield [2] on the
conditional stability of the numerical scheme (5). We pointed out an inaccu-
racy in the original proof of the crucial Lemma 2 and presented an alternative
one. It was shown that even under the relaxed stability condition (15) the
scheme (5) is only conditionally stable when the Mayfield condition (6) is
violated.
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