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Abstract. The ESSEX project investigates computational issues arising at exa-
scale for large-scale sparse eigenvalue problems and develops programming con-
cepts and numerical methods for their solution. The project pursues a coherent
co-design of all software layers where a holistic performance engineering process
guides code development across the classic boundaries of application, numerical
method, and basic kernel library. Within ESSEX the numerical methods cover
widely applicable solvers such as classic Krylov, Jacobi-Davidson, or the recent
FEAST methods, as well as domain-specific iterative schemes relevant for the
ESSEX quantum physics application. This report introduces the project structure
and presents selected results which demonstrate the potential impact of ESSEX
for efficient sparse solvers on highly scalable heterogeneous supercomputers.

1 Sparse Solvers for Exascale Computing

Energy-efficient execution, fault tolerance (FT), and exploiting extreme levels of paral-
lelism of hierarchical and heterogeneous hardware structures are widely considered to
be the basic requirements for application software to run on future exascale systems.
Specific hardware structures and best programming models for the exascale systems
are, however, not yet accessible, let alone settled. Thus, development of exascale appli-
cations can be considered as a research project on its own. Existing software structures,
numerical methods, and conventional programming and optimization approaches need
to be reconsidered. New techniques such as FT or parallel execution on heterogeneous
hardware have to be developed.
A wide range of sparse linear algebra applications from quantum physics to fluid dy-
namics have already identified urgent problems which can only be solved with exascale
computers. The relevant sparse linear solvers are typically based on iterative subspace
methods, including advanced preconditioners. At the lowest level, large sparse matrix-
vector multiplications (spMVM) and vector-vector operations are frequently the most
time-consuming building blocks. Most of the available sparse linear (solver) packages
were designed in the early 1990s for moderately parallel, homogeneous, and reliable
computers (e.g., PETSc [1] or (P)ARPACK [2]) or with a strong focus on object orienta-
tion and abstraction (e.g., Anasazi [3]). Numerically intensive kernels are still encapsu-
lated in independently developed libraries (see LAMA [4,5] for a recent project), which
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rules out the opportunity for coherent performance-aware and fault-tolerant co-design
throughout all software layers up to and including the application. For the same reason
this approach makes it difficult to accommodate new hardware architectures (see, e.g.,
the status of GPGPU support in PETSc [1]) and programming models, which is criti-
cal in view of the unknown shape of hardware and software environments for exascale
systems. Autotuning approaches such as, e.g., pOSKI [6], try to relieve the developer
from the tedious task of finding the problem- and hardware-specific optimization op-
portunities. While this may seem attractive, it does not generate true insight into the real
performance issues, and shares the main problems of all encapsulated libraries.
These observations raise doubts about the fitness of existing sparse matrix applica-
tions for future exascale environments: (i) The problem of optimal performance and
energy efficiency on highly parallel, heterogeneous node architectures is far from being
solved. When the ESSEX project started, sparse data formats were strongly hardware-
dependent, which was a major obstacle for software development and code efficiency
on strongly heterogeneous systems. (ii) Existing sparse linear algebra frameworks use
a strictly data-parallel approach, ignoring the need for additional levels of parallelism.
These would allow for the concurrent execution of, e.g., several independent building
blocks, asynchronous communication, or FT schemes. (iii) The standard solution for FT
is classic synchronous file-based checkpoint/restart, which will lead to severe problems
on exascale. Multi-level checkpointing [7] has recently been proposed as an alternative
but it is not clear if those hierarchical disk systems will be affordable in terms of energy
consumption at exascale. There is very little work on automatic FT approaches with
minimal or no file system involvement beyond long-known “RAID-like” ideas [8].
The need for a complete re-design of existing large-scale application software with
these exascale challenges in mind has been recognized by research activities in dense
linear algebra [9]. The sparse linear algebra community still lacks such an initiative, in
particular with respect to the co-design of all software layers, including basic building
blocks, numerical methods, and application layers. Focusing on sparse linear eigen-
problems from quantum physics, the ESSEX project is an attempt to close this gap. It
will deliver methods and programming techniques that can serve as blueprints for other
exascale initiatives in the sparse linear algebra community.

2 ESSEX project overview

The ESSEX project addresses the three fundamental software layers of computational
science and engineering: basic building blocks, algorithms, and applications. The need
for coherent FT approaches and energy efficiency are strongly integrating components
which drive the tight exchange between the classic layers (see Fig. 1). Both vertical
pillars share the important constraint of minimal time to solution. For a more detailed
analysis of the relevance of code optimization for energy efficiency see [10]. Thus, the
complete project is embedded in a structured holistic performance engineering process,
which detects and guides performance potentials across the classic layers. This process
is driven by the activities at the building blocks and successively integrates topics above
them.
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At the application layer, the ESSEX project is motivated by large-scale eigenvalue
problems from quantum physics, including highly relevant application fields such as
graphene and topological insulators. Determining the relevant static and dynamic phys-
ical properties requires addressing various aspects of an eigenvalue problem that in-
volves extremely sparse matrices with dimensions between 109 and 1014: The com-
putation of (i) the minimal and the maximal eigenvalue, (ii) a block of eigenpairs at
the lower end or at the middle of the spectrum, and (iii) high quality approximations
to the complete eigenvalue spectrum. All these aspects are of general interest, and not
restricted to the applications considered in this project.
The algorithms layer has identified appropriate numerical schemes to determine blocks
of eigenpairs including both classic schemes (Lanczos and Jacobi-Davidson [JADA])
with relevant preconditioners and the recently introduced FEAST [11] algorithm. The
kernel polynomial method (KPM) [12] and related polynomial expansion schemes
(ChebTP [13,14],CFET [15]) are employed to compute the density of states, excita-
tion spectra, and dynamical properties. Figure 2 demonstrates how the numerical meth-
ods in ESSEX map to the physical properties to be computed. Enabling these popular
algorithms for exascale is of broad interest. Even the KPM, which has been application-
specific for quantum physics and chemistry for a long time, has recently gained wider
attention [16,17].
The basic building block layer provides a collection of all relevant basic operations
(such as parallel spMVM, vector-vector operations, and global reductions) and efficient
FT strategies, all tailored to the needs of the other two layers. The major design goals
for these building blocks are: (i) “Optimal” performance, in the sense that a suitable per-
formance model is available that describes the relevant execution bottlenecks, and that
the implementation operates at these bottlenecks. (ii) Minimum impact of FT overhead
on time to solution.
Although there is a huge variety of potential programming models to choose from, the
project consistently follows an “MPI+X” approach, where “X” addresses parallelism
on the compute node level, be it multiple cores or accelerators. CUDA, OpenMP, and
POSIX threads are typical choices for “X” in our project.
The major challenges addressed at this layer are, e.g., developing optimized data struc-
tures for all available hardware architectures, obtaining high parallel performance when
executing on heterogeneous compute nodes (using standard CPUs, GPGPUs, and Intel
Xeon Phi concurrently), or hiding the costs of FT schemes based on checkpoint-restart
strategies. Performance engineering, used as a well-defined process targeting “optimal”
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Fig. 1. Basic structure of the ESSEX project. The vertical
activities are driven by a holistic performance engineer-
ing process and span the classic boundaries of application,
algorithms and basic building blocks.
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Fig. 2. The ESSEX research addresses the eigenproblem with
classic and new eigensolvers (Krylov, JADA, FEAST) and
preconditioners, established Chebyshev techniques (KPM,
ChebTP) and novel implementations (CFET). The imple-
mented methods will be part of the Exascale Sparse Solver
Repository (ESSR).

few many all

s
ta

ti
c

d
y
n
a
m

ic

p
h
y
s
ic

a
l 
p
ro

p
e
rt

ie
s

eigenvalues

KPM

preconditioning

ChebTP
CFET

ESSR

FEAST
JADA

Krylov

performance, starts at the basic blocks and is instrumental for developing insights into
the relevant performance-limiting bottlenecks. Since it extends into the algorithms and
application layers, it breaks up abstraction boundaries and enables optimizations that
would be impossible in a pure library-based approach, where building blocks and algo-
rithms are abstracted and inaccessibly wrapped in libraries.
The developments of all layers will eventually contribute to the Exascale Sparse Solver
Repository (ESSR), which will become publicly available.

3 Results and work in progress

This section presents selected results and current work in progress. The topics have
been chosen so as to demonstrate the broad range of activities and the potential general
impact of the ESSEX project.

3.1 Applications

Quantum physics and quantum chemistry applications rely on a variety of numerical
linear algebra techniques. Coming from the application side we can broadly classify the
possible algorithmic choices by whether only a few eigenvalues are needed—such as for
the computation of low-energy properties or ground states—, or whether all eigenvalues
contribute—such as for the computation of spectral functions or dynamical properties
(see Fig. 2).
To illustrate this concept we briefly develop the central computational ideas underly-
ing one particular application scenario, the computation of the electronic properties of
graphene samples [18,19]. At the core of the computation are energy-resolved functions

X(ω) =
1
N

tr[δ (ω−H)X ] =
1
N

N

∑
n=1

δ (ω−En)〈ψn,Xψn〉 (1)

of an observable X . Here, H is the matrix representation of the physical Hamilton opera-
tor, with N eigenvalues En and eigenstates ψn. In this particular expression, all matrices
are symmetric (or Hermitian). Physical quantities such as the electric conductivity are
now obtained as a weighted mean of the form

∫
X(ω) f (ω)dω , where f (ω) is a pre-

scribed scalar function such as the Boltzmann or Fermi-Dirac weight. In the special
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Fig. 3. Density of states (DOS) of
a graphene nano-ribbon [20], com-
puted with the KPM-DOS method (see
Alg. 1).

case X = I and f (ω) ≡ 1, the above function gives the density of states (DOS), which
counts the number of eigenvalues in a given interval (see Fig. 3).

3.2 Algorithms

In (1) all eigenpairs of H contribute, but explicit computation of a substantial fraction
or even of all eigenpairs is not feasible. It is now the application that further dictates the
algorithmic choice.
FEAST algorithm For very narrow f (ω), which occurs for instance at low temper-
atures, we can compute the eigenpairs selected by f (ω) with the FEAST algorithm.
Typically about 200 to 400 eigenpairs are requested. FEAST has not yet reached the al-
gorithmic maturity of JADA and other well-established iterative eigensolvers (cf., e.g.,
[21]). Therefore, performance optimization for FEAST must be accompanied, and pre-
ceded, by enhancements of the basic scheme in order to improve its robustness and
numerical efficiency. Recent methodological progress and first numerical results for
graphene nano-ribbon models are reported in [20,22].
Chebyshev polynomial expansion schemes If more eigenvalues contribute in the sum
(1) for broader f (ω) we compute a polynomial approximation to the entire function
X(ω) with the KPM. In this way, explicit computation of eigenpairs can be avoided.
The KPM is based on the recurrence relation

|v0〉= |v〉 , |v1〉= H̃|v0〉 , |vm+1〉= 2H̃|vm〉− |vm−1〉 (2)

for vectors |vm〉 = Tm[H̃]|v〉, where the Tm(x) are the Chebyshev polynomials of the
first kind. Note that the original matrix has been rescaled to H̃ = a(H−b) such that all
eigenvalues lie in the definition range [−1,1] of the Tm(x). To this end, an approximation
to the minimum and maximum eigenvalues is computed initially, for which the Lanczos
algorithm can be used. The corresponding Chebyshev moments µm =

∫
X(ω)Tm(ω)dω

of X(ω) are obtained from the scalar products

µm = 〈v|Tm(H̃)X |v〉= 〈vm|X |v0〉. (3)

From these moments, the function X(ω) is reconstructed as a Fourier transform. The
full trace tr[. . .] in (1) is replaced by a stochastic sum over several random starting
vectors |v〉. For more details see our KPM review [12].
Several computational steps can now be identified in the above scheme: spMVM, vector-
vector operations, scalar products, and an outer loop over random vectors. A straightfor-
ward implementation of these steps leads to the KPM-DOS algorithm discussed below
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Fig. 4. Performance of block spMVM for
various numbers of vectors (nb) involved
in the vector block. Measurements have
been performed on a single Intel Xeon E5-
2660 v2 processor (fixed clock speed of 2.2
GHz). The matrix has approximately 107

rows and an average number of non-zero
entries per row of Nnzr = 14.

(Alg. 1). Performance engineering, which exploits the specific combination in which
the individual computational steps occur together with the different levels of paral-
lelism, results in a highly efficient algorithm (cf. Sect. 3.4) that is tailored to achieve
best performance for the KPM-DOS application class represented by Fig. 3.
In this way application-specific information enters at all stages of the development cy-
cle, which is characteristic for the strong vertical integration that we pursue in the ES-
SEX project. It applies equally to the other applications and algorithms addressed. For
instance in the graphene application, specifically in the computation of time-resolved
electron dynamics, the above FEAST/KPM steps are complemented by computations
of the matrix exponential e−iHt , for which we use again Chebyshev techniques.
Parallel block JADA Many quantum physics applications, such as strongly correlated
systems, require the computation of a few extremal eigenvalues of a symmetric matrix,
for which we use the classic JADA algorithm. The implementation of iterative JADA
solvers relies on spMVM and (block) vector-vector operations. Hence, a functional in-
terface to the basic building blocks library GHOST (see Sect. 3.3) has been developed.
In order to increase the impact of our new JADA implementation, we also implement
this interface for other linear algebra packages such as the Trilinos5 project. On the
other hand, the abstraction introduced here allows us to exploit the work of others and
makes GHOST compatible with, e.g., the “tall skinny QR” factorization (TSQR), block
Krylov-Schur and communication-avoiding GMRES in Trilinos.
Two JADA variants have been implemented: A single-vector method as a reference
solver and an experimental pipelined block method that performs as key operations
a block spMVM (spMVM applied to multiple vectors) and a block orthogonalization
step [23]. Block spMVM reduces overall main memory data traffic as compared to
an equivalent series of standard spMVMs. Using an highly optimized block spMVM
routine (from the GHOST library) based on a row-wise storage scheme for the vector
block, a performance gain of almost four can be typically achieved on a full socket
basis (cf. Fig. 4). In a set of representative experiments this advantage outweighed the
increase in floating point operations due to the blocked JADA algorithm in almost all
cases so that an overall speed-up of blocked JADA of around 50% is achieved on the
socket level for recent Intel processors. The performance advantage continues into the
parallel region as demonstrated by first measurements using a moderately sized test

5 http://trilinos.sandia.gov

http://trilinos.sandia.gov
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Fig. 5. Hybrid-parallel
(MPI+OpenMP) execution times
of the block JADA solver for up to
64 nodes (1280 cores) of a Infiniband
cluster using the compute nodes spec-
ified in Fig. 4, i.e. each node carries
20 physical cores. The matrix has
about 1.6× 108 rows and 2.6× 109

non-zero entries.

matrix (see Fig. 5). Note that in the block variant the average message size increases (at
constant overall communication volume) and we have furthermore eliminated global
synchronization points wherever possible.
In the current package, JADA uses a pipelined block GMRES method without further
preconditioning for the solution of the correction equation. In the future we will in-
tegrate advanced preconditioning techniques to accelerate convergence. Furthermore,
algorithmic overlapping of communication and computation will be made possible
by exploiting the GHOST task queueing system, which will enable, e.g., overlapping
spMVM communication with numerical operations in other JADA or GMRES loops.
Another focus of future work will be to include GPGPUs in all JADA operations, which
is already possible with GHOST, but not fully implemented in our interface.

3.3 Basic Building Blocks

As a first step towards a flexible repository of basic building blocks, multi-threaded
low-level routines for basic operations such as spMVM, vector-vector operations, etc.,
were developed. Naturally, the spMVM has received special attention since it is the
hot spot in most of the algorithms employed in the project. OpenMP and CUDA were
chosen as the “X” programming model in order to address the most popular computing
devices in modern, heterogeneous clusters. On the distributed-memory level, the MPI
implementation allows for a simple MPI-only model as well as for hybrid approaches
where each process owns multiple threads, possibly dedicated to the separate tasks of
communication and computation. This makes it possible to achieve an explicit overlap
between computation and communication, even if the underlying MPI implementation
does not support truly asynchronous point-to-point transfers for large messages.
The FT aspect of the building blocks layer was initially addressed by an implementa-
tion of checkpointing for a lattice-Boltzmann flow solver using dedicated checkpoint
threads [24], by which we could demonstrate the feasibility of asynchronous check-
pointing and its low overhead on modern commodity systems. In order to get a more
complete view of available checkpointing techniques, several existing solutions were
investigated and compared [25,26]. However, checkpoint/restart is only the most ba-
sic FT technique. Future systems will not be able to sustain the continuous I/O load
caused by checkpoint/restart when the job-level mean time between failure is of the
order of minutes. Hence, research is going on in many directions in search for fault-
tolerant programming models which enable applications to continue running even if a
node fails. Since the MPI standard does not yet contain any such features today, we
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Listing 1.1. Spawning a multi-threaded computation and a single-threaded checkpointing task
using GHOST.

// define task: checkpointing with 1 thread

ghost_task_create (&chkpTask , 1, curTask ->LD, &chkp_func , \

(void *)& chkp_func_args , GHOST_TASK_DEFAULT , NULL , 0);

// define task: compute with N-1 threads

ghost_task_create (&compTask , curTask->nThreads-1, \

curTask ->LD , &comp_func , (void *)& comp_func_args , \

GHOST_TASK_DEFAULT , NULL , 0);

// initiate tasks

ghost_task_enqueue(chkpTask ); ghost_task_enqueue(compTask );

// wait for completion

ghost_task_wait(chkpTask ); ghost_task_wait(compTask );

have first ported a distributed-memory spMVM operation to GPI [27]. GPI6 is an open
source implementation of the GASPI PGAS standard, and explicitly supports continu-
ous execution after hardware failures. Work is ongoing to test these facilities using the
KPM-DOS application.
Taking as much complexity as possible out of the developer’s hands without sacrificing
full control over performance and execution modes (such as affinity, threading, func-
tional parallelism) were conflicting goals in the development of the basic blocks layer.
We have addressed this challenge by developing GHOST (General Hybrid Optimized
Sparse Toolkit). GHOST is a library that can be used from C/C++ and Fortran pro-
grams. It implements a flexible thread-tasking model on the process level, providing the
required affinity and resource management functions to support functional parallelism
as needed by all project layers. For instance, a background task for parallel checkpoint-
ing can be initiated with a single function call, while another task is executing a sparse
MVM (see Listing 1.1).
Addressing heterogeneity, especially when dealing with sparse matrices, requires more
than a proper choice of programming model. The optimal format for storing sparse ma-
trices was, up until recently, highly hardware-dependent: On standard cache-based pro-
cessors the compressed row storage (CRS) format usually leads to best performance,
while GPGPUs require the fundamentally different ELLPACK or one of its deriva-
tives [28]. On vector computers, the jagged diagonals storage (JDS) is most suitable
since it leads to long, easily vectorizable inner loops, while the optimal format for the
new Intel Xeon Phi architecture was yet to be found. In the basic building blocks layer
we have developed SELL-C-σ , a sparse matrix storage format that yields best or com-
petitive performance on all modern computer architectures (see Fig. 6), with the added
benefit of saving memory compared to the popular ELLPACK-based variants on GPG-
PUs [29]. This format facilitates the programming of heterogeneous hardware, since
load balancing and FT features do not have to take format conversions into account.

6 http://www.gpi-site.com

http://www.gpi-site.com
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Fig. 6. Relative performance benefit of the unified SELL-32-σ format over the vendor-supplied li-
brary spMVM performance for twelve “non-pathological” test cases in the UoF matrix collection
(see [29] for details) on Intel Sandy Bridge (“SNB”), Intel Xeon Phi, and Nvidia K20. A format
similar to SELL-C-σ will be supported in a future release of the Intel Math Kernel Library [32].

Furthermore it will greatly ease the development of efficient code on upcoming unified
memory architectures, where the host CPU and the accelerator hardware share mem-
ory. SELL-C-σ has immediately been taken up and adapted to special needs by several
research groups [30,31].

3.4 Holistic Performance Engineering

The performance optimization process applied to the computation of the DOS with the
KPM (KPM-DOS, for X = I in (1)) is a simple but very instructive example for the
advantages of a holistic view on the complete software stack.
A standard scheme for computing the Chebyshev moments {µm;m = 0, . . . ,M} for a
given M is shown in Alg. 1 (middle loop over m). In terms of computational complexity
the relevant step is the construction of the vectors |vm〉 = Tm[H̃]|v〉 through the recur-
rence (2). Note that, using the relation Tm+n(x) = 2Tm(x)Tn(x)−Tm−n(x), the algorithm
can be formulated as presented, delivering two moments (µ2m = 2η2m− µ0,µ2m+1 =
2η2m+1−µ1) per spMVM operation.
The Chebyshev scheme requires a spMVM routine involving the original matrix H and
various vector-vector operations including a scalar product as basic building blocks.
Typically, highly optimized subroutines are provided by an external low-level library
and are called in the order shown. As a consequence, besides the spMVM, eight vectors
of matrix dimension have to be loaded and four stored from/to main memory, generating
data traffic which can be as high as in the spMVM alone. Extending the optimization
scope to the algorithmic layer allows to define a tailored spMVM routine that eliminates
all data transfers for the vector-vector operations. Those operations are performed in the
spMVM step when the relevant data is available in registers or in the L1 cache. Thus,
the overall data traffic is reduced to a single basic spMVM step (see Alg. 2). Further
performance potential becomes accessible if the optimization scope also includes the
application problem, which is the KPM-DOS computation. Here, the outer loop runs
over a set of random vectors for which the Chebyshev moments are computed inde-
pendently, loading the full matrix in each iteration. Applying the tailored spMVM to
a block of random vectors can add the substantial performance gains demonstrated in
Fig. 4 to our application scenario. The optimal number of vectors in the block is set by
a subtle interplay of matrix dimension, matrix bandwidth, and cache size, and is subject
to current research in ESSEX. For the benchmarks presented below, eight vectors per
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for r = 0 to R−1 do
|v〉= |rand()〉 ;
Initialization steps and computation of µ0,µ1
for m = 1 to M/2 do

swap(|w〉, |v〉);
|u〉 = H|v〉 ;
|u〉 = |u〉−b|v〉 ;
|w〉 = −|w〉 ;
|w〉 = |w〉+2a|u〉 ;
η2m = 〈v|v〉 ;
η2m+1 = 〈w|v〉 ;

end
end

Algorithm 1: Basic scheme to compute the Chebyshev moments (KPM-DOS) for a
set of R random vectors {|rand()〉} using the standard spMVM operation.

block are chosen, which reduces the overall data traffic for loading matrix information
accordingly. Note that the use of block vectors is only possible if KPM is applied to
compute the density of states. If a static excitation spectrum is determined there is no
outer loop in the scheme.
For the test matrix and a single socket of the compute node used in Fig. 4, the two suc-
cessive optimizations have improved the performance from 5.5 GF/s (basic version) to
8.3 GF/s (tailored spMVM) to finally 21.6 GF/s (blocked tailored spMVM). Though the
matrix is rather small, the KPM scheme is still completely memory bound. Hence, con-
sidering all software layers in the optimization process results in an almost 4× speed-up.
Note that in the basic version each of the different subroutines had been individually
well optimized: The basic spMVM step runs at a performance of 6.5 GF/s, indicat-
ing a very good utilization of the memory bandwidth bottleneck (45 GB/s read-only
bandwidth for the test system) according to the spMVM performance model presented
in [29].

for r = 0 to R−1 do
|v〉 = |rand()〉;
|w〉 = a(H−b)|v〉 & µ0 = 〈v|v〉 & µ1 = 〈w|v〉 ;
for m = 1 to M/2 do

swap(|w〉, |v〉);
|w〉 = 2a(H−b)|v〉 −|w〉 & η2m = 〈v|v〉 & η2m+1 = 〈w|v〉 ;

end
end

Algorithm 2: Improved computation of Chebyshev moments (KPM-DOS) with a
tailored spMVM operation. Operations chained by “&” in a single line do not cause
main memory traffic as they are performed in the spMVM operation.
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4 Conclusions

In the first 18 months the ESSEX project has made substantial contributions to the
sparse linear algebra community reaching far beyond its application area. Other groups
have already picked up several results, and new collaborations with projects both within
SPPEXA and beyond have been established. A preliminary version of the Exascale
Sparse Solver Repository (ESSR) will be released by the end of 2014.
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