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Abstract

For an unbounded operator S on a Banach space the existence of invariant

subspaces corresponding to its spectrum in the left and right half-plane is

proved. The general assumption on S is the uniform boundedness of the

resolvent along the imaginary axis. The projections associated with the

invariant subspaces are bounded if S is strictly dichotomous, but may be

unbounded in general. Explicit formulas for these projections in terms of

resolvent integrals are derived and used to obtain perturbation theorems

for dichotomy. All results apply, with certain simplifications, to bisectorial

operators.
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1 Introduction

Let S be a densely defined linear operator S on a Banach space X such that
the imaginary axis belongs to the resolvent set ̺(S). A fundamental ques-
tion is whether there exist closed invariant subspaces X+ and X− which cor-
respond to the spectrum of S in the right and left half-plane C+ and C−,
respectively. S is called dichotomous if these subspaces exist and yield a de-
composition X = X+ ⊕ X−. If in addition the restrictions −S|X+ and S|X−

generate exponentially decaying semigroups, then S is exponentially dichoto-
mous. Dichotomy and exponential dichotomy have found a wide range of ap-
plications, e.g. to canonical factorisation and Wiener-Hopf integral operators
[BGK86a, BGK86b], and to block operator matrices and Riccati equations
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[LT01, LRvdR02, RvdM04, TW14]. An extensive account may be found in
the monograph [vdM08].

The investigation of dichotomous operators was started by H. Bart, I. Go-
hberg and M.A. Kaashoek in [BGK86b], where they established a sufficient
condition for dichotomy: If a strip around the imaginary axis belongs to ̺(S),
the resolvent (S − λ)−1 is uniformly bounded on this strip, i.e.,

sup
|Reλ|≤h

‖(S − λ)−1‖ < ∞ (1)

for some h > 0, and the integral

Px =
1

2πi

∫ h+i∞

h−i∞

1

λ2
(S − λ)−1S2x dλ, x ∈ D(S2), (2)

extends to a bounded operator P on X , then S is dichotomous and P is the
projection onto X+ along X−. On the other hand, there are simple examples
where (1) holds, X± exist, but X+ ⊕ X− ⊂ X is only dense and S is not
dichotomous.

In our first main result, Theorem 4.1, we prove that (1) is in fact sufficient
for the existence of invariant subspaces, even if S is not dichotomous: If (1)
holds, then the subspaces

G± = {x ∈ X : (S − λ)−1x has a bounded analytic extension to C∓}

are closed, S-invariant and satisfy σ(S|G±) ⊂ C±. Moreover, the integral (2)
extends to a closed, possibly unbounded operator P , which is the projection
onto G+ along G−. Finally, P is bounded if and only if S is dichotomous with
respect to X = G+ ⊕G−. This decomposition has the additional property that
the resolvents of S|G± are uniformly bounded on C∓, and we call S strictly
dichotomous in this case.

One important class of operators satisfying (1) are bisectorial and almost
bisectorial operators, for which iR ⊂ ̺(S) and

‖(S − λ)−1‖ ≤ M

|λ|β , λ ∈ iR \ {0}, (3)

with some M > 0 and β = 1 in the bisectorial, 0 < β < 1 in the almost bisec-
torial case. In Theorem 5.6 we show that for bisectorial and almost bisectorial
S equation (2) simplifies to

Px =
1

2πi

∫ h+i∞

h−i∞

1

λ
(S − λ)−1Sxdλ, x ∈ D(S), (4)

and that the restrictions S|G± are (almost) sectorial, i.e., they satisfy the resol-
vent estimate (3) on C∓. The results for bisectorial S were to some extent ob-
tained by W. Arendt and A. Zamboni in [AZ10]. In particular, they constructed
closed projections by using a rearranged version of (4); our construction of P in
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Theorem 4.1 is in fact a generalisation of their method to the weaker setting of
(1). Note that bisectoriality does not imply dichotomy and hence unbounded P
are still possible here as Example 5.8 shows.

In addition to the characterisation of dichotomy in Theorems 4.1 and 5.6,
we also derive perturbation results. Theorem 7.1 states that if S is strictly
dichotomous and T is another densely defined operator on X such that

(i) {λ ∈ C : |Reλ| ≤ h} ⊂ ̺(S) ∩ ̺(T ),

(ii) sup|Reλ|≤h |λ|1+ε‖(S − λ)−1 − (T − λ)−1‖ < ∞ for some ε > 0, and

(iii) D(S2) ∩D(T 2) ⊂ X is dense,

then T is strictly dichotomous too. A similar result was obtained in [BGK86b],
but under significantly stronger conditions, namely ε = 1 in (ii) and D(T 2) ⊂
D(S2) instead of (iii). It is precisely the existence of the closed projections which
allows us to use the more general condition (iii). If in addition S is (almost)
bisectorial, then T is (almost) bisectorial too and condition (iii) may be relaxed
to

(iii′) D(S) ∩ D(T ) ⊂ X is dense,

see Theorem 7.3. In [TW14] this result was obtained for bisectorial S and
T = S + R where R is p-subordinate to S, i.e., D(S) ⊂ D(R) and ‖Rx‖ ≤
c‖x‖1−p‖Sx‖p, x ∈ D(S), with constants c > 0 and 0 ≤ p < 1. In this case
(ii) holds with ε = 1 − p and (iii′) is trivially satisfied since D(S) = D(T ).
On the other hand, (iii) and (iii′) allow for a wider class of perturbations with
D(S) 6= D(T ), e.g. if T = S + R holds only in an extrapolation space, see
Example 8.8.

Most of our results remain valid for non-densely defined S. In particular,
this is true for the main Theorems 4.1 and 5.6, but not for the perturbation
results. Unless explicitly stated otherwise, linear operators are are not assumed
to be densely defined.

There exist different approaches to dichotomy: For bisectorial S an equiva-
lent condition for dichotomy in terms of complex powers of S is given in [DV89].
For generators of C0-semigroups, exponential dichotomy is equivalent to the hy-
perbolicity of the semigroup [KVL94], the latter being important e.g. in the
study of nonlinear evolution equations. Finally, our approach is connected to
(bounded as well as unbounded) functional calculus.

This article is organised as follows: In Section 2 we collect general facts about
unbounded projections, in particular Lemma 2.3 on the existence of closed pro-
jections corresponding to invariant subspaces. Section 3 contains the definition
and basic properties of dichotomous operators. Here we also show that di-
chotomy alone does not uniquely determine the decomposition X = X+ ⊕X−

while strict dichotomy does. In Section 4 we derive our main Theorem 4.1 in the
general setting (1). The case of bisectorial and almost bisectorial operators is
then considered in Section 5. For such operators we also provide some results on
the location of their spectrum and derive yet another integral representation for
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P , which was used in [LT01, TW14]. Section 6 is devoted to the subtle problem
that the restrictions S|G± are not necessarily densely defined even if S is. Fol-
lowing [BGK86b] we consider certain subspaces M± ⊂ G± for which the parts
of S in M± are densely defined. We derive conditions for M± = G±, which is
in turn equivalent to S|G± being densely defined. The perturbation results are
contained in Section 7, and in Section 8 we provide some additional examples
to illustrate our theory. Finally, as an application, we show the dichotomy of a
Hamiltonian operator matrix from control theory whose off-diagonal entries map
into extrapolation spaces. In the previous results [LRvdR02, WJZ12, TW14]
only settings without extrapolation spaces or with the additional assumption of
a Riesz basis of eigenvectors could be handled.

We use the following notation: The open right and open left half-plane is
denoted by C+ and C−, respectively. IfX,Y are Banach spaces, then T (X → Y )
denotes a linear operator from a (not necessarily dense) domain in X into Y . If
Z ⊂ X , then we denote the restriction of T to Z by T |Z. The set of all bounded
linear operators fromX to Y is denoted by L(X,Y ) and we set L(X) = L(X,X).
Let U ⊂ C. We call a function ϕ : U → X analytic if it admits an analytic
extension to some open neighbourhood of U . For the argument of a complex
number we choose the range −π < arg z ≤ π for z 6= 0 and set arg 0 = 0.

2 Unbounded projections

Our main tool for investigating the dichotomy of an operator S are projections
corresponding to invariant subspaces. In the general case, these projections will
be unbounded and the direct sum of the corresponding subspaces is not the
whole space X . Unbounded projections associated with bisectorial operators
have been studied in [AZ10].

Definition 2.1. Let X be a Banach space. A (possibly unbounded) operator
P (X → X) is called a projection if Im(P ) ⊂ D(P ) and P 2 = P .

In other words, P is a projection in the algebraic sense on the vector space
D(P ). If P is a projection, then

D(P ) = Im(P )⊕ ker(P ). (5)

The complementary projection is given by Q = I − P , D(Q) = D(P ). In this
case Im(Q) = ker(P ), ker(Q) = Im(P ).

Conversely, if X1, X2 ⊂ X are linear subspaces such that X1 ∩ X2 = {0},
then there are corresponding complementary projections P1, P2 with D(P1) =
D(P2) = X1 ⊕X2, Im(P1) = X1 and Im(P2) = X2.

Remark 2.2. (i) A projection P is closed if and only if Im(P ) and ker(P )
are closed subspaces.

(ii) A closed projection P is bounded if and only if Im(P )⊕ ker(P ) is closed.
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The next lemma gives a sufficient condition on a linear operator S that
allows for the construction of a pair of closed complementary projections which
commute with S and yield S-invariant subspaces.

Lemma 2.3. Let S(X → X) be a closed operator with 0 ∈ ̺(S). Suppose that
there are bounded operators A1, A2 ∈ L(X) satisfying

A1 +A2 = S−2, (6)

A1A2 = A2A1 = 0, (7)

Aj(S − λ)−1 = (S − λ)−1Aj , λ ∈ ̺(S), j = 1, 2. (8)

Then

(i) Pj := S2Aj, j = 1, 2, are closed complementary projections, D(S2) ⊂
D(P1) = D(P2) and Pjx = AjS

2x for x ∈ D(S2);

(ii) the subspaces Xj = Im(Pj) are closed, S- and (S − λ)−1-invariant for
λ ∈ ̺(S) and satisfy X1 = ker(A2), X2 = ker(A1). Moreover

σ(S) = σ(S|X1) ∪ σ(S|X2). (9)

Proof. (i) Since S2 is closed and Aj is bounded, Pj is closed. We have x ∈ D(Pj)
if and only if Ajx ∈ D(S2). Hence (6) implies that D(P1) = D(P2) and that
P1 + P2 = I on D(P1). From (8) it follows that

AjSx = SAjx for x ∈ D(S), j = 1, 2. (10)

For x ∈ D(P1), this implies A2P1x = A2S
2A1x = S2A2A1x = 0 and hence

Im(P1) ⊂ D(Pj), P2P1 = 0 and P 2
1 = (I − P2)P1 = P1. Thus P1 and P2 are

complementary projections. Additionally, (10) yields that if x ∈ D(S2), then
x ∈ D(P1) and AjS

2x = S2Ajx = Pjx.
(ii) Since S2 is invertible, X1 = ker(P2) = ker(A2) and analogously X2 =

ker(A1). Consequently these subspaces are closed and (8) and (10) imply that
they are also S- and (S − λ)−1-invariant. To obtain (9), we show now the
equivalent identity

̺(S) = ̺(S|X1) ∩ ̺(S|X2).

From the invariance of Xj it is easily seen that for λ ∈ ̺(S) the operator
S|Xj−λ is bijective with inverse (S−λ)−1|Xj ; hence λ ∈ ̺(S|Xj). For the other
inclusion let λ ∈ ̺(S|X1) ∩ ̺(S|X2). If (S − λ)x = 0, then x ∈ D(S2) ⊂ D(Pj)
and therefore

0 = (S − λ)x = (S|X1 − λ)P1x+ (S|X2 − λ)P2x.

This yields P1x = P2x = 0, i.e. x = 0. Hence S − λ is injective. To show
surjectivity, set

T = (S|X1 − λ)−1A1 + (S|X2 − λ)−1A2.

Then (S − λ)T = A1 +A2 = S−2 from which we conclude that Im(T ) ⊂ D(S3)
and (S − λ)S2T = I.

5
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The following example illustrates a typical situation in which the projections
from Lemma 2.3 are unbounded. It also shows that for fixed S there may be
several possible choices for A1, A2.

Example 2.4. Let S be the block diagonal operator on the sequence space
X = l2 given by

S = diag(S1, S2, . . . ), Sn =

(

n 2n2

0 −n

)

.

First observe that

(Sn − λ)−1 =

(

(n− λ)−1 2n2(n− λ)−1(n+ λ)−1

0 −(n+ λ)−1

)

, λ 6= ±n.

Then supn ‖(Sn − λ)−1‖ < ∞ for λ 6∈ Z \ {0}. Hence σ(S) = Z \ {0} and
(S−λ)−1 = diag((S1−λ)−1, (S2−λ)−1, . . . ), λ ∈ ̺(S). The spectral projections
P+
n , P−

n corresponding to the eigenvalues n and −n of Sn are

P+
n =

(

1 n
0 0

)

, P−
n =

(

0 −n
0 1

)

.

Moreover

S−1
n =

(

n−1 2
0 −n−1

)

, S−2
n =

(

n−2 0
0 n−2

)

.

Let A±
n := S−2

n P±
n . Then

A+
n =

(

n−2 n−1

0 0

)

, A−
n =

(

0 −n−1

0 n−2

)

and we have A+
n + A−

n = S−2
n , A+

nA
−
n = A−

nA
+
n = 0 and A±

n (Sn − λ)−1 =
(Sn − λ)−1A±

n for λ 6∈ Z \ {0}.
Now we define an operator A1 ∈ L(X) by choosing for each n either A+

n

or A−
n ; for A2 ∈ L(X) we take the complementary choice. More explicitly let

Λ1 ⊂ N and Λ2 = N \ Λ1. Set ǫjn = + if n ∈ Λj and ǫjn = − if n 6∈ Λj . Then
the operators

Aj = diag(A
ǫj
1

1 , A
ǫj
2

2 , A
ǫj
3

3 , . . . ), j = 1, 2, (11)

satisfy all conditions in Lemma 2.3. The closed projections Pj = S2Aj are un-

bounded and block diagonal with Pj = diag(P
ǫj
1

1 , P
ǫj
2

2 , P
ǫj
3

3 , . . . ). By Lemma 2.3,
the subspaces Xj = Im(Pj) are S-invariant. Clearly Xj is the closed linear hull
of the eigenvectors of S for the eigenvalues n ∈ Λj and the eigenvalues −n for
n 6∈ Λj . Note that X1 ⊕X2 6= X . We will investigate this example further in
Example 4.5.

Remark 2.5. Lemma 2.3 continues to hold if S2 and S−2 are replaced through-
out by S and S−1. That is, if there exist B1, B2 ∈ L(X) such that

B1 +B2 = S−1, B1B2 = B2B1 = 0,

Bj(S − λ)−1 = (S − λ)−1Bj , λ ∈ ̺(S), j = 1, 2,

6
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then we obtain closed complementary projections Pj = SBj where, in particular,
D(S) ⊂ D(Pj), Xj = Im(Pj) are S- and (S − λ)−1-invariant and (9) holds.

3 Dichotomous operators

Definition 3.1. Let X be a Banach space and let X± be closed subspaces with
X = X+ ⊕X−. An operator S(X → X) is called dichotomous with respect to
the decomposition X = X+ ⊕X− if

(i) iR ⊂ ̺(S),

(ii) X+ and X− are S-invariant,

(iii) σ(S|X+) ⊂ C+, σ(S|X−) ⊂ C−.

An operator S is called strictly dichotomous with respect to X = X+ ⊕X−

if, in addition,

(iv) ‖(S|X+ − λ)−1‖ is bounded on C−, ‖(S|X− − λ)−1‖ is bounded on C+.

A dichotomous operator S is called exponentially dichotomous if −S|X+ and
S|X− generate exponentially decaying semigroups.

Clearly, exponential dichotomy implies strict dichotomy. Note that all di-
chotomous operators appearing in [LT01, LRvdR02, TW14] are in fact strictly
dichotomous, see Remark 4.4.

Remark 3.2. For a given operator S, there may exist several decompositions
of X with respect to which it is dichotomous (Example 3.3), but there exists at
most one with respect to which it is strictly dichotomous (Lemma 3.7).

Example 3.3. Let X be a Banach space and let S(X → X) be any operator
satisfying σ(S) = ∅. Then evidently S is dichotomous with respect to the two
decompositions

X+ = X, X− = {0} (12)

and

X+ = {0}, X− = X. (13)

Examples for such operators are generators of nilpotent contraction semigroups,
e.g. shift semigroups on bounded intervals. In this case, the resolvent (S−λ)−1

is uniformly bounded on C+ and thus S is strictly dichotomous with respect to
the decomposition (13) but not with respect to (12).

To obtain an example of a dichotomous operator with non-empty spectrum,
we consider an operator given as the direct sum S = S0 ⊕ S1 ⊕ S2 on X =
X0 ⊕X1 ⊕X2 where the Sj are linear operators on Xj such that

σ(S0) = ∅, σ(S1) ⊂ {λ ∈ C : Reλ ≥ h}, σ(S2) ⊂ {λ ∈ C : Reλ ≤ −h}

7
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for some h > 0. Then S is dichotomous with respect to the decompositions

X+ = X1 ⊕X0, X− = X2 (14)

and

X+ = X1, X− = X2 ⊕X0. (15)

Remark 3.4. Even in the case of bisectorial operators, dichotomy is not suffi-
cient to determine the subspaces X± uniquely, see Section 8.1.

Remark 3.5. Let S be a dichotomous operator with respect to X = X+⊕X−.

(i) If x is a (generalised) eigenvector of S with eigenvalue λ ∈ C±, then
x ∈ X±.

(ii) Suppose that S has a complete system of generalised eigenvectors. Then
the spaces X± are uniquely determined by S as the closures of the span
of generalised eigenvectors of S whose eigenvalues belong to C±.

Lemma 3.6. (i) If S is dichotomous with respect to X = X+ ⊕ X−, then
D(S) = (D(S) ∩ X+) ⊕ (D(S) ∩ X−), and S admits the block matrix
representation

S =

(

S|X+ 0
0 S|X−

)

with respect to X = X+ ⊕X−. In particular, σ(S) = σ(S|X+)∪ σ(S|X−)
and the subspaces X± are (S − λ)−1-invariant for λ ∈ ̺(S).

(ii) If S is strictly dichotomous, then there exist h > 0 and M > 0 such that
{λ ∈ C : |Reλ| ≤ h} ⊂ ̺(S) and

M = sup
|Reλ|≤h

‖(S − λ)−1‖ < ∞. (16)

Proof. (i) is proved as in [TW14, Lemma 2.4]. If S is strictly dichotomous, then
a Neumann series argument implies that there exist h > 0 and M > 0 such that
λ ∈ ̺(S|X±) and ‖(S|X± − λ)−1‖ ≤ M whenever |Reλ| ≤ h. (ii) then follows
from the block matrix decomposition in (i).

We will now establish the uniqueness of the decomposition X = X+ ⊕X−

of a strictly dichotomous operator. To this end, let S(X → X) with iR ⊂ ̺(S).
We consider the two subspaces G+ and G− defined by

G± = {x ∈ X : (S − λ)−1x has a bounded analytic extension to C∓}. (17)

More explicitly, for x ∈ X we consider the analytic function

ϕx : ̺(S) → X, ϕx(λ) = (S − λ)−1x.

Then x ∈ G+ if and only if ϕx admits a bounded analytic extension to the
closed left half-plane

ϕ+
x : C− ∪ ̺(S) → X.

8
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Analogously, x ∈ G− if and only if ϕx admits a bounded analytic extension to
the closed right half-plane

ϕ−
x : C+ ∪ ̺(S) → X.

Lemma 3.7. Let S(X → X) with iR ⊂ ̺(S). Then:

(i) G+ ∩G− = {0}.

(ii) If S is strictly dichotomous for the decomposition X = X+ ⊕ X−, then
X± = G±. In particular, X± are uniquely determined.

Proof. (i): Let x ∈ G+ ∩ G−. Then ϕx(λ) = (S − λ)−1x can be extended to a
bounded analytic function on C which must be constant by Liouville’s theorem.
Hence (S − λ1)

−1x = (S − λ2)
−1x for all λ1, λ2 ∈ ̺(S) which is only the case if

̺(S) = ∅ or x = 0.
(ii): For x ∈ X+, strict dichotomy of S implies that ϕ+

x (λ) = (S|X+−λ)−1x
is a bounded analytic extension of (S − λ)−1x to C−. Hence x ∈ G+, i.e.
X+ ⊂ G+; similarly X− ⊂ G−. From X = X+ ⊕X− and G+ ∩ G− = {0} we
thus obtain X± = G±.

Remark 3.8. (i) The subspaces G± have been introduced in [BGK86b], but
with the roles of G+ and G− exchanged and the additional conditions
ϕ±
x (λ) ∈ D(S) and (S − λ)ϕ±

x (λ) = x. In the proof of Theorem 4.1 we
will show that if in addition to iR ⊂ ̺(S) an estimate (16) holds, then
ϕ±
x (λ) = (S|G± − λ)−1x and hence both conditions are automatically

fulfilled.

(ii) The estimate (16) also implies that the condition on the boundedness of
the extensions ϕ±

x in the definition of G± can be weakened: If the analytic
extensions of the resolvent to the left and right half-plane satisfy

‖ϕ+
x (λ)‖ ≤ C|λ|k, Reλ < −h,

and
‖ϕ−

x (λ)‖ ≤ C|λ|k, Reλ > h,

respectively, with some constants k ∈ N and C > 0, then they are bounded
by the Phragmén-Lindelöf theorem below.

Theorem 3.9 (Phragmén-Lindelöf [Con78, Corollary VI.4.2]). Let a ≥ 1/2 and
Σ = {z ∈ C : | arg z| < π

2a}. Consider an analytic function f : Σ → C which

is continuous on Σ. If there exist constants M,C > 0 and 0 < b < a such that

|f(z)| ≤ M for z ∈ ∂Σ and |f(z)| ≤ Ce|z|
b

for z ∈ Σ, then also |f(z)| ≤ M for
z ∈ Σ.

9
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4 Spectral splitting along the imaginary axis

In this section we prove our first spectral splitting result: If the resolvent of S is
uniformly bounded along the imaginary axis, then the subspaces G± defined in
(17) are closed invariant subspaces of S corresponding to the spectrum in C±.
Moreover we construct a pair of closed complementary projections P± onto G±.

We make the following assumption: there exists h > 0 such that

{λ ∈ C : |Reλ| ≤ h} ⊂ ̺(S) (18)

and
M := sup

|Reλ|≤h

‖(S − λ)−1‖ < ∞. (19)

For this assumption to hold it is sufficient that iR ⊂ ̺(S) and that the
resolvent (S−λ)−1 is uniformly bounded on iR. If (18) and (19) hold for h > 0,
then they also hold for some h′ > h with a possibly larger M . Both statements
follow from a standard Neumann series argument.

Note that by Lemma 3.6 (ii) every strictly dichotomous operator satisfies
(18) and (19).

For every S which satisfies (18) and (19) we can define the operators

A± =
±1

2πi

∫ ±h+i∞

±h−i∞

1

λ2
(S − λ)−1 dλ (20)

as in [BGK86b]. Note that by (19) the integrals converge in the uniform operator
topology, hence A± are well-defined bounded linear operators. Due to Cauchy’s
theorem, the integrals on the right hand side are independent of h as long as
(18) and (19) hold.

The next theorem extends the results from [BGK86b, Theorem 3.1]. In par-
ticular we obtain a spectral splitting also in the case of unbounded projections
P±.

Theorem 4.1. Let S(X → X) be a linear operator on the Banach space X
satisfying (18) and (19). Then:

(i) The subspaces G± defined in (17) are closed, S- and (S − λ)−1-invariant
and satisfy

σ(S) = σ(S|G+) ∪ σ(S|G−), (21)

σ(S|G±) = σ(S) ∩ C±, (22)

‖(S|G± − λ)−1‖ ≤ M for λ ∈ C∓, (23)

where M is given by (19).

(ii) Let A± as in (20). Then the operators P± = S2A± are closed comple-
mentary projections satisfying D(P+) = D(P−) = G+ ⊕G− and

G± = Im(P±) = ker(A∓).

10
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Hence P± are the complementary projections corresponding to the direct
sum G+ ⊕G− ⊂ X.

(iii) D(S2) ⊂ D(P±) and

P±x =
±1

2πi

∫ ±h+i∞

±h−i∞

1

λ2
(S − λ)−1S2x dλ, x ∈ D(S2). (24)

Proof. We first show (ii). In [BGK86b] it has been shown that A+A− =
A−A+ = 0 and A+ + A− = S−2. For the convenience of the reader we sketch
the proof. Using the resolvent identity and Fubini’s theorem, we get

A+A− =

∫ h+i∞

h−i∞

∫ −h+i∞

−h−i∞

1

λ2µ2
(S − λ)−1(S − µ)−1 dµ dλ

=

∫ h+i∞

h−i∞

(∫ −h+i∞

−h−i∞

dµ

µ2(λ− µ)

)

1

λ2
(S − λ)−1 dλ

−
∫ −h+i∞

−h−i∞

(∫ h+i∞

h−i∞

dλ

λ2(λ − µ)

)

1

µ2
(S − µ)−1 dµ

and hence A+A− = 0 since the integrals in parentheses vanish. Clearly (S−λ)−1

commutes with A±, so A+ and A− commute too and A−A+ = 0. By Cauchy’s
theorem we obtain

A+ +A− =
1

2πi

∫

Γ

1

λ2
(S − λ)−1 dλ = S−2

where Γ is a small positively oriented circle around the origin. Therefore, by
Lemma 2.3, P± = S2A± are closed complementary projections with Im(P±) =
ker(A∓).

We show next that G± = ker(A∓). Let x ∈ G+. Then (S − λ)−1x has a
bounded analytic extension ϕ+

x to C−. Consequently

A−x =
−1

2πi

∫ −h+i∞

−h−i∞

1

λ2
(S − λ)−1x dλ = 0

by Cauchy’s theorem. We thus have G+ ⊂ ker(A−). To show the converse
inclusion, let Re z < −h and consider the bounded operator

R−(z) =
1

2πi

∫ −h+i∞

−h−i∞

z2

λ2(λ− z)
(S − λ)−1 dλ. (25)

From (S−z)(S−λ)−1 = I+(λ−z)(S−λ)−1 and the closedness of S we obtain
Im(R−(z)) ⊂ D(S) and

(S − z)R−(z) =
1

2πi

∫ −h+i∞

−h−i∞

z2

λ2(λ − z)
dλ− z2A− = I − z2A−;

11
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thus (S−z)R−(z) = I on ker(A−). By Lemma 2.3, ker(A−) is S- and (S−λ)−1-
and hence also R−(z)-invariant. Since (S − z)R−(z) = R−(z)(S − z) on D(S),
we conclude that C− ⊂ ̺(S| ker(A−)) and for all x ∈ ker(A−)

(S| ker(A−)− z)−1x =

{

(S − z)−1x, |Re z| ≤ h,

R−(z)x, Re z < −h.
(26)

The definition of R−(z) in conjunction with (19) implies that ‖R−(z)‖ ≤ C|z|2
for Re z < −h with some constant C; as remarked earlier, we may replace h by
h/2 in (25). Together with (19), the Phragmén-Lindelöf Theorem 3.9 yields

‖(S| ker(A−)− z)−1‖ ≤ M, z ∈ C−. (27)

As a consequence, if x ∈ ker(A−), then (S| ker(A−)−z)−1x is a bounded analytic
extension of (S − z)−1x to C− and hence x ∈ G+. We have thus shown that
G+ = ker(A−) and the proof of G− = ker(A+) is analogous. In particular,
we proved σ(S|G±) ⊂ C±, (23) and D(P+) = D(P−) = Im(P+) ⊕ Im(P−) =
G+ ⊕G−. All remaining statements in (i) and (iii) follow from Lemma 2.3.

Corollary 4.2. Suppose S(X → X) satisfies (18) and (19). Then the following
are equivalent:

(i) S is strictly dichotomous;

(ii) X = G+ ⊕G−;

(iii) P+ ∈ L(X).

In this case X = G+ ⊕G− is the corresponding spectral decomposition.

Proof. In Lemma 3.7 we have already seen that strict dichotomy implies X± =
G± and hence X = G+ ⊕G−. Conversely, if X = G+ ⊕G−, then Theorem 4.1
implies that S is strictly dichotomous for the choiceX± = G±. Finally (ii)⇔(iii)
follows from D(P+) = G+ ⊕G− and the closed graph theorem.

In Theorem 4.1 we did not assume that S is densely defined. If it is, then
the projections P± are densely defined too, and we obtain a nice criterion for
strict dichotomy.

Corollary 4.3. Let S(X → X) be densely defined and satisfy (18) and (19).
Then G+ ⊕G− ⊂ X is dense and the closed projections P± are densely defined.
Moreover, the following assertions are equivalent:

(i) S is strictly dichotomous;

(ii) P+ is bounded on some dense subspace of D(P+);

(iii) the operator P defined by

Px =
1

2πi

∫ h+i∞

h−i∞

1

λ2
(S − λ)−1S2x dλ, x ∈ D(S2), (28)

is bounded on some dense subspace of D(S2).
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In this case P+ is the unique bounded extension of P to X.

Proof. The first assertions are immediate from D(S2) ⊂ D(P±) = G+ ⊕G−.
(i)⇒(ii): This follows from Corollary 4.2.
(ii)⇒(i): If P+ is bounded on a dense subspace, then the closedness of P+

implies that D(P+) = X . Thus P+ ∈ L(X) and S is strictly dichotomous.
(ii)⇔(iii) and the final assertion: This is clear since (24) implies that P is a

restriction of P+.

Remark 4.4. Theorem 4.1 and Corollaries 4.2 and 4.3 generalise and extend
the results from [BGK86b, Theorem 3.1].

(i) Probably the main result of [BGK86b, Theorem 3.1] on spectral splitting
for densely defined S is that if the operator P in (28) is bounded on
D(S2), then S is dichotomous. Corollary 4.3 shows that the boundedness
on some dense subspace of D(S2) is sufficient and that S is even strictly
dichotomous in this case. Note that since [LT01, LRvdR02, TW14] all use
[BGK86b, Theorem 3.1] to prove dichotomy, the corresponding operators
in those papers are in fact strictly dichotomous.

(ii) We have shown that also in the non-dichotomous case, i.e., when P± are
unbounded, G± are closed invariant subspaces with σ(S|G±) ⊂ C± and
σ(S|G+)∪σ(S|G−) = σ(S). In [BGK86b] the closedness and S-invariance
of G± has only been obtained for exponentially dichotomous S.

(iii) Using the Phragmén-Lindelöf theorem, we showed G± = ker(A∓) whereas
in [BGK86b] only the inclusion G± ⊂ ker(A∓) was obtained.

(iv) We showed that P± as defined in Theorem 4.1 (ii) are closed projections
even if they are unbounded. This is used e.g. in Corollary 4.3 where it is
sufficient to check boundedness on any dense subspace. In Section 7 this
allows us to prove perturbation results under weaker conditions on the
domains of the involved operators.

(v) In [BGK86b] it is always assumed that S is densely defined. Theorem 4.1
and Corollary 4.2 are valid also if S is not densely defined.

Example 4.5. We continue Example 2.4. A straightforward calculation shows
that supλ∈iR ‖(S − λ)−1‖ ≤ 3 and hence (18) and (19) are satisfied. From
Theorem 4.1, in particular (20), it follows that A± and P± are block diagonal
and given by

A+ = diag(A+
1 , A

+
2 , . . . ), A− = diag(A−

1 , A
−
2 , . . . ),

P+ = diag(P+
1 , P+

2 , . . . ), P− = diag(P−
1 , P−

2 , . . . ),

where A±
n and P±

n are as in Example 2.4. P+ and P− are unbounded and S is
not dichotomous, compare Remark 3.5.

13
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Remark 4.6. Since P± are closed operators with D(S2) ⊂ D(P±), their restric-
tions P±|D(S2) are bounded in the graph norm of S2. In the almost bisectorial
case, we even have D(S) ⊂ D(P±), and therefore P±|D(S) are bounded in
the graph norm of S (see Theorem 5.6). In the general case it is not clear if
D(S) ⊂ D(P±) and the restriction P±|D(S) is bounded.

5 Bisectorial and almost bisectorial operators

In this section we investigate the spectral splitting of bisectorial and almost bi-
sectorial operators. Their resolvent norm is not only bounded on the imaginary
axis as assumed in Section 4, it even decays like |λ|−β .

For 0 ≤ θ ≤ π we define the sectors

Σθ = {z ∈ C : | arg z| ≤ θ}. (29)

Let us first recall the notion of sectorial and almost sectorial operators, see e.g.
[Haa06, PS02].

Definition 5.1. A linear operator S(X → X) is called sectorial if there exist
0 < θ < π and M > 0 such that σ(S) ⊂ Σθ and

‖(S − λ)−1‖ ≤ M

|λ| for λ ∈ C \ Σθ. (30)

S is called almost sectorial if there exist 0 < β < 1, 0 < θ < π and M > 0 such
that σ(S) ⊂ Σθ and

‖(S − λ)−1‖ ≤ M

|λ|β for λ ∈ C \ Σθ. (31)

Remark 5.2. There are subtle differences in the behaviour of sectorial and
almost sectorial operators:

(i) If S is sectorial with angle θ, then (30) also holds with a smaller angle
0 < θ′ < θ, though the constant M may be bigger for θ′ as can be shown
by a simple Neumann series argument.

(ii) If S is almost sectorial, then 0 ∈ ̺(S) (see e.g. [PS02, Remark 2.2]).

(iii) If S is sectorial and 0 ∈ ̺(S), then S is almost sectorial. This is true
because ‖(S−λ)−1‖ is bounded in a neighbourhood of zero, and we easily
obtain (31) from (30) (with a different constant M).

Note that (i) is not necessarily true for almost sectorial operators and that
sectorial operators may have zero in their spectrum.

If we require the resolvent estimates only on the imaginary axis and allow
spectrum on both sides of it, we obtain the definition of bisectorial and almost
bisectorial operators.

14
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θ

Ωθ

σ(S)

Ω

σ(S)

Figure 1: Location of the spectrum of a bisectorial and an almost bisectorial
operator.

Definition 5.3. An operator S(X → X) is called bisectorial if iR \ {0} ⊂ ̺(S)
and

‖(S − λ)−1‖ ≤ M

|λ| , λ ∈ iR \ {0}. (32)

S is called almost bisectorial if iR \ {0} ⊂ ̺(S) and there exists 0 < β < 1 such
that

‖(S − λ)−1‖ ≤ M

|λ|β , λ ∈ iR \ {0}. (33)

Bisectorial operators have been studied e.g. in [AZ10, TW14].

The following results are analogous to the sectorial case. They imply that
almost bisectorial operators and bisectorial operators with 0 ∈ ̺(S) fulfil the
assumptions of Theorem 4.1.

Remark 5.4. (i) If S is bisectorial, then there exists 0 < θ < π/2 such that
the bisector

Ωθ = C \
(

Σθ ∪ (−Σθ)
)

= {λ ∈ C : θ < | argλ| < π − θ}

belongs to ̺(S) and (32) holds on Ωθ, see Figure 1.

(ii) If S is almost bisectorial, then 0 ∈ ̺(S).

(iii) If S is bisectorial and 0 ∈ ̺(S), then S is almost bisectorial.

(iv) If S is almost bisectorial or bisectorial with 0 ∈ ̺(S), then S satisfies (18)
and (19) from Section 4.

Similar to Remark 5.4 (i), the resolvent estimate of an almost bisectorial
operator actually holds inside a whole region around iR:

15
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Lemma 5.5. Let S(X → X) be almost bisectorial with constants 0 < β < 1
and M > 0 as in (33). Then for every α < 1/M the parabola shaped region

Ω = {a+ ib ∈ C \ {0} : |a| ≤ α|b|β}

belongs to the resolvent set, Ω ⊂ ̺(S), and (33) holds for all λ ∈ Ω (typically
with a larger constant M), see Figure 1.

Proof. Let λ = a+ ib ∈ Ω. Then the identity

S − λ =
(

I − a(S − ib)−1
)

(S − ib)

and the estimate

‖a(S − ib)−1‖ ≤ M |a|
|b|β ≤ αM < 1

imply λ ∈ ̺(S) and thus Ω ⊂ ̺(S). Moreover

‖(S − λ)−1‖ ≤ 1

1− ‖a(S − ib)−1‖‖(S − ib)−1‖ ≤ M

(1− αM)|b|β .

Now if also |b| ≥ 1, then |λ| ≤ α|b|β + |b| ≤ (1 + α)|b| and hence

‖(S − λ)−1‖ ≤ M(1 + α)β

(1 − αM)|λ|β , λ = a+ ib ∈ Ω, |b| ≥ 1.

Since 0 ∈ ̺(S) by Remark 5.4(ii) and (S−λ)−1 is uniformly bounded on compact
subsets of ̺(S), the proof is complete.

A similar result can be shown for an almost sectorial operator S: Let θ as in
Definition 5.1. Then ̺(S) contains a parabola around every ray {reiϕ : r ≥ 0}
with θ ≤ |ϕ| ≤ π.

In the rest of this section we will investigate the spectral splitting properties
of bisectorial and almost bisectorial operators. Compared with Theorem 4.1,
we obtain simplified formulas for the projections P± = S2A± and show that the
restrictions S|G± to the spectral subspaces are sectorial and almost sectorial,
respectively.

For an almost bisectorial operator S let

B± =
±1

2πi

∫ ±h+i∞

±h−i∞

1

λ
(S − λ)−1 dλ (34)

with h > 0 small enough. By (33) and Lemma 5.5 the integrals converge
in the uniform operator topology. Hence B± are well-defined bounded linear
operators and, due to Cauchy’s theorem, the integrals on the right hand side
are independent of h for h small enough.

Theorem 5.6. Let S(X → X) be almost bisectorial and let P± as in Theo-
rem 4.1. Then:
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(i) P± = SB±, D(S) ⊂ D(P±) and

P±x =
±1

2πi

∫ ±h+i∞

±h−i∞

1

λ
(S − λ)−1Sxdλ, x ∈ D(S). (35)

(ii) ±S|G± are almost sectorial with angle θ = π/2 and unchanged constants
M,β.

(iii) Let S be bisectorial with 0 ∈ ̺(S) and let θ as in Remark 5.4 (i). Then
±S|G± are sectorial with angle θ and unchanged constant M .

Proof. (i): Using the resolvent identity (S − λ)−1 = S−1 + λ(S − λ)−1S−1 we
obtain from (20)

A± =
±1

2πi

∫ ±h+i∞

±h−i∞

1

λ2
S−1 dλ+

±1

2πi

∫ ±h+i∞

±h−i∞

1

λ
(S − λ)−1S−1 dλ = B±S

−1

because the first integral vanishes by Cauchy’s theorem. Moreover S−1B± =
B±S

−1. Therefore P± = S2A± = S2S−1B± = SB±. For x ∈ D(S) we get
B±Sx = SB±x and in particular x ∈ D(P±).

(ii): Consider λβ = exp(β logλ) where log is a branch of the logarithm on
C−. Then the mapping λ 7→ λβ is analytic on C− and continuous on C−.
The almost bisectoriality of S yields ‖λβ(S|G+ − λ)−1‖ ≤ M for λ ∈ iR since
(S|G+ − λ)−1 = (S − λ)−1|G+. Here we used that 0 ∈ ̺(S) by Remark 5.4 (ii).
Since ‖(S|G+−λ)−1‖ is bounded on C− by Theorem 4.1, the Phragmén-Lindelöf
theorem implies ‖λβ(S|G+ − λ)−1‖ ≤ M for λ ∈ C−. The proof for S|G− is
analogous. With β = 1 we obtain (iii).

Statements (ii) and (iii) of the Theorem remain true when S|G± are replaced
by the operators SM± from Section 6 as follows from Lemma 6.1 (iii).

Remark 5.7. The operators B± satisfy the relations

B+ +B− = S−1, B+B− = B−B+ = 0.

These identities can be obtained either from the corresponding relations for A±

via A± = S−1B± = B±S
−1 or from (34) by direct computation. The latter

approach, together with Remark 2.5, yields an alternative proof of Theorem 4.1
for almost bisectorial operators. In the bisectorial case, this was used in [AZ10].
There the sectoriality of the spectral parts S|G± was obtained ([AZ10, p. 215]),
but not the S-invariance of G± and the decomposition (21) of the spectrum.

To illustrate the situation of Theorem 5.6, we consider an almost bisectorial
operator which is not dichotomous and whose projections P± are (therefore)
unbounded. This is a variant of Example 2.4 and 4.5.

Example 5.8. Let 0 < p < 1 and consider the block diagonal operator S on
X = l2 given by

S = diag(S1, S2, . . . ), Sn =

(

n 2n1+p

0 −n

)

.

17
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Direct calculations similar to Example 2.4 yield limn→∞ ‖(Sn−λ)−1‖ = 0 when-
ever λ 6∈ Z\{0}. Hence σ(S) = Z\{0} and S has a compact resolvent. Moreover,

‖(S − λ)−1‖ ≤ M

|λ|1−p
, λ ∈ iR \ {0},

i.e., S is almost bisectorial. The spectral projections for Sn corresponding to
the eigenvalues n and −n, respectively, are

P+
n =

(

1 np

0 0

)

, P−
n =

(

0 −np

0 1

)

.

Consequently, P± = diag(P±
1 , P±

2 , . . . ) are unbounded and S is not dichoto-
mous, compare Remark 3.5.

If in the above example we choose p = 0, then S becomes bisectorial and
strictly dichotomous. In general however, bisectoriality (with 0 ∈ ̺(S)) does not
imply dichotomy. A counterexample was given in [MY90] (see Example 8.2).

The identity (35) for the projections P± from Theorem 5.6 can be rear-
ranged to yield another integral representation. In the bisectorial case, this
representation has been obtained and used extensively in [LT01, TW14].

Corollary 5.9. Let S(X → X) be almost bisectorial. Then:

(i) For every x ∈ D(S),

2P+x− x = P+x− P−x =
1

πi

∫ i∞′

−i∞

(S − λ)−1x dλ; (36)

in particular, the integral exists for all x ∈ D(S). Here the prime denotes
the Cauchy principal value at infinity.

(ii) If, in addition, S is densely defined and there exists a dense subspace
D ⊂ D(S) such that

∫ i∞′

−i∞

(S − λ)−1x dλ, x ∈ D,

defines a bounded operator, then P+ is bounded and hence S is strictly
dichotomous.

Proof. (i) From (35) we get for x ∈ D(S),

P+x =
1

2πi

∫ h+i∞

h−i∞

1

λ
(S − λ)−1Sxdλ =

1

2πi

∫ h+i∞

h−i∞

(

1

λ
x+ (S − λ)−1x

)

dλ

=
1

2
x+

1

2πi

∫ h+i∞′

h−i∞

(S − λ)−1x dλ =
1

2
x+

1

2πi

∫ i∞′

−i∞

(S − λ)−1x dλ.

Note that in the last step we used Cauchy’s integral theorem and (33). The
assertion follows from x = P+x+ P−x for x ∈ D(P+).

(ii) The assumption together with (i) implies that P+ is bounded on the
dense subspace D. Corollary 4.3 yields the claim.
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Remark 5.10. In [LT01] the representation (36) was derived under the weaker
condition limt→±∞ ‖(S−it)−1‖ = 0 but with the additional assumption that the
integral in (36) exists for every x ∈ X . By the uniform boundedness principle,
the projections P± are then bounded and S is strictly dichotomous.

Remark 5.11. An operator S is called sectorially dichotomous if it is dichoto-
mous and S|X+ and −S|X− are sectorial operators with angle θ ≤ π/2. Note
that sectorial dichotomy implies bisectoriality [TW14, Lemma 2.12] as well as
strict dichotomy. A question asked in [TW14] is the following: Is every bisec-
torial and dichotomous operator also sectorially dichotomous? If we assume
strict dichotomy, the answer is yes since in this case ±S|G± are sectorial by
Theorem 5.6 and strict dichotomy implies G± = X±.

The stronger assumption of strict dichotomy seems reasonable, for otherwise
the spaces X± are not unique. Moreover the main theorems in [TW14] actually
yield strictly dichotomous operators, compare Remark 4.4.

6 The subspaces M±

Recall that the subspaces G± are S- and (S − λ)−1-invariant (Theorem 4.1).
However, even if S is densely defined, the restrictions of S to G± do not need
to be densely defined, see Example 8.3. Let

M± := Im(A±) (37)

and let SM± be the part of S in M±, i.e. S is the restriction of S to D(SM±) =
{x ∈ D(S) ∩M± : Sx ∈ M±}. In [BGK86b] it is shown that D(SM±) is dense
in M± if S is densely defined, cf. Lemma 6.2. In the following lemma we do not
assume density of D(S).

Lemma 6.1. Let S(X → X) be such that (18) and (19) hold. Then:

(i) M± ⊂ G±.

(ii) M± is (S − λ)−1-invariant for λ ∈ ̺(S) and D(SM±) = S−1(M±).

(iii) M± is (S|G± − λ)−1-invariant for λ ∈ ̺(S|G±),

σ(SM±) = σ(S|G±),

(SM± − λ)−1x = (S|G± − λ)−1x, x ∈ M±, λ ∈ ̺(SM±).

Proof. (i) follows from Im(A±) ⊂ ker(A∓) = G± and the closedness of G±.
(ii) From (S − λ)−1A± = A±(S − λ)−1 it follows that Im(A±) and hence

M± are (S − λ)−1-invariant. In particular S−1(M±) ⊂ M±, which implies
D(SM±) = S−1(M±).

(iii) Let us prove the invariance of M+. Recall that ̺(S|G+) = ̺(S) ∪ C−.
For λ ∈ ̺(S) we have (S|G+ − λ)−1 = (S − λ)−1|G+, so the invariance of M±

follows from (ii) in this case. For λ ∈ C−, the invariance follows from (26). The
proof for M− is analogous.
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The invariance property of M± immediately yields ̺(S|G±) ⊂ ̺(SM±) and
(SM± − λ)−1x = (S|G± − λ)−1x for x ∈ M± and λ ∈ ̺(S|G±). Now

σ(S) = σ(S|G+) ∪̇σ(S|G−) ⊃ σ(SM+
) ∪̇σ(SM−

).

So to prove σ(S|G±) ⊂ σ(SM±
) it suffices to show σ(S) ⊂ σ(SM+

) ∪ σ(SM−
)

or, equivalently, ̺(SM+
) ∩ ̺(SM−

) ⊂ ̺(S). The proof is similar to the one for
(9) in Lemma 2.3: If λ ∈ ̺(SM+) ∩ ̺(SM−) and (S − λ)x = 0, then x ∈ D(S2)
and hence

x = y+ + y− with y± = P±x = A±S
2x ∈ Im(A±) ⊂ M±.

In fact y± ∈ D(SM±) since x ∈ D(S3) and Sy± = A±S
3x. Consequently

(S − λ)x = (SM+ − λ)y+ + (SM− − λ)y− = 0

and thus y+ = y− = x = 0. The surjectivity of S−λ is obtained by considering
T = (SM+ − λ)−1A+ + (SM− − λ)−1A− and noting (S − λ)S2T = I.

The following result has been obtained as part of [BGK86b, Theorem 3.1
and Lemma 3.3]. For the convenience of the reader we include the proof.

Lemma 6.2. If S(X → X) is densely defined and satisfies (18) and (19), then
M+ ⊕M− ⊂ X is dense and the operators SM± are densely defined.

Proof. From S−2 = A++A− we obtain D(S2) ⊂ Im(A+)⊕Im(A−) ⊂ M+⊕M−

and thus the first assertion holds. For the second one note that S−1(Im(A±)) =
A±(D(S)) is dense in Im(A±) and hence in M±, and that S−1(Im(A±)) ⊂
S−1(M±) = D(SM±).

Despite the invariance of M± under (S − λ)−1, and the invariance of G±

under S and (S − λ)−1, the subspaces M± are in general not invariant under
S itself; that is, the inclusion S(D(S) ∩ M±) ⊂ M± does not need to hold.
For densely defined operators S the S-invariance of M± can be characterised as
follows.

Theorem 6.3. Let S(X → X) be densely defined satisfying (18) and (19).
Then:

(i) The following equivalences hold:

S|G+ densely defined ⇐⇒ M+ = G+ ⇐⇒ M+ is S-invariant,

S|G− densely defined ⇐⇒ M− = G− ⇐⇒ M− is S-invariant.

In particular, SM± = S|G± if M± = G±.

(ii) If P+ (or equivalently P−) is bounded, then M± = G±.
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(iii) Suppose there exist Qn ∈ L(X), n ∈ N, such that Im(Qn) ⊂ D(S),

Qn(S − λ)−1 = (S − λ)−1Qn for all λ ∈ ̺(S)

and
Qnx → x for all x ∈ X.

Then M± = G±.

Proof. (i) From G+ = Im(P+) and P+ = S2A+ we obtain

D(S2) ∩G+ = S−2(G+) = Im(A+) ⊂ M+. (38)

Suppose first that S|G+ is densely defined. Since 0 ∈ ̺(S|G+), (S|G+)
2 is

densely defined too, i.e. D(S2) ∩ G+ ⊂ G+ is dense. Taking closures in (38),
we thus obtain G+ ⊂ M+ and hence G+ = M+. Now let M+ be S-invariant.
From (38) we see S−2(G+) ⊂ D(S2) ∩M+, hence, by the S-invariance of M+,
we obtain G+ ⊂ M+, i.e. G+ = M+. The other implications are trivial and the
case of M−, G− is analogous.

(ii) If P± are bounded, then X = G+ ⊕G−. Since M± are closed, it follows
thatM+⊕M− is closed. By Lemma 6.2 it is dense inX , so we obtainM+⊕M− =
X and hence M± = G±.

(iii) The assumption that Qn commutes with the resolvent implies QnA± =
A±Qn and consequently Qnx ∈ ker(A−) = G+ for any x ∈ G+ = ker(A−).
Since additionally Qnx ∈ D(S) and Qnx → x, we obtain that G+∩D(S) is dense
in G+ and thus M+ = G+ by (i). The proof of M− = G− is analogous.

Remark 6.4. The conditions of Theorem 6.3(iii) hold for example if X is a
Hilbert space which can be decomposed into an orthogonal direct sum of finite-
dimensional subspaces Xk where each Xk is spanned by a set of eigenvectors
of S. Then Qn can be chosen as the orthogonal projection onto the subspace
X1⊕· · ·⊕Xn. Block diagonal operators as in Example 2.4 admit such orthogonal
decompositions.

Although for a general densely defined operator S its restrictions S|G± may
fail to be densely defined, they always are if S is bisectorial with 0 ∈ ̺(S).

Lemma 6.5. Let S(X → X) be densely defined and bisectorial with 0 ∈ ̺(S).
Then S|G± are densely defined and M± = G±.

Proof. Since S is densely defined and ‖it(it − S)−1‖ is bounded for t ∈ R, the
identity

x = lim
t→∞

it(it− S)−1x

holds for all x ∈ X , compare [Haa06, Proposition 2.1.1]. Moreover, (it−S)−1x ∈
G±∩D(S) for x ∈ G±, therefore S|G± are densely defined and hence M± = G±

by Theorem 6.3.
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Remark 6.6. If X is reflexive, then every sectorial (or bisectorial) operator is
automatically densely defined, see e.g. [Haa06, Proposition 2.1.1]. From Theo-
rem 5.6 we already know that if S is bisectorial, then the restrictions ±S|G±

are sectorial; so they are densely defined if X is reflexive. The previous lemma
ensures that this is true also in non-reflexive spaces.

Finally we show that the spaces M± can be expressed in terms of the oper-
ators B± from (34) if S is densely defined and almost bisectorial.

Lemma 6.7. Let S(X → X) be densely defined and almost bisectorial. Let A±

and B± be the operators defined in (20) and (34). Then

M± = Im(A±) = Im(B±).

Proof. Since B± is bounded and D(S) is dense,

Im(A±) = Im(B±S−1) = Im(B±|D(S)) = Im(B±).

7 Perturbation results

Our first perturbation result generalises [BGK86b, Theorem 5.1] where the
stronger assumptions ε = 1, D(T 2) ⊂ D(S2) and exponential dichotomy of
S were required.

Theorem 7.1. Let S(X → X) be a densely defined and strictly dichotomous
operator on the Banach space X. Suppose that T (X → X) is densely defined
and that there exist h > 0, ε > 0 such that the following conditions hold:

(i) {λ ∈ C : |Reλ| ≤ h} ⊂ ̺(S) ∩ ̺(T );

(ii) sup|Reλ|≤h |λ|1+ε‖(S − λ)−1 − (T − λ)−1‖ < ∞;

(iii) D(S2) ∩D(T 2) ⊂ X dense.

Then T is strictly dichotomous too.

Proof. Since S is strictly dichotomous, (S − λ)−1 is uniformly bounded for
|Reλ| ≤ h′ by (16) for some 0 < h′ ≤ h. Condition (ii) implies that (T − λ)−1

is also uniformly bounded for |Reλ| ≤ h′. Let PS
+ , PT

+ be the projections
corresponding to the spectrum in C+ of S and T , respectively. Using (24),

1

λ2
(S − λ)−1S2 =

1

λ2
S +

1

λ
(S − λ)−1S =

1

λ2
S +

1

λ
+ (S − λ)−1,

and the respective identity for T , we obtain for x ∈ D(S2) ∩ D(T 2),

PS
+x− PT

+x =
1

2πi

∫ h′+i∞

h′−i∞

(

1

λ2
(Sx− Tx) +

(

(S − λ)−1x− (T − λ)−1x
)

)

dλ

=
1

2πi

∫ h′+i∞

h′−i∞

(

(S − λ)−1x− (T − λ)−1x
)

dλ.
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By (ii) the last integral defines a bounded linear operator. Since PS
+ is bounded,

PT
+ is bounded on the dense subspace D(S2)∩D(T 2), and therefore T is strictly

dichotomous by Corollary 4.3.

Remark 7.2. In [BGK86b, Theorem 5.1] it has been shown that, if S is expo-
nentially dichotomous then so is T . This implication remains true in our more
general setting, where we require (ii) for some ε > 0 instead of ε = 1, and (iii)
instead of D(T 2) ⊂ D(S2). The proof of the exponential dichotomy of T is
largely identical to the one in [BGK86b].

If the operator S is almost bisectorial, condition (iii) of Theorem 7.1 can be
relaxed:

Theorem 7.3. Let S(X → X) be densely defined, almost bisectorial and strictly
dichotomous. Let T (X → X) be a densely defined operator and ε > 0 such that
the following conditions hold:

(i) iR ⊂ ̺(T );

(ii) supλ∈iR |λ|1+ε‖(S − λ)−1 − (T − λ)−1‖ < ∞;

(iii) D(S) ∩ D(T ) ⊂ X dense.

Then T is also strictly dichotomous and almost bisectorial with the same expo-
nent β in the resolvent estimate (33). In particular, if S is bisectorial, then so
is T .

Proof. Condition (ii) immediately implies that T satisfies an estimate (33) with
the same β as for S. By Corollary 5.9 it suffices to show that

∫ i∞′

−i∞

(T − λ)−1x dλ

defines a bounded linear operator on D(S) ∩ D(T ). Since S is strictly dichoto-
mous, the corresponding integral for S is bounded on D(S) by Corollary 5.9 (i).
On the other hand, the difference of both integrals

∫ i∞′

−i∞

(

(S − λ)−1 − (T − λ)−1
)

dλ

converges in the uniform operator topology by (ii) and thus defines a bounded
linear operator.

Remark 7.4. It is especially the relatively weak condition (iii) which makes
Theorem 7.1 and 7.3 more generally applicable than comparable theorems from
[BGK86b, LT01, TW14] where D(T 2) ⊂ D(S2) or D(T ) = D(S) was assumed.
A situation where this generality is needed is the Hamiltonian operator matrix
defined via extrapolation spaces in Example 8.8; in particular D(T ) 6= D(S)
there.
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We give an example showing that the unusual condition D(T 2) ⊂ D(S2)
from [BGK86b] may fail even if D(S) = D(T ).

Example 7.5. Let S be an unbounded selfadjoint operator with strictly positive
pure point spectrum, for instance the multiplication operator

S(l2 → l2), S(xn)n∈N = (nxn)n∈N

with domain D(S) = {(xn)n∈N ∈ l2 : (nxn)n∈N ∈ l2} $ l2. We take any
w ∈ l2 \D(S) and define the bounded operator R on l2 by Rx = Pwx where Pw

is the orthogonal projection onto w. Set T := S + R. Then D(T ) = D(S) and
T is selfadjoint. On the other hand,

x ∈ D(S2) ∩ D(T 2) =⇒ x ∈ D(S2) ∧ Tx = Sx+Rx ∈ D(T ) = D(S)

=⇒ x ∈ D(S2) ∧ Rx ∈ D(S).

Since Im(R) ∩ D(S) = {0} by construction, it follows that Rx = 0, hence
x ∈ span{w}⊥. Consequently D(S2)∩D(T 2) ⊂ span{w}⊥ and so D(S2)∩D(T 2)
cannot be dense in l2. Therefore

D(S2) $ D(S2) ∩ D(T 2) and D(T 2) $ D(S2) ∩ D(T 2)

since S2 and T 2 are densely defined, and we obtain D(T 2) 6⊂ D(S2) as well as
D(S2) 6⊂ D(T 2). Note that S and T satisfy all conditions of Theorem 7.3, but
not (iii) from Theorem 7.1.

One situation, where condition (ii) in Theorem 7.3 is fulfilled, is the case
of so-called p-subordinate perturbations. The p-subordinate perturbations of
bisectorial operators, in particular the change of their spectrum, have been
studied in [TW14].

Definition 7.6. Let S(X → X), R(X → X) be linear operators. R is called
p-subordinate to S with 0 ≤ p ≤ 1 if D(S) ⊂ D(R) and there exists c > 0 such
that

‖Rx‖ ≤ c‖x‖1−p‖Sx‖p, x ∈ D(S).

Corollary 7.7. Let S(X → X) be densely defined, almost bisectorial with ex-
ponent β > 1/2 and strictly dichotomous. Let R be p-subordinate to S with
p < 2β− 1 and let T = S+R. If iR ⊂ ̺(T ), then T is strictly dichotomous and
almost bisectorial with the same exponent β. Moreover, if S is bisectorial, then
so is T .

Proof. First note that D(T ) = D(S) since D(S) ⊂ D(R). Hence condition (iii)
in Theorem 7.3 is satisfied and it remains to show that (ii) holds too. Consider
λ ∈ iR and the identity

T − λ = (I +R(S − λ)−1)(S − λ).
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Using p-subordination and almost bisectoriality, we get

‖R(S − λ)−1‖ ≤ c‖(S − λ)−1‖1−p‖S(S − λ)−1‖p

≤ c
M1−p

|λ|(1−p)β

(

1 +M |λ|1−β
)p ≤ c̃

|λ|(1−β)p

|λ|(1−p)β
=

c̃

|λ|β−p

with M as in (33), c̃ > 0 appropriate, and |λ| large. Note that p < 2β − 1 ≤ β.
Hence, for λ ∈ iR, |λ| large, this implies λ ∈ ̺(T ) and

‖(T − λ)−1‖ ≤ 2‖(S − λ)−1‖ ≤ 2M

|λ|β .

Consequently,

‖(S − λ)−1 − (T − λ)−1‖ ≤ ‖(T − λ)−1‖‖R(S − λ)−1‖ ≤ 2Mc̃

|λ|2β−p
,

where 2β − p > 1.

Remark 7.8. In the bisectorial case, the previous result has essentially been
obtained in [TW14, Corollary 3.10], with the assumption that S is sectorially
dichotomous and the conclusion that T is dichotomous, compare Remarks 4.4
and 5.11.

8 Examples

8.1 Non-uniqueness of the decomposition X = X+ ⊕X−

In Example 3.3 we saw that the decomposition of a dichotomous operator is not
necessarily unique. The following example shows that this is even possible for
bisectorial operators on Hilbert spaces.

A linear operator S(X → X) on a Hilbert space X is called accretive if

C− ⊂ ̺(S) and ‖(S − λ)−1‖ ≤ 1

|Reλ| , Reλ < 0.

For instance, if S is the generator of a nilpotent contraction semigroup on X ,
then −S is accretive with σ(S) = ∅.

Every accretive operator S has a square root S1/2 which is sectorial with any
angle θ > π/4, see [Haa06, Proposition 3.1.2]. In particular, S1/2 is bisectorial.

Example 8.1. Let X be a Hilbert space and let S(X → X) be an accretive
operator with σ(S) = ∅. Then S − λ2 = (S1/2 − λ)(S1/2 + λ) shows that
σ(S1/2) = ∅ too and, as in Example 3.3, S1/2 is dichotomous with respect to
either of the two decompositions

X+ = X, X− = {0} and X+ = {0}, X− = X.

Here S1/2 is strictly dichotomous only with respect to the first choice X+ = X ,
X− = {0}.
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8.2 An invertible bisectorial non-dichotomous operator

McIntosh and Yagi [MY90] gave the following example of an invertible bisectorial
operator that is not dichotomous. We only sketch their construction here.

Example 8.2. Let M > 1. For every m ∈ N, m ≥ 0, choose n ∈ N such that

M − 1

π
√
18

log
(n

2
+ 1

)

≥ m

and (n + 1) × (n + 1) matrices Dm and Bm as follows: Dm is diagonal with
entries 20, 21, . . . , 2n and Bm is the Toeplitz matrix

Bm =
M − 1

π













b0 b1 . . . bn

b−1
. . .

. . .
...

...
. . .

. . . b1
b−n . . . b−1 b0













, b0 = 0, b±j = ±1

j
, j = 1, . . . , n.

Consider the block diagonal operator A on X = l2 given by

A =







A1

A2

. . .






, Am =

(

Dm BmDm

0 −Dm

)

.

It is then shown in [MY90] that σ(A) ⊂ ]−∞,−1]∪ [1,∞[ and ‖(A− λ)−1‖ ≤
M |λ|−1 for λ ∈ iR \ {0}. In particular, A is a bisectorial operator. However,
A is not dichotomous: In fact, the spectral projection Pm corresponding to the
positive eigenvalues of Am is

Pm =

(

I Zm

0 0

)

where the (n+ 1)× (n+ 1) matrix Zm satisfies DmZm +ZmDm = BmDm and
‖Zm‖ ≥ m. Since every dichotomous decompositionX = X+⊕X− must contain
the eigenspace for λ ∈ C± in X±, the projection corresponding porjection P+

must contain all Pm and thus is unbounded.

8.3 A densely defined operator S with non-densely defined

sectorial S|G±

In this section we construct a densely defined operator S whose restriction
S|G+ to the positive spectral subspace is not densely defined. According to
Theorem 6.3, this is equivalent to M+ 6= G+. Our operator S will be almost
bisectorial, but not bisectorial, and its restriction S|G+ will be sectorial.

Example 8.3. On X = C([0, 1]) consider the operator

A0f = f ′, D(A0) = {f ∈ C1([0, 1]) : f(0) = 0}.
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Then A0 is non-densely defined, σ(A0) = ∅, and A0 is accretive. As in Sec-

tion 8.1 it follows that A0 has a square root, A = A
1/2
0 , where A is sectorial

with any angle θ > π/4 and σ(A) = ∅. Moreover, A is non-densely defined too
(otherwise A0 = A2 had to be densely defined). In fact,

D(A) = D(A0) = {f ∈ X : f(0) = 0}.

Let w ∈ X , w(t) = 1 constant. Hence w ∈ X \D(A) and X = D(A)⊕ span{w}.
Fix 0 < s < 1/2 and consider the rank one operator B : D(B) ⊂ l2 → X ,

Bα =

∞
∑

k=1

ksαk · w, D(B) =

{

α = (αk)
∞
k=1 ∈ l2 :

∞
∑

k=1

ks|αk| < ∞
}

.

Let q ≥ 1 and let C : D(C) ⊂ l2 → l2,

Cα = (−kqαk)
∞
k=1, D(C) =

{

α = (αk)
∞
k=1 ∈ l2 : (−kqαk)

∞
k=1 ∈ l2

}

.

Lemma 8.4. The operators B and C are densely defined, C is selfadjoint,
σ(C) = {−kq : k ∈ N}, D(C) ⊂ D(B), and B is 1/q-subordinate to C.

Proof. The first assertions are clear. The last assertion follows because for all
α ∈ D(C)

‖Bα‖ ≤
∞
∑

k=1

ks|αk| ≤
( ∞
∑

k=1

1

k2−2s

)
1
2
( ∞
∑

k=1

k2|αk|2
)

1
2

,

∞
∑

k=1

k2|αk|2 ≤
( ∞
∑

k=1

|αk|2
)1− 1

q
( ∞
∑

k=1

k2q|αk|2
)

1
q

.

On X × l2 consider the operator

S

(

f
α

)

=

(

A(f −Bα)
Cα

)

, D(S) =

{(

f
α

)

∈ X ×D(C) : f −Bα ∈ D(A)

}

.

Proposition 8.5. The operator S has the following properties:

(i) S is densely defined.

(ii) σ(S) = σ(C).

(iii) S is almost bisectorial.

(iv) G+ = X × {0}, S|G+ is sectorial and D(S|G+) = D(A)× {0}. In partic-
ular, S|G+ is not densely defined.

Proof. For the proof of (i) note that D(A)×{0} ⊂ D(S) and (w, k−sek) ∈ D(S)
where (ek) is the standard orthonormal basis in l2. This shows (w, 0) ∈ D(S),
hence X × {0} ⊂ D(S). Finally, for every x ∈ D(C), (Bx, x) ∈ D(S) and thus
(0, x) ∈ D(S), so we showed that S is densely defined.
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(ii) can be shown by direct computation. Moreover, for λ ∈ ̺(S),

(S − λ)−1

(

f
α

)

=

(

(A− λ)−1f +A(A− λ)−1B(C − λ)−1α
(C − λ)−1α

)

. (39)

On iR the norms ‖λ(A− λ)−1‖ and ‖A(A− λ)−1‖ as well as the analogous
expressions for C are uniformly bounded. The subordination property of B
yields the estimate ‖B(C − λ)−1‖ ≤ c|λ|−β , λ ∈ iR \ {0}, with β = 1 − 1

q and
c > 0. Therefore

‖(S − λ)−1‖ ≤ M

|λ|β , λ ∈ iR \ {0}, β = 1− 1

q
,

with some M > 0, which proves (iii).
For the proof of (iv) let us first calculate G+. Since for every f ∈ X ,

(S − λ)−1

(

f
0

)

=

(

(A− λ)−1f
0

)

is a bounded analytic function on C−, we have (f, 0) ∈ G+. On the other
hand, if (f, α) ∈ G+, then (39) implies that (C −λ)−1α has a bounded analytic
extension to C−, which is possible only if α = 0. Thus

G+ = X × {0},

and therefore D(S|G+) = D(A) × {0}. It follows that S|G+ is not densely
defined and S|G+

∼= A, so S|G+ is sectorial.

8.4 A non-densely defined non-sectorial but almost secto-

rial operator

As a simple example of a non-densely defined operator on a Hilbert space that
satisfies an estimate (31) with β < 1 but is not sectorial, we consider now an
ordinary differential operator on the Sobolev space H1([0, 1])‘. In a Banach
space setting, operators of this form have been considered in [SS86]. A non-
densely defined operator which is even sectorial and defined on a non-reflexive
Banach space is the operator A from Example 8.3.

Example 8.6. For m ≥ 1 consider the operator A0 on L2([0, 1]) given by

A0f = (−1)mf (2m),

D(A0) = {f ∈ H2m([0, 1]) : f (j)(0) = f (j)(1) = 0, j = 0, . . . ,m− 1}.

The operator A0 is positive selfadjoint. Let A be the part of A0 on the Sobolev
space H1([0, 1]), i.e.,

Af = A0f = (−1)mf (2m),

D(A) = {f ∈ H2m+1([0, 1]) : f (j)(0) = f (j)(1) = 0, j = 0, . . . ,m− 1}.
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We easily see that A is closed and σp(A0) = σp(A). Moreover, if λ ∈ ̺(A0)
then A−λ is bijective with inverse (A−λ)−1 = (A0−λ)−1|H1([0, 1]) and hence
σp(A) = σ(A) = σ(A0).

Since A0 is selfadjoint, it is sectorial with arbitrary small angle θ > 0. Let
g ∈ L2([0, 1]), | argλ| ≥ θ > 0 and set f = (A0 − λ)−1g. Then the identity
(−1)mf (2m) = λf + g yields

‖f (2m)‖L2 ≤
(

1 + |λ|‖(A0 − λ)−1‖
)

‖g‖L2 ≤ (1 +M)‖g‖L2

where M > 0 is the constant from the sectoriality estimate (30). Since |f |2m =
‖f‖L2 + ‖f (2m)‖L2 is an equivalent norm on H2m([0, 1]) and ‖(A0 − λ)−1‖ is
uniformly bounded for | argλ| ≥ θ, this implies

‖(A0 − λ)−1g‖H2m ≤ c1‖g‖L2, | argλ| ≥ θ,

with c1 > 0 depending on θ > 0. Using the interpolation inequality ‖f‖Hk ≤
c2‖f‖1−k/n

L2 ‖f‖k/nHn , we obtain for g ∈ H1([0, 1])

∥

∥(A0 − λ)−1g
∥

∥

H1 ≤ c2
∥

∥(A0 − λ)−1g
∥

∥

1− 1
2m

L2

∥

∥(A0 − λ)−1g
∥

∥

1
2m

H2m

≤ c3

|λ|1− 1
2m

‖g‖L2 ≤ c3

|λ|1− 1
2m

‖g‖H1

with c3 > 0 depending on θ > 0. Consequently A is almost sectorial,

‖(A− λ)−1‖ ≤ c3
|λ|β , | argλ| ≥ θ, β = 1− 1

2m
. (40)

Moreover A even has a compact resolvent: indeed our calculations imply that
(A0−λ)−1 is a bounded operator from L2([0, 1]) toH1([0, 1]) and the embedding
H1([0, 1]) →֒ L2([0, 1]) is compact. Finally note that A is not densely defined
since the closure of D(A) in H1([0, 1]) is H1

0 ([0, 1]). In particular, the estimate
(40) cannot be improved to β = 1, i.e., A is not a sectorial operator because
sectorial operators in reflexive spaces are densely defined. On the other hand,
(40) can be improved to β = 1− 1

4m as indicated in [SS86].

8.5 A densely defined operator S with non-densely defined

almost sectorial S|G±

The following is a variant of Example 8.3 in a Hilbert space setting. Here S|G+

is non-densely defined and almost sectorial.

Example 8.7. Let A be the operator from Example 8.6 acting onX = H1([0, 1]).
Then D(A) = H1

0 ([0, 1]). Let w1(t) = t, w2(t) = 1− t, so that

X = D(A) ⊕ span{w1, w2}.
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For 0 < s < 1/2 define B : D(B) ⊂ l2 → X by

Bα =

∞
∑

k=1

(2k)sα2k · w1 +

∞
∑

k=1

(2k − 1)sα2k−1 · w2,

D(B) =

{

α = (αk)
∞
k=1 ∈ l2 :

∞
∑

k=1

ks|αk| < ∞
}

.

As in Example 8.3 consider also the selfadjoint operator C(αk) = (−kqαk) on
l2 and then S : D(S) ⊂ X × l2 → X × l2,

S

(

f
α

)

=

(

A(f −Bα)
Cα

)

, D(S) =

{(

f
α

)

∈ X ×D(C) : f −Bα ∈ D(A)

}

.

We obtain again that B is 1/q-subordinate to C, that S is densely defined and
that (S − λ)−1 is given by (39) where now σ(S) = σ(A) ∪ σ(C). Together with
the estimate ‖(A− λ)−1‖ ≤ c|λ|−β on iR, β = 1− 1

2m , we then arrive at

‖(S − λ)−1‖ ≤ M

|λ|γ , λ ∈ iR \ {0}, γ = 1− 1

2m
− 1

q
,

with some M > 0. Theorems 4.1 and 5.6 thus yield the S-invariant subspaces
G±. As in Example 8.3, we derive G+ = X × {0} and S|G+

∼= A, which is not
densely defined. Here S|G+ is not sectorial but almost sectorial with β = 1− 1

2m .

8.6 Hamiltonian operator matrices

We can apply our theory to the Hamiltonian operator matrix appearing in
systems theory in the case of so-called unbounded control and observation op-
erators. We obtain criteria ensuring that the Hamiltonian is bisectorial and
strictly dichotomous. Our setting generalises the ones in [TW14] and [WJZ12]
since we do not require a basis of (generalised) eigenvectors of the Hamiltonian
and at the same time allow the control and observation operators to map out
of the state space.

Example 8.8. Let A be a sectorial operator on a Hilbert space H with angle
less than π/2 and 0 ∈ ̺(A). Let H1 = D(A) be equipped with the graph norm
and H−1 the completion of H with respect to the norm ‖A−1 · ‖. Let Hd

1 , H
d
−1

be the corresponding spaces for A∗. Moreover, we consider intermediate spaces
in the sense of Lions and Magenes [LM72, Chapter 1]1,

Hs = [H1, H ]1−s, H−s = [H,H−1]s, s ∈ [0, 1],

Again, Hd
s and Hd

−s are defined analogously. In the special case when A is self-
adjoint, we obtain the fractional domain spaces Hs = Hd

s = D(As) = D((A∗)s),

1This is equivalent to taking complex interpolation spaces, see [LM72, Chapter 1, §14].
Note that all involved spaces are Hilbert spaces.
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s ∈ [−1, 1], compare [WJZ12, §3]. In general however, Hs 6= Hd
s . The interme-

diate spaces yield bounded extensions

A : H1−s −→ H−s, A∗ : Hd
1−s −→ Hd

−s, s ∈ [0, 1].

Using the scalar product (·|·) of H , we can identify the dual of H−s with
Hd

s . This means that the scalar product of H extends to a sesquilinear form
(x|y)−s,s∗, x ∈ H−s, y ∈ Hd

s . Similarly, the dual of Hs is identified with Hd
−s.

This is also referred to as taking duality with respect to the pivot space H , see
e.g. [TW09, §§2.9, 2.10].

Let U, Y be Hilbert spaces and consider for some fixed 0 < s < 1/2 bounded
operators B : U −→ H−s, C : Hs −→ Y , the control and observation operators,
respectively. With the above duality identifications, their adjoints are bounded
operators B∗ : Hd

s −→ U , C∗ : Y −→ Hd
−s. The Hamiltonian is now given by

the operator matrix

T =

(

A BB∗

C∗C −A∗

)

.

Let Vs = Hs × Hd
s . The Hamiltonian induces the bounded linear mapping

T : V1−s −→ V−s, which we consider, for the moment, as an unbounded operator
on V−s with domain V1−s. We use the decomposition

T = S +R, S =

(

A 0
0 −A∗

)

, R =

(

0 BB∗

C∗C 0

)

,

where S : V1−s −→ V−s and R : Vs −→ V−s are bounded. Let λ ∈ iR \ {0}. In
the following estimates, c denotes a positive constant which is independent of
λ, but may change from estimate to estimate. By the sectoriality of A, we have

‖(A− λ)−1‖ ≤ c|λ|−1, ‖A(A− λ)−1‖ ≤ 1 + |λ|‖(A− λ)−1‖ ≤ c,

and the second inequality implies

‖(A− λ)−1‖H→H1
≤ c, ‖(A− λ)−1‖H−1→H ≤ c.

Interpolation yields

‖(A− λ)−1‖H→Hs
≤ c|λ|−(1−s), ‖(A− λ)−1‖H−s→H ≤ c|λ|−(1−s),

and then
‖(A− λ)−1‖H−s→Hs

≤ c|λ|−(1−2s).

Since an analogous estimate holds for (A∗ − λ)−1, we obtain

‖(S − λ)−1‖V−s→Vs
≤ c|λ|−(1−2s). (41)

Consider the identity

T − λ = (I +R(S − λ)−1)(S − λ).
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From (41) we obtain

‖R(S − λ)−1‖V−s→V−s
≤ ‖R‖Vs→V−s

‖(S − λ)−1‖V−s→Vs
≤ c|λ|−(1−2s)

and since s < 1/2 we get that, for λ ∈ iR and |λ| large, I + R(S − λ)−1 is an
isomorphism on V−s; consequently λ ∈ ̺(T ) with

‖(T − λ)−1‖V−s→V−s
≤ c‖(S − λ)−1‖V−s→V−s

≤ c|λ|−1.

Moreover
(T − λ)−1 − (S − λ)−1 = −(T − λ)−1R(S − λ)−1

and hence
‖(T − λ)−1 − (S − λ)−1‖V−s→V−s

≤ c|λ|−(2−2s).

We consider now the part of T in Vs, which we denote again by T . Then, similar
to the above, the identity

T − λ = (S − λ)(I + (S − λ)−1R)

and the estimate
‖(S − λ)−1R‖Vs→Vs

≤ c|λ|−(1−2s)

yield

‖(T − λ)−1‖Vs→Vs
≤ c|λ|−1,

‖(T − λ)−1 − (S − λ)−1‖Vs→Vs
≤ c|λ|−(2−2s),

for λ ∈ iR, |λ| large.
For the rest of this example, we consider T as an operator on V , i.e., we take

the part of T in V . Applying interpolation to the above results, we get that, if
λ ∈ iR and |λ| large enough, then λ ∈ ̺(T ) and

‖(T − λ)−1‖ ≤ c|λ|−1, (42)

‖(T − λ)−1 − (S − λ)−1‖ ≤ c|λ|−(2−2s). (43)

Next we show that T is bisectorial. In view of (42) it suffices to show
that iR ⊂ ̺(T ). This will be done using the same technique as in [TW14,
Lemma 4.5]. Suppose it ∈ iR is contained in the approximate point spectrum
σapp(T ), i.e., there exists a sequence (xn, yn) ∈ V1−s such that ‖xn‖2+‖yn‖2 = 1
and (T − it)(xn, yn) → 0 in V as t → ∞. This implies

((A− it)xn|yn)−s,s∗ + (BB∗yn|yn)−s,s∗ → 0,

(C∗Cxn|xn)−s∗,s − ((A∗ + it)yn|xn)−s∗,s → 0.

Summing both equations and taking the real part gives us

‖B∗yn‖2U + ‖Cxn‖2Y = (BB∗yn|yn)−s,s∗ + (C∗Cxn|xn)−s∗,s → 0. (44)
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From (T − it)(xn, yn) → 0 it follows that xn + (A− it)−1BB∗yn → 0 as a limit
in H . Since (A − it)−1B is bounded as an operator U → H and B∗yn → 0 by
(44), this yields xn → 0. Analogously, using Cxn → 0, we get yn → 0, which
is a contradiction to ‖xn‖2 + ‖yn‖2 = 1. Therefore σapp(T ) ∩ iR = ∅. Since
∂σ(T ) ⊂ σapp(T ) and iR ∩ ̺(T ) 6= ∅ we conclude that in fact iR ⊂ ̺(T ).

We can now invoke Theorem 7.3 to show the strict dichotomy of T . Indeed
the assumptions on A imply that S is bisectorial and strictly dichotomous.
Moreover, by iR ⊂ ̺(T ) and (43) the conditions (i) and (ii) of Theorem 7.3 are
satisfied too. Hence if D(S)∩D(T ) = V1∩D(T ) ⊂ V is dense, then T is strictly
dichotomous. Note that a typical setting in control theory is H = L2(Ω) with
Ω ⊂ Rn, A is an elliptic differential operator and the control and observation
operators act on traces of functions on the boundary of Ω. In this case D(S) 6=
D(T ) but C∞

0 (Ω)2 ⊂ D(S) ∩ D(T ), i.e., D(S) ∩ D(T ) is in fact dense in V .
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Birkhäuser Verlag, Basel, 2008. Linear Operators and Linear Sys-
tems.

34



P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t
–
P
re
p
ri
n
t

[WJZ12] C. Wyss, B. Jacob, and H. J. Zwart. Hamiltonians and Riccati
equations for linear systems with unbounded control and observa-
tion operators. SIAM J. Control Optim., 50(3):1518–1547, 2012.

35


