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DISCRETE ARTIFICIAL BOUNDARY CONDITIONS FOR THE

LATTICE BOLTZMANN METHOD IN 2D

Daniel Heubes1, Andreas Bartel1 and Matthias Ehrhardt1

Abstract. To confine a spatial domain to a smaller computational domain, one needs
artificial boundaries. This work considers the lattice Boltzmann method and deals with
boundary conditions for these open boundaries. Ideally, such a condition does not inter-
act with the fluid at all. We present a novel two-dimensional discrete artificial boundary
conditions to pursue that goal and we discuss four different versions. This type of con-
dition is formulated on the discrete lattice Boltzmann level and does not require a PDE
formulation of the fluid. We set a special focus on the D2Q9 model. Our numerical results
compare the novel discrete artificial boundary conditions to simulations using the existing
non-reflecting characteristic boundary condition.

1. Introduction

In the field of computational fluid dynamics, the lattice Boltzmann (LB) method is a widely
used and a flexible tool. Not only its ease of implementation, but also its applicability to complex
flows make the LB method attractive for real-world simulations. Applications are found in acoustics
(e.g., [1]), blood flow (e.g., [2]) and fluid-structure interaction (e.g. [3]) (among many others).

To achieve an efficient numerical simulation, often the fluid domain is confined to a smaller com-
putational domain. Thereby, some non-physical boundaries, so-called artificial boundaries, occur.
Using standard boundary conditions (e.g., a pressure or velocity condition) at open boundaries,
the boundaries behave in an unphysical manner: spurious waves are reflected. An ideal boundary
condition at artificial boundaries does not create any spurious effects, which influence the simula-
tion results. For the LB method often boundary conditions are derived from known macroscopic
physical conditions. However, the problem of finding correct artificial boundary conditions (ABCs)
holds also on the macroscopic scale, not only on the mesoscopic scale of the LB method.

Several studies have been made for artificial boundaries. A review on absorbing boundary con-
ditions for hyperbolic systems can be found in [4]. Hedstrom [5] and Thompson [6] developed
characteristic boundary conditions (CBCs) for hyperbolic equations. In the LB method, one has to
transfer any macroscopic formulation of an ABC to the mesoscopic level. Non-reflecting CBCs were
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2 ESAIM: PROCEEDINGS AND SURVEYS

adapted for the LB method [7–9] and create much smaller spurious effects than standard boundary
conditions. To avoid a macroscopic formulation, we presented the first one-dimensional ABCs on
the discretized LB formulation in earlier works [9, 10]. In the current work these discrete artificial
boundary conditions (DABCs) are transferred and applied to two-dimensional LB simulations.

This article is structured as follows. In Section 2 we briefly explain the LB method, focusing on
the D2Q9 model. The two-dimensional DABCs are constructed in Section 3. This paper ends with
the presentation of numerical test results (Section 4) and with conclusions (Section 5).

2. The Lattice Boltzmann Method

We briefly summarize the lattice Boltzmann (LB) method in the two-dimensional space. Based
on the chosen discretization one has q discrete velocities ~ci, i = 0, . . . , q−1 in the LB method. This
yields the D2Qq LB model (notation proposed by Qian et al. [11]). As one specific example, the
popular D2Q9 model is given by the discrete velocities

~c0 = ~0, ~ci = c

(
cos
(
π
2 (i− 1)

)
sin
(
π
2 (i− 1)

)) , ~cj =
√

2c

(
cos
(
π
2 (j − 1

2 )
)

sin
(
π
2 (j − 1

2 )
)) , (1)

with i = 1, 2, 3, 4 and j = 5, 6, 7, 8. Here, the parameter c 6= 0 scales the velocities. Given a regular
lattice, the space points are denoted by ~xn and time points by ts. The set of all considered space
points is denoted by Gx = {~xn}. In the LB method, the temporal evolution of so-called populations
fi = fi(~xn, ts) is computed for each lattice node ~xn and time ts. That is, fi(~xn, ts) gives the
number density (scaled by mass) of fictitious particles with velocity ~ci at each lattice node (~xn, ts).
The evolution of populations is described by the LB equation, which defines an update rule of the
populations based on particles’ collision and streaming (see also, e.g., [12–14] for more details):

fi(~xn + ~ci, ts+1) = fi(~xn, ts) + Ci
(
~f(~xn, ts)

)
, for i = 0, . . . , q − 1. (2)

Here the vector ~f(~xn, ts) gathers all populations at the lattice node (~xn, ts). It is required that the
lattice nodes ~xm fulfill the condition

~xm = ~xn + ~ci, for i ∈ {0, . . . , q − 1}, (3)

such that particles move in one time step ts → ts+1 exactly from one node to an adjacent node. The
right hand side of (2) gives the populations after particle collisions, hence Ci models the change
due to collision. A very popular choice for Ci is given by the BGK scheme [15], which is a single
relaxation time (SRT-BGK) model. There are also models with more relaxation parameters, e.g.,
the multiple relaxation time model [16] and the two-relaxation time model [17].

Using the SRT-BGK model, the LB equation (2) reads

fi(~xn + ~ci, ts+1) = (1− ω)fi(~xn, ts) + ωf eq
i (~xn, ts),

where f eq
i (~xn, ts) is a local equilibrium distribution and ω = 1/τ a free relaxation parameter. For

example in the D2Q9 model, the equilibrium reads

f eq
i (~xn, ts) = Ei(ρ, ~u) := wiρ

[
1 + 3

~ci · ~u
c2

+
9

2c4
(~ci · ~u)2 − 3

2

|~u|2

c2

]
(4)
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ESAIM: PROCEEDINGS AND SURVEYS 3

with weights w0 = 4
9 , w1−4 = 1

9 and w5−8 = 1
36 and fluid quantities

ρ(~xn, ts) =

q−1∑
i=0

fi(~xn, ts), ~u(~xn, ts) =

v(~xn, ts)

w(~xn, ts)

 =
1

ρ(~xn, ts)

q−1∑
i=1

~cifi(~xn, ts). (5)

The fluid quantities are then approximations to the solution of the Navier-Stokes equations. This
can be verified with help of a Chapman-Enskog expansion or other asymptotic analyses [18, 19].
Note that the arguments (~xn, ts) were suppressed in (4) for better readability.

The LB method requires the presence of all q populations in all grid points at any time. This
requirement is ensured by the LB equation, provided condition (3) holds. Condition (3) is satisfied
at least for all interior nodes, but is not for those near the boundary of the computational domain.
In fact, we define a boundary node by the lack of some adjacent nodes. That is, a node ~xb ∈ Gx of the
spatial discretization is said to be a boundary node if ~xb +~ci /∈ Gx for at least one discrete velocity
~ci. If ~ck is such a velocity (i.e., ~xb + ~ck /∈ Gx), then a boundary condition for fk̄(~xb, ·) is needed,
where k̄ denotes the index defined by ~ck̄ = −~ck. These unknown populations can be computed, e.g.,
by specifying a fluid pressure or velocity [20,21]. The desired condition depends on the kind of the
boundary. If the boundary is given physically as a wall, then often no-slip boundary conditions are
applied. For open boundaries, which are not aligned with a physical boundary, sometimes periodic
boundary conditions are reasonable. Applying a pressure or a velocity condition at these lattice
sites will generate undesired, spurious reflections. In the following, we present a further approach,
which aims at computing the unknown populations for open boundaries such that preferably no
reflection in the fluid quantities (5) occurs. In this sense, such a boundary represents the physically
correct behavior.

3. Discrete Artificial Boundary Condition

Next, we determine the unknown populations of boundary nodes in a two-dimensional LB sim-
ulation for an open boundary by generalizing our one-dimensional approach [10].

3.1. Basic approach of Discrete Artificial Boundary Conditions

Let Γ = {~xk ∈ Gx | ~xk is a boundary node} be the set of all boundary nodes. Then at all ~xb ∈ Γ
there are some populations which have to be computed by a boundary condition. However, for the
moment we restrict our explanation to those boundary nodes ΓE ⊂ Γ of a rectangular domain, for
which a right adjacent node is missing, i.e., ~xE

b ∈ ΓE if and only if ~xE
b +~ck /∈ Gx and ~ck · (1, 0)> > 0.

The situation is sketched in Fig. 1, where periodic boundary conditions are assumed to hold at the
top and bottom of the computational domain. This assumptions avoids having corners, which will
be considered later. For the D2Q9 model (1), the task of the boundary condition in these nodes is
to assign the populations f3,6,7(~xE

b , ts), ~x
E
b ∈ ΓE (for any time level t = ts). We return to a general

formulation afterwards.
A novel discrete boundary condition for one-dimensional LB simulations was developed by the

authors in [10]. There, the unknown populations at boundary nodes are derived by considering LB
subproblems. We follow the same idea to construct a boundary condition in two space dimensions.
This means we solve two-dimensional LB subproblems to obtain the unknown populations. For
all time levels, individual subproblems are considered separately. Therefore all subproblems are
labeled: the s-th subproblem is used to compute all unknown populations at time t = ts.
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H(s) fictitious node layers

Figure 1. Beyond the boundary of the computational domain are fictitious nodes
(�). They are used in the computation of the subproblems.

We explain the procedure in detail for ΓE and the D2Q9 case. The s-th subproblem consists of
H(s) fictitious layers of nodes in x1-direction, where H(s) is arbitrary (and may vary with time
ts), see Fig. 1. We suggest to allow a maximal size Hmax during the whole simulation and use
H(s) = min

{
s,Hmax

}
. The uncapped choice H(s) = s (for all s ∈ N) would result in an ideal

boundary condition, however the computational effort would be too high.
Now, let the set of fictitious nodes be denoted by Fsx. Then the subproblem’s domain Gsx is

given by interface nodes ΓE and the fictitious lattice extension: Gsx = ΓE ∪ Fsx. In Fig. 1 these
nodes are inside the dashed rectangle. In the s-th LB subproblem the populations shall be denoted
by hsi (~xm, tk), ~xm ∈ Gsx. Their evolution is also described by (2) (with fi replaced by hsi ). The
LB equation is applied H(s) times. By this rule we proceed H(s) time levels starting from the
subproblem’s initial time ts0 := ts−H(s). I.e., the time points for the s-th subproblem are tk ∈
{ts−H(s), . . . , ts}. After H(s) applications of (2), we achieve the unknown populations by

f3,6,7(~xE
b , ts) = hs3,6,7(~xE

b , ts), ~xE
b ∈ ΓE. (6)

This equation already formulates the discrete artificial boundary condition (DABC).

3.2. Well-definedness

The subproblems are well defined when there is an initialization rule for all populations and when
boundary conditions for some hsi are formulated. The initialization is the crucial part of the DABC,
since all errors are caused here. There is no general approach for finding appropriate populations
for the initialization of the subproblem. An ideal initialization strongly depends on the processes
in the computational domain. If no better information is available, we propose two strategies for
the initialization of the subproblems:

hsi (~xm, t
s
0) = Ei(ρ

s, ~us), ∀~xm ∈ Fsx, (7)
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ESAIM: PROCEEDINGS AND SURVEYS 5

with ρs and ~us to be chosen appropriately or

hsi (~xm, t
s
0) = fi(~x

E
b , t0), ∀~xm ∈ Fsx, ~xE

b ∈ ΓE with xm,β = xEb,β , (8)

where Greek indices denote the spatial coordinates. That is, a homogeneous equilibrium in (7)
and a constant extrapolation orthogonal to the boundary in (8). Also other initializations are
conceivable, e.g., a convex combination of the above both possibilities. Additionally, we always
assign the populations at the interface nodes ~xE

b ∈ ΓE as follows (for all involved time levels)

hsi (~x
E
b , tk) = fi(~x

E
b , tk), i = 0, . . . , q − 1, tk ∈ {ts−H(s), . . . , ts−1}. (9)

For the top and bottom boundary of the subproblem, we use here periodic boundary conditions,
for simplicity. No boundary condition is required for the boundary nodes on the opposite site
of ΓE (that is the right boundary of the subproblem). This is, because from this boundary only
information from time t = ts0 is affecting (6).

From (9) we see that the DABC takes past information up to H(s) time levels ago. For this
reason the quantity H(s) is called the history depth of the s-th subproblem and Hmax is denoted as
the maximal history depth.

3.3. Generalization

So far, the basic approach was explained for the right boundary of a rectangular computational
domain with periodic boundaries at the top and bottom. In the following we generalize the approach
of the DABC without any restrictions. There is a set of boundary nodes Γ, where the DABC should
be used to compute the inward populations fk(~xb, ts) at time t = ts. To this end, we consider a
subproblem (the s-th subproblem), whose lattice consists of joint interface nodes xb ∈ Γ ( in the
figures) plus a set of fictitious nodes Fsx. The amount and location of the fictitious nodes depends
on the problem and the chosen history depth H(s). We go into further detail in the subsequent
subsection. The fictitious nodes have to be chosen such that after H(s) applications of the LB
equation all required quantities are given.

Let us consider the application of the DABC for two adjacent boundaries as depicted in Fig. 2
(for the top and right boundary). This small example demonstrates that the treatment of corners
requires to consider one subproblem to achieve all unknown populations. It is not possible to
consider two independent subproblems, one for the top and right boundary each. After 5 streaming
steps the information from the filled square node enters a boundary node on the right side. Hence,
it is important that the fictitious nodes which extend the computational domain vertically and
horizontally build a connected set of LB nodes.

Given the s-th subproblem, we perform H(s) iterations of it. For the interface nodes xb ∈ Γ, we
set all populations according to

hsi (~xb, tk) = fi(~xb, tk), i = 0, . . . , q − 1, tk ∈ {ts−H(s), . . . , ts−1}. (10)

At time ts0 = ts−H(s) we also need an initialization for the subproblem’s interior nodes, which is
done, e.g., by adapting (7) or (8). After all H(s) iterations are done, the unknown populations of
the original problem are obtained:

fk(~xb, ts) = hsk(~xb, ts), ~xb ∈ Γ. (11)
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6 ESAIM: PROCEEDINGS AND SURVEYS

Figure 2. Application of the DABC (H = 5) for two adjacent boundaries. Pop-
ulations from the filled square node are tracked during the iteration of the sub-
problem.

3.4. Discrete Artificial Boundary Condition for a channel

With the basic approach of the DABC the existence of additional lattice nodes in the exterior of
the actual computational domain is emulated. For each subproblem the amount of fictitious lattice
nodes is chosen such that no other boundary of the subproblem affects the interface nodes (which
is the boundary of the computational domain).

Let us consider a channel flow with the aim to apply the DABC at the right boundary of the
channel. This means, the inward populations at -nodes have to be computed, see Figs. 3 and 4.
In Fig. 3 the situation is sketched for a theoretical choice of fictitious nodes, having more nodes in
x2-direction than the actual computational domain. Contrary, in Fig. 4 the fictitious nodes have
equal number in x2-direction, but also channel walls are incorporated in the subproblem’s domain
( and -nodes). Both cases represent a well defined situation (cf. Section 3.2), however only Fig. 4
seems to be physically reasonable.

This example demonstrates that there is no general rule for the subproblems. It is recommend to
choose the subproblems the same way as a logical enlargement of the computational domain would
be. The situation of Fig. 3 represents an outlet of a channel, whereas in Fig. 4 the boundary of the
computational domain is within the channel.

3.5. Computational costs

The specific computational effort of the DABC depends on the LB model in use. Therefore we do
not count arithmetic operations here. At each time level a LB subproblem is solved. It is possible
to align the collision and streaming steps with those of the original problem. A detailed description
of this procedure is given in [10]. This means the DABC can be parallelized in the same way as the
main LB simulation. In this implementation strategy, one has to treat at most Hmax subproblems
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ESAIM: PROCEEDINGS AND SURVEYS 7

Figure 3. Application of DABC (here H = 4) at the right boundary of a channel.
There are no channel walls in the subproblem.

Figure 4. Application of DABC (here H = 4) at the right boundary of a channel.
In the subproblem’s domain there are also channel walls.

simultaneously. If each subproblem consists of J := #G·x nodes, the total costs of the DABC are
equivalent to a lattice enlargement by Hmax · J nodes.

4. Numerical results

Here we describe the working principle of the DABC by a visual interpretation and present results
for two test scenarios for the D2Q9 model. To rate the performance and the errors of the (DABC),
we compare our DABC results with results obtained from a constant pressure condition [20] and
with results from a non-reflecting characteristic boundary condition (CBC) [9]. In fact, for the CBC



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

8 ESAIM: PROCEEDINGS AND SURVEYS

at the right boundary of a rectangular computational domain, we numerically solve the system

∂~U

∂t
+


w 0 ρ

0 w 0
c2s
ρ 0 w

 ∂~U

∂y
= −


1

2c2s
0 1

2c2s

− 1
2ρcs

0 1
2ρcs

0 1 0

 ~Lx

at the boundary and transfer the outcome into a Dirichlet condition for the populations. Here
~U> =

(
ρ, v, w

)
is the vector of the fluid quantities (5) and ~Lx denotes the wave amplitude variations:

~Lx =


Lx,1
Lx,2
Lx,3

 =


λ̃1
~̀ >
1

∂~U
∂x

λ̃2
~̀ >
2

∂~U
∂x

λ̃3
~̀ >
3

∂~U
∂x

 , with λ̃i =

{
λi outgoing

0 incoming,

(
~̀
1, ~̀2, ~̀3

)
=


c2s 0 c2s

−csρ 0 csρ

0 1 0


and eigenvalues λ1 = v − cs, λ2 = v, λ3 = v + cs. For more details and the treatment of other
boundaries we refer to [9].

4.1. Concentric wave

For the first numerical test, the initialization of the fluid is done by a Gaussian pressure pulse:

p(x, y) = p0 + (pmax − p0) exp

(
−(x2 + y2)

2σ2

)
.

The pressure values are related to the density by

p(x, t) = c2sρ(x, t) =
1

3
ρ(x, t),

We set σ = 0.1 and the pressures according to ρ0 = 1, ρmax = 1.15. The fluid velocity is homoge-
neously set to ~u(·, t0) = ~u0 at initial time.

The rectangular lattice is chosen with 201×1001 nodes, representing the spatial domain [−1, 1]×
[−5, 5]. We apply periodic boundary conditions for the top and bottom boundary. A LB reference
solution on a sufficiently larger domain is computed, such that errors

ez(~xn, ts) := z(~xn, ts)− zref(~xn, ts), ~xn ∈ Gx, s ∈ N, (12)

can be computed for any available quantity z (e.g., z ∈ {ρ, ~u, fi}). With help of the reference
populations an ideal boundary condition is applied at left boundary nodes ~xW

b :

fj(~x
W
b , ts) = f ref

j (~xW
b , ts), j ∈ {1, 5, 8}, s ∈ N.

On the right boundary we apply the DABC or any other condition to be tested.

4.1.1. Visual interpretation

In Fig. 5 the density profile is plotted for different time levels. The maximal history depth is
selected as Hmax = 40 and the relaxation parameter in the illustration is ω = 1. To give a visual
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ESAIM: PROCEEDINGS AND SURVEYS 9

Figure 5. Temporal evolution of the density. Snapshots correspond to t ∈
{t0, t100, t185, t255, t400}. A reflecting wave can be observed traveling from the
right boundary into the interior.

interpretation of how the DABC is working, we consider the situation at time t = t185. In fact, we
zoom in to the section, which is marked in the third snapshot of Fig. 5. Therefore, in Fig. 6 the
mass density ρ of the computational domain is shown at t = t185. Moreover, the mass density in
the 185-th subproblem is shown. On the different plots of Fig. 6 we see the mass density profile
of the subproblem changing during the iterations of the subproblem. The first plot shows it at
initialization, which is done by (7) and (10) (ρs = 1, ~us = ~u0 = ~0). Only the last plot is relevant
for the desired populations, which are given by (11). We see that after the final iteration of the
subproblem both regions match together. Thus, the DABC constructs a suitable extension of the
computational domain in fictitious nodes, which provides then all information for the unknown
populations. This interpretation clarifies that the initialization of subproblems determines the
accuracy of the DABC.

4.1.2. Simulation results

In addition to Fig. 5 the errors eρ, ev and ew, cf. (12), are depicted in Fig. 7 for time t = t400.
The error plots shown in the left column correspond to the subproblem initialized by (7), which is
here equivalent to (8) due to the choice of ρs and ~us. Errors in the right column correspond to a
modified initialization of (8), where the time of evaluation is not fixed (ts0 instead of t0):

hsi (~xm, t
s
0) = fi(~x

E
b , t

s
0), ∀~xm ∈ Fsx, ~xE

b ∈ ΓE with xm,β = xEb,β . (13)

For each error ez we can see different shapes of the surfaces. It should be noted that the peaks are
not located at the same points. As a further remark we emphasize that an initialization according
to (13) created instabilities in the one-dimensional case [10].

In the sequel we consider normalized errors

Nz(ts) := ‖ez(·, ts)‖`2 =

√ ∑
~xn∈Gx

(
z(~xn, ts)− zref(~xn, ts)

)2

, (14)

where z again can be replaced by any available quantity.
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Figure 6. Temporal evolution of the subproblem (x1 ∈ [201, 241]), which was
initialized by (7)/(8).

In the one-dimensional case the error could be decreased by taking a larger history depth, see [10].
First we investigate if a similar behavior can be detected also in two space dimensions. Therefore,
we consider the above test case repeatedly with different maximal history depths in the range from
4 to 80 and compute the corresponding errors Nz. The parameters chosen for the simulation are
ω = 1 and ~u0 = 0. Results are presented in Tables 1–3, which also contain reference values. That
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Figure 7. The left column shows the errors eρ, ev and ew (cf. (12)) when using
the DABC with (7)/(8). Similarly, the right column shows errors when initializing
with (13).
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Error Nρ(t) at

t = t175 t = t250 t = t325 t = t400

Zou/He pressure 0.472981 0.678311 0.722984 0.723998

CBC 0.016336 0.066936 0.108164 0.135353

DABC H=4, (7)/(8) 0.016035 0.077023 0.119626 0.146777
DABC H=4, (13) 0.030312 0.059209 0.091554 0.116822

DABC H=10, (7)/(8) 0.011039 0.065418 0.107186 0.134847
DABC H=10, (13) 0.020151 0.060705 0.097759 0.124270

DABC H=20, (7)/(8) 0.007960 0.061694 0.104964 0.133531
DABC H=20, (13) 0.015407 0.062910 0.102058 0.129025

DABC H=40, (7)/(8) 0.001986 0.055666 0.104786 0.136482
DABC H=40, (13) 0.007918 0.070754 0.114453 0.141661

DABC H=80, (7)/(8) 0.000002 0.027226 0.085173 0.121441
DABC H=80, (13) 0.000033 0.075978 0.145701 0.173462

Table 1. Error Nρ for different boundary conditions and time levels.

Error Nv(t) at

t = t175 t = t250 t = t325 t = t400

Zou/He pressure 0.277485 0.359907 0.358679 0.345152

CBC 0.009046 0.036197 0.048954 0.053523

DABC H=4, (7)/(8) 0.009193 0.041705 0.055181 0.059633
DABC H=4, (13) 0.018250 0.033751 0.042891 0.047084

DABC H=10, (7)/(8) 0.006549 0.036287 0.049870 0.054805
DABC H=10, (13) 0.012309 0.034344 0.045440 0.049971

DABC H=20, (7)/(8) 0.004842 0.034892 0.049417 0.054755
DABC H=20, (13) 0.009487 0.035349 0.047364 0.052022

DABC H=40, (7)/(8) 0.001232 0.032889 0.051021 0.057585
DABC H=40, (13) 0.004922 0.039249 0.052736 0.057175

DABC H=80, (7)/(8) 0.000001 0.016820 0.046855 0.056847
DABC H=80, (13) 0.000021 0.046725 0.071642 0.075620

Table 2. Error Nv for different boundary conditions and time levels.

is, the errors obtained when using a Zou/He pressure boundary condition (ρ = 1 and u‖ = 0) [20],
as well as a CBC (LODI) from [14] as described at the beginning of the current section. All in
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Error Nw(t) at

t = t175 t = t250 t = t325 t = t400

Zou/He pressure 0.078614 0.183191 0.225385 0.242753

CBC 0.032066 0.050150 0.063324 0.074517

DABC H=4, (7)/(8) 0.014582 0.036721 0.056772 0.072032
DABC H=4, (13) 0.005688 0.028873 0.047478 0.061502

DABC H=10, (7)/(8) 0.007677 0.029861 0.050469 0.066239
DABC H=10, (13) 0.004140 0.028261 0.049035 0.064021

DABC H=20, (7)/(8) 0.002870 0.024961 0.047393 0.064187
DABC H=20, (13) 0.003158 0.027737 0.049795 0.065342

DABC H=40, (7)/(8) 0.000325 0.018999 0.044452 0.063156
DABC H=40, (13) 0.001496 0.028169 0.052968 0.069439

DABC H=80, (7)/(8) 0.000000 0.005729 0.032076 0.052336
DABC H=80, (13) 0.000006 0.022848 0.056737 0.075456

Table 3. Error Nw for different boundary conditions including DABCs with dif-
ferent history depths. All errors are given at four time levels.

all, the smallest errors are obtained when using the novel DABC with an initialization due to (7)
respectively (8).

We see that the CBC and the DABC behave equally in Nρ and Nv, whereas for Nw the DABC
is superior. However, unlike the one-dimensional case, a significant decreasing influence of a larger
history depth is not visible. The test case is challenging, because the wave is interacting with the
boundary all the time, which is different to the one-dimensional test cases in [10]. In our opinion,
this difference causes the missing decreasing influence of the history depth.

For the presentation of the next results we do not change the parameters. But, we fix the
maximal history depth by Hmax = 20 and vary the relaxation time τ = 1

ω from 0.6 to 1.5. The
errors are computed at time t = t400 and presented in Table 4. Note that the viscosity ν is related
to the relaxation time as

ν =
2τ −∆t

6
c2.

Hence, the concentric wave is decaying faster for larger values of τ , resulting in smaller errors, since
already the wave interacting with the boundary is smaller.

The final result presented for the current test case fixes all parameters as before except for the
initial fluid velocity ~u0. The velocity component tangential to the boundary (u0,β) is zero, whereas
the component perpendicular to the boundary (u0,α) is varied. As before, errors are computed at
t = t400. When considering the errors, shown in Table 5, we see that the DABC, initialized with
respect to (13), has clearly smaller errors for positive velocities. However the errors are larger for
negative velocities. With initialization according to (7)/(8) the DABC behaves similar to the CBC.
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Nρ(t400) Nv(t400) Nw(t400)

τ = 0.60

Zou/He pressure 0.974653 0.464104 0.324983
CBC 0.172067 0.065029 0.092413
DABC H=20, (7)/(8) 0.183732 0.071039 0.086858
DABC H=20, (13) 0.178314 0.067579 0.086631

τ = 0.80

Zou/He pressure 0.822321 0.391664 0.275049
CBC 0.150659 0.058254 0.082080
DABC H=20, (7)/(8) 0.152543 0.060856 0.072713
DABC H=20, (13) 0.148096 0.057966 0.073507

τ = 1.25

Zou/He pressure 0.639278 0.305219 0.214941
CBC 0.121525 0.049330 0.067567
DABC H=20, (7)/(8) 0.117714 0.049754 0.057141
DABC H=20, (13) 0.112726 0.047065 0.058467

τ = 1.50

Zou/He pressure 0.578431 0.276624 0.195010
CBC 0.111281 0.046274 0.062339
DABC H=20, (7)/(8) 0.106612 0.046287 0.052214
DABC H=20, (13) 0.101099 0.043626 0.053633

Table 4. Errors Nρ, Nv and Nw for different boundary conditions and relaxation times.

Figure 8. Simulation setting of the second test case. The snapshot shows the
modulus of the velocity and displays a vortex.

4.2. Flow past an obstacle in channel

In the second test example we simulate a flow past a square obstacle in a channel at Re = 100.
The square obstacle has a dimension of L = 15 lattice nodes. The width and total length of the
channel are 5L and 11L, respectively. It is displaced vertically by L

5 lattice nodes from the center
of the channel, to break symmetry and allow a vortex street to develop. We place the obstacle 3L
nodes from the inlet (left boundary), such that there are 7L lattice nodes behind the obstacle in
direction of the flow. See also Fig. 8 for a visualization of the setting. Normally in a simulation, the
right boundary would have a larger distance to the obstacle, but in the scope of testing a boundary
condition the choice seems reasonable. At the inlet we impose a parabolic velocity profile with
its maximal velocity umax = 1

9 in the center, whereas the velocity component in y-direction is set
to zero. [20]. For the right boundary of the computational domain we test several DABCs and
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Nρ(t400) Nv(t400) Nw(t400)

u0,α = −0.20

Zou/He pressure 0.761080 0.360090 0.294364
CBC 0.082773 0.039248 0.079130
DABC H=20, (7)/(8) 0.076132 0.037925 0.067832
DABC H=20, (13) 0.159738 0.081832 0.086171

u0,α = −0.10

Zou/He pressure 0.729659 0.341081 0.259046
CBC 0.107232 0.044476 0.071911
DABC H=20, (7)/(8) 0.102220 0.044317 0.060727
DABC H=20, (13) 0.150410 0.063511 0.081461

u0,α = −0.05

Zou/He pressure 0.695514 0.328143 0.239728
CBC 0.116508 0.046956 0.068698
DABC H=20, (7)/(8) 0.112323 0.047139 0.057872
DABC H=20, (13) 0.134400 0.055193 0.071381

u0,α = 0.05

Zou/He pressure 0.606929 0.293510 0.198921
CBC 0.120947 0.051021 0.062830
DABC H=20, (7)/(8) 0.126173 0.054359 0.059037
DABC H=20, (13) 0.096058 0.041342 0.047969

u0,α = 0.10

Zou/He pressure 0.556697 0.273143 0.177444
CBC 0.125892 0.055574 0.059419
DABC H=20, (7)/(8) 0.129904 0.058062 0.057923
DABC H=20, (13) 0.077947 0.035392 0.037626

u0,α = 0.20

Zou/He pressure 0.453472 0.230098 0.134056
CBC 0.136904 0.065509 0.054637
DABC H=20, (7)/(8) 0.133179 0.064572 0.051532
DABC H=20, (13) 0.049582 0.025437 0.022306

Table 5. Errors Nρ, Nv and Nw for different boundary conditions and fluid ve-
locities u0.

compare the errors (14) with those when using a CBC. We initialize the fluid in the interior of
the computational domain with the same parabolic velocity profile and a decreasing density from
inlet to outlet. The decay is chosen such that the resulting pressure gradient fits to the stationary
solution of the Poiseuille flow when there would not be an obstacle [22].

We tested several versions of the DABC. They differ in the choice of the subproblem’s initializa-
tion and the maximal history depth. In the following we refer to the different initialization strategies
by DABC-n, n ∈ {1, 2, 3, 4}. Hereby, DABC-1 uses the strategy (7) with ρs ≡ ρ(~xb, t0) and ~us = ~0.
The second initialization type DABC-2 is given by (8), and DABC-3 is using the modification (13).
Finally, DABC-4 can be written shortest in terms of the reference solution

hsi (~xm, t
s
0) = f ref(~xm, t0),
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Figure 9. Normalized errors (14) (Nρ, Nv and Nw) for DABCs two initialization
strategies. Three different maximal history depths Hmax were tested (10, 20 and
70). Also errors of a CBC are shown.

which, thereby, is very similar to DABC-2. The sole exception is that the density is decreasing
in DABC-4, whereas it is has a constant level in DABC-2. Note, that the choice DABC-4 is not
requiring a reference solution, it is only a logical extension of the interior initialization. Also note,
that DABC-1 and DABC-2 coincided in the previous test case, but differ in the current test.

The plots in Fig. 9 show the errors (14) of DABC-2 using different maximal history depths.
We clearly observe, that higher history depths result in smaller errors. They all are smaller than
the reference error of a non-reflecting CBC. Although a difference between errors of DABC-2 and
DABC-4 could not be detected visually, the errors of DABC-2 are a minimal smaller. The error
plots of DABC-4 are not shown, since they look equally to DABC-2. As in the one-dimensional
case, DABC-3 shows instabilities and thus corresponding error plots are omitted.

Already at the beginning of the simulation, using the DABC-1 there is a pressure wave generated
at the right boundary traveling into the domain. By this, the whole density level is increased and
remains on a higher niveau. This makes a consideration of Nρ worthless. The pressure wave also
affects the velocity profile for v, as one can see in the left plot of Fig. 10. As before, the same
influence of the maximal history depth is also visible for DABC-1. The errors are significantly
higher compared to DABC-2 and DABC-4.
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Figure 10. Normalized errors (14) (Nv and Nw) for DABC-1 and three maximal
history depths Hmax (10, 20 and 70). Plot also contain errors of a CBC.

All in all, in both test cases the initialization strategy (8) (DABC-2 in the second test case)
produces good results.

5. Conclusions

In this work, the one-dimensional discrete artificial boundary condition (DABC) for the lattice
Boltzmann (LB) method [10] was successfully transferred to two space dimensions. Our formulation
of the DABC was done in a general way, but we set a special focus on the D2Q9 LB model. For the
implementation of the DABC, the LB method was equipped with a so-called subproblem in each
time step, which offers a free parameter, called the history depth. This tuning parameter determines
the number of past time levels, which are taken into account in the subproblems. In addition, this
parameter fixes the size of the subproblems, and thus it determines both, the accuracy and the
computational effort of the DABC. Comparing the DABC with an ideal transparent boundary
condition, any error is caused already in the initialization phase of these subproblems.

In the one-dimensional case, the history depth could be tuned to control the error. We presented
two test cases, a two-dimensional Gaussian pressure pulse and a flow past an obstacle in a channel.
The results of the second test case demonstrated that the history depth controls the error also for
the two-dimensional DABC. By the first test, we could explain the working principle of the DABC:
the solutions of the subproblems are shaped in such a way that they virtually extend the computed
solution of the (actual) computational domain. Then, for the boundary of the computational
domain, all missing information are taken from the subproblems.

The numerical tests showed that our proposed initialization strategy (8) leads to errors smaller
than those obtained by characteristic boundary conditions.
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