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Uncertainty Quantification in Co-Simulation for
Coupled Electrical Circuits

Kai Gausling and Andreas Bartel

Abstract This paper combines co-simulation with uncertainty quantification in a
numerical treatment. Our focus is mainly on the behavior of the stochastic quantities
during the iterations in the co-simulation applied to an electric circuit with several
uncertain parameters. For this purpose we classify the coupling structure of co-
simulation model for a specific electric circuit by using standard theory. Next, we
analyze the stability and rate of convergency for expectation and standard deviation
of our circuit, while using the gPC expansion for the stochastic process.

1 Introduction

Co-simulation is an important method for coupled systems in time domain. Mainly,
if dedicated simulation tools for the subsystems are available, then it is a rele-
vant option. To enhance convergence, co-simulation works on certain time peri-
ods namely windows, where convergence can only be achieved by solving multiple
times the subsystems. Co-simulation applied to coupled ordinary differential equa-
tions (ODEs) always convergences, see e.g. [4]. The situation is different for cou-
pled differential-algebraic equations (DAEs). In such cases convergence can only
be guaranteed if a contraction condition is fulfilled, see e.g. [1]. The theory of co-
simulation shows that its convergence and stability is directly influenced by the
sequence in which the subsystems are computed and also by the coupling interface,
see e.g. [3].

Co-simulation operates on time windows [Tn,Tn +H] and tries to compute the
overall solution iteratively, by decoupled subsystems. Let (k) denote the current
iteration, the old iterates are (k−1). Such a co-simulation scheme can be encode by
splitting functions F,G:
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2 Kai Gausling and Andreas Bartel

ẏ= f(y,z) ↔ ˙̃y = F
(

ỹ(k), z̃(k), ỹ(k−1), z̃(k−1)
)

0= g(y,z) 0= G
(

ỹ(k), z̃(k), ỹ(k−1), z̃(k−1)
)
.

(1)

Then the contraction condition reads:

α := ‖G−1
z(k)

Gz(k−1)‖2 < 1, (2)

where Gz(k) , Gz(k−1) denote partials Jacobians of G, see e.g. [1], [2]. It is still an open
question how uncertainties in coupled systems change the contraction properties. In
general, the contraction factor α may depends on components from the model. In
such cases contraction depends on the balance between several parameters. Con-
sequently, dealing with uncertain components in the co-simulation may change the
contraction condition (2), that is, α will become stochastic.

Our paper is arranged as follows: In section 2 we consider a linear test circuit
with uncertainties, where no algebraic constraints depends on old algebraic iterates
(see section 3). Thus (2) holds for all further considerations. Section 4 provides
an introduction to the gPC as one suitable technique. Section 5 gives insight into
our simulation settings. Finally in section 6, we discuss our numerical simulation
results, especially the rate of convergence when co-simulation shall be applied in
stochastic approaches.

2 Circuit Modeling and Uncertain Test Circuit

Usually, a mathematical model for electric circuits is obtained by modified nodal
analysis (MNA), see e.g. [5]. This leads to the DAE:

E(p) ẋ+A(p)x = f(t) ,

where E describes the dynamic part, A the static part and f contains the time de-
pended sources. We are searching for x, which contains the node potentials and some
branch currents. In addition the matrices E and A include some physical parame-
ters p = (p1, . . . , pq)

T , which we assume to be uncertain. Furthermore we assume
that all parameters are independent random variables in a corresponding probability
space (Ω ,F ,P), with sample space Ω , σ − algebra F and probability measure P.
Here we use two distribution, namely Gaussian and uniform distribution.

Our test example is the 2-level RLC network given in Fig. 1, with uncertain
components p = (R1, R2, C1, C2)

T . We consider the two stochastic models for p:

Ri ∼N (10kΩ ,σ2Ri), or Ri ∼U (10kΩ −δRi,10kΩ +δRi),

Ci ∼N (1pF,σ2Ci), or Ci ∼U (1pF−δCi,1pF+δCi),
(3)

(for i = 1,2). Furthermore we assume inductance L = 1mH and supply voltage
Uin(t) = 1V · cos(ωt) with an angular frequency ω = 2π · 5 · 103 Hz. Applying
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MNA yields a DAE of index-1. To apply co-simulation, we use source coupling, see

Uin(t)

Iin

〈R1〉 L1 IL1

〈C1〉

〈R2〉 L2 IL2

〈C2〉

U0

U1 U2 U3 U4 U5

Fig. 1 Uncertain 2-level RLC circuit applied by supply voltage Uin(t) (reference model). 〈·〉 de-
notes the uncertain parameters.

e.g. [2], to decouple the system into two coupled networks at node U3, see Fig. 2.
Notice that both subsystems can be described by the same (index-1) DAE, with an
additional current source for subsystem 1. The exchange of information between

Uin(t)

Iin

〈R1〉 L1

IL1

〈C1〉 ICo(t)

U (k,k−1)
Co

U0

U (k)
1 U (k)

2
U (k,k−1)

Co

I(k−1,k)
Co

UCo(t)

I(k−1,k)
Co

〈R2〉 L2

IL1

〈C2〉

U0

U (k)
3 U (k)

4 U (k)
5

Fig. 2 Decoupled 2-level RLC network using source-coupling in a co-simulation of Gauss-Seidel
type with uncertain components R1,R2,C1,C2. The coupling variables have two super-indices (e.g.
U (k,k−1)

Co ). The first index gives the subsystem 1 first, the second index the subsystem 2 first case

both subsystem is organized by the additional variables UCo and ICo. Using Gauss-
Seidel scheme, we have to define, which system is computed first.

3 Abstract Coupling Analysis

To analyze coupled systems, a simple method is the fit standard theory of co-
simulation, see e.g. [6]. To this end, we write the DAE model for the circuit given
in Fig. 2 in semi-explicit form:

ẏ1 = f1(y1,z1,z2), 0 = g1(y1,z1), ẏ2 = f2(y2,z2), 0 = g2(y1,y2,z2). (4)

The variables of the subsystems are allocated as follows:
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4 Kai Gausling and Andreas Bartel

y1 :=
[
UCo, IL1

]T
, z1 :=

[
U1, U2, Iin

]T
, y2 :=

[
U5, IL2

]T
, z2 :=

[
U3, U4, ICo

]T
.

Since ∂g1/∂z1 and ∂g2/∂z2 are regular. y1, y2 defines the differential and z1, z2
the algebraic variables. Depending on what subsystem is computed first, we obtain
the following splitting schemes for subsystem 1 first:

F(·, ·, ·, ·) :=

[
f1(y

(k)
1 ,z(k)1 ,0,z(k−1)

2 )

f2(0,0,y
(k)
2 ,z(k)2 )

]
, G(·, ·, ·, ·) :=

[
g1(y

(k)
1 ,z(k)1 ,0,0)

g2(y
(k)
1 ,0,y(k)2 ,z(k)2 )

]
. (5)

Notice that no algebraic constraints depends on old algebraic iterates. Thus the con-
traction factor α vanishes for the splitting scheme (5). Furthermore it becomes ob-
vious, that introducing uncertainty in our co-simulation model does not manipulate
the properties of contraction. Consequently convergence is guaranteed for the split-
ting schemes (5) involving uncertainties by using time step size H < H0.

4 Generalized Polynomial Chaos (gPC)

To compute the stochastic quantities of our uncertain model, the gPC is applied. The
gPC expansion involving a finite number of P summands reads:

f (p)≈ fgPC (p) :=
P−1

∑
j=0

f j (t)Φ j (p) , (6)

with unknown time dependent coefficient functions f j (t) and basis polynomials
Φ j (p), see e.g. [7]. The polynomial basis represents an orthogonal system, which
depends of the random parameters. Due to the orthogonality of the basis, it is easy
to show that the mean and variance of the response respectively read:

IE [ f (p)] = f0, Var
[

fgPC (p)
]
=

P−1

∑
j=1

f 2
j IE
[
Φ

2
j (p)

]
. (7)

The costly part of the gPC expansion is to determine the unknown coefficient func-
tion. For this purpose we employ stochastic collocation. Finally, the total sensitivity
coefficients, which denotes the interactions between several parameters, can be eas-
ily derive by regroup the coefficient functions and subsequent normalization.

5 Numerical Simulation

For all our investigations, a co-simulation is studied in one time window [t0, t0 +H]
with t0 = 0.4 ms. To obtain an adequate quality of approximation on H, a gPC
expansion with maximum polynomial order three is used, thus momenta up to order
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three can be detected. We apply the stochastic collocation method which belongs to
the family of non-intrusive methods. We use the Legendre-quadrature rule of order
five based on tensor-product, which requires to solve the model 81 times. Notice
that these are sample points of Ω .

Our algorithm works in the following manner: For each sample-point out of Ω ,
the reference model is solved in time domain up to t0 to obtain initial values which
are close to the solution. Now we start co-simulation with k iteration steps for each
sample on [t0, t0 +H] using the corresponding initial values. Furthermore, constant
extrapolation of the initial value is used for the initial guess x̃(0)(t) on time window.
Finally, we compute the stochastic momenta (depending on step k).

6 Numerical Results

Using MATLAB R©we first investigate the error behavior related to the stochas-
tic process in the output voltage U5 using different levels of uncertainties for the
splitting scheme (5). For this purpose, we consider a range of deviations for the
resistances and capacitances, which are typical in electrical engineering. To this
end we are focusing our attention on the error in the total sensitivity coefficients.
The error of the solutions on the n-th time window after k iterations x̃(k)c (t) is
measured by comparing with a reference solution xm(t) computed by a mono-
lithic simulation: ∆

(k)
n (t) = xm(t)− x̃(k)c (t), δ

(k)
n := ‖∆ (k)

n ‖∞. Furthermore, we as-
sume that the biggest discrepancy is located at the end of the time window. Please
note that our co-simulation works only on the specified time window H, which
means that there is no error transport between several time windows. For a quan-
titative evaluation we compute the mean error over all total sensitivity coefficients.
As uncertainty we suppose uniform distributed parameters with a variation between
δRi = 0.1 (10%) . . .0.5 (50%) for the resistances and δCi = 0.1 (10%) . . .0.5 (50%)
for the capacitances around the nominal respective values.

Fig. 3 shows the mean error for k = 1,3,5,10 iterations in the co-simulation. It
becomes obvious, that for a high level of uncertainty the error increases. Further-
more, a continuous improvement in the mean error up to k = 10 can be observed
in cases of high uncertainties for Ci and Ri. Accordingly, small uncertainties in our
co-simulation model requires a smaller number of iterations, where the level of un-
certainty in the capacitances mainly controls the rate of convergency.

Next we investigate the contraction and the rate of convergence for expectation,
standard deviation and for the deterministic solution. For our observations, all node
potentials U1, . . . ,U5 are involved. In the case of uniform distributed parameters, we
suppose an variation about δRi = 0.1 (10%) for the resistances and δCi = 0.5 (50%)
for the capacitances. Fig. 4 shows for splitting scheme (5). Thus all quantities have
nearly the same rate of convergence for window sizes 10−8 s < H < 10−4 s. It be-
comes obvious that a further reduction of the window size does not reduce the error
in the expectation and standard deviation. This behavior differs to its deterministic
solution, where a improvement up to the machine precision is achieved. The reasons
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Fig. 3 Mean error over all total sensitivity coefficients obtained by comparing with a reference
solution for k = 1,3,5,10 iterations over H = 0.1 ms. Uniform distribution (legendre polynomials),
Ri ∼U (10kΩ −δRi,10kΩ +δRi), Ci ∼U (1pF−δCi,1pF+δCi)

for this are diverse: The usage of Gauss-Legendre quadrature formulas of order five
produces a numerical quadrature error in each coefficient function f j (t) of (6). Fur-
thermore, the accuracy of the stochastic process is limited by using a finite number
of summands in the gPC expansion.

In order to investigate the performance of contraction, we decrease the window
size by 10% down to [0.4, 0.49] ms. For our tests the minimum error is bounded
by the time integrator precision of 10−3 with which we solve the subsystems. Fig. 4
shows the performance of contraction for different quantities measured by the rel-
ative error. It becomes apparent that the performance for the expectation is much
better than for the standard deviation. Here, expectation is already reproduced after
five iteration steps, whereas the standard deviation requires about ten iterations to
achieve the maximum precision of δ

(k)
n = 10−3. Due to the definition of the expec-

tation, which is exactly represented by the first coefficient function f0, see (7), it
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Fig. 4 (left) Convergence in expectation, standard deviation and in the deterministic solution con-
cerning the node potentials U1,U2,U3,U4,U5 after 0.4 ms for different time step sizes H with four
iterations per time window. (right) Contraction measured by the relative error in dependence of the
iterations k on the time window [0.4, 0.49] ms.

is resolved with a higher quadrature order than the standard deviation. Hence, in
contrast to the standard deviation no approximation error is caused by using a finite
number of coefficient functions in (6). This can explain Fig. 4 right.

An example is given in Fig. 5 and Fig. 6, where the expectation and standard
deviation is presented only for the node potentials U3 and U5 over the time window
[0.4, 0.49] ms. As uncertainty we choose Ri∼U (10kΩ−10%,10kΩ +10%), Ci∼
U (1pF− 50%,1pF+ 50%). Here, expectation is well approximated already after
k = 3 iteration steps, whereas the standard deviation requires more than five itera-
tions to achieve an error of approximately δ

(k)
n = 10−3. In addition there are oscil-

lations in the standard deviation of U3 over H, which are not be further analysed in
this paper. However, tests have shown that the oscillation can be minimize by reduc-
ing the window size. All our investigation holds also by using Gaussian distribution
settings given in (3).
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Fig. 5 Expectation and standard deviation for U3 using different numbers of iteration steps for
subsystem 1 first where uniform distributed components are introduced.
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Fig. 6 Expectation and standard deviation for U5 using different numbers of iteration steps for
subsystem 1 first where uniform distributed components are introduced.

7 Conclusions

We have shown for our test case, that the number of iterations which are needed to
achieve a predefined accuracy is mainly controlled by the level of uncertainty. Co-
simulation models with higher uncertainties naturally require a larger number of it-
erations. Furthermore, uncertain time-dependent components have a greater impact
than uncertain static components regarding the rate of convergency. Concerning our
test example, the speed of contraction for expectation and standard deviation differs
from each other. Thus, different stochastic quantities requires a different number of
iterations to archive a suitable accuracy in co-simulation.

It is a future aim to combine co-simulation and UQ for electrical circuits, where
the contraction factor α does not vanish.

Acknowledgements This work is supported by the German Federal Ministry of Education and
Research (BMBF) in the research projects SIMUROM (grant number 05M13PXB) and KoSMos
(grant number 05M13PXA).

References

1. Arnold, M., Günther, M.: Preconditioned Dynamic Iteration for Coupled Differential-
Algebraic Systems. BIT, vol. 41, pp. 1–25. (2001)

2. Bartel, A., Brunk, M., Günther, M. and Schöps, S.: Dynamic Iteration for Coupled Problems
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