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Preface

The bi-annual conference on Scienfic Computing in Electrical Engineering is an excellent environment
for scientific exchange also of intersectorial research. It brings together scientists from applied math-
ematics, electrical engineering, computer sciences as well as scientists from industry. The workshop
character of SCEE is an important feature, where all talks are given in the plenary and also posters
are presented with an introductory slide. Thus, it builds an fruitful basis for intensive discussions on
modeling and numerical simulation in both electric circuits and electromagnetic fields. It makes the
conference a unique meeting.

The SCEE started as a national German meeting in Darmstadt (1997) and Berlin (1998). It became
international from 2000 on and was held at the following places: Warnemünde, (Germany, 2000),
Eindhoven (The Netherlands, 2002), Capo D’Orlando (Italy, 2004), Sinaia (Romania, 2006), Espoo
(Finland, 2008), Toulouse (France, 2010), Zurich (Switzerland, 2012).

The 10th edition, the SCEE 2014, is held in Wuppertal from July 22 to July 25, 2014. The venue is the
historical city hall of Wuppertal (Historische Stadthalle Wuppertal), which is a remarkable place (also
member of the Historic Conference Centers of Europe). The SCEE 2014 has five main directions:

• computational electromagnetics (CEM)

• electric circuit and device modeling and simulation (Circ)

• coupled problems (CP)

• model order reduction (MOR)

• mathematical and computational methods (Meth)

The abstracts within this book have succuessfully passed a review process, which was executed by the
Program Committee and the Local Organizing Committee for support. All aurthors of these accepted
contributions are invited to submit full paper. After a peer-review process, the accepted full papers
will be published in the Springer Series ”Mathematics in Industry”.

In addtion, the authors of excellent proceedings publications will be invited to submit an extended
version. This extended version needs to include further unpublished material to allow for a second
publication. These papers will be submitted for a special issue of the open access Springer journal
”Mathematics in Industry” with a compulsory, additional review process. However, if the invited
publication is accepted, the organizers of the conference will cover the publication fee.
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We thank all invited speakers to accept our invitation to Wuppertal. Furthermore, we would like to
thank all authors for their contributions; generally the the quality of the abstracts has been quite high.
We are also grateful to our sponsors for their material and finanical support.

Finally, we cordially welcome all participants to Wuppertal and wish you a fruitful and inspiring
meeting.

Wuppertal, July 2014 Andreas Bartel
Carsten Cimala

Markus Clemens
Michael Günther

Jan ter Maten

vi



SCEE 2014 – Wuppertal, Germany vii

Committees

Local Organizing Committee

Prof. Dr. Michael Günther (Chairman)
Prof. Dr. Markus Clemens (Co-Chairman)
Dr. Andreas Bartel
Dr. Jan ter Maten
Carsten Cimala, M.Sc.

Conference Desk

Christa Kelly
Lara V. Knist, B.A.
Elvira Mertens

Scientific & Program Committee

Prof. Gabriela Ciuprina (Politehnica University of Bucharest, Romania)
Dr. Georg Denk (Infineon, Germany)
Prof. Dr. Michael Günther (University of Wuppertal, Germany)
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Approximation Methods to solve Stochastic Problems in Computational
Electromagnetics

Stéphane Clénet

L2EP, Arts et Métiers ParisTech, 8, Bd Louis XIV, 59046 Lille cedex, France, stephane.clenet@ensam.eu

Summary. To account for uncertainties on model para-
maters, stochastic models can be used. The model param-
eters are then random fields or variables. To solve these
models several methods are available. In this communica-
tion, we will focus on the solution of stochastic problems in
computational electromagnetics using approximation meth-
ods. Some applications in low frequency will be presented
in order to illustrate the possibilities offer by the stochastic
approach but also its current limitations.

1 Context

Applying a numerical method (FEM, FIT, ...) to
solve the Maxwell equations leads to valuable tools
for understanding and predicting the features of elec-
tromagnetic devices. With the progress in the fields of
numerical analysis, CAD and postprocessor tools, it
is now possible to represent and to mesh very com-
plex geometries and also to take into account more
realistic material behavior laws with non linearities,
hysteresis .... Besides, computers have nowadays such
capabilities that it is customary to solve problems
with millions of unknowns. The modeling error due
to the assumptions made to build the mathematical
model (the set of equations) and the numerical errors
due especially to the discretisation (by a Finite Ele-
ment method for example) can be negligible. Conse-
quently, in some applications, if a gap exists between
the measurements, assuming them perfect, and the re-
sults given by the numerical model, it comes from de-
viations on input parameters which are not in the “real
world” equal to their prescribed values.

The origins of these deviations are numerous and
are related to either a lack of knowledge (epistemic
uncertainties) or uncontrolled variations (aleatoric un-
certainties). For example, mechanical parts are man-
ufactured with dimensional tolerances whereas some
dimensions, such as air gaps in electric machines, are
critical as they strongly influence performance. Be-
sides uncertainties in material composition, the ma-
terial characteristics which change with uncontrolled
environmental factors (humidity, pressure, etc.) are
also often unknown [1]. Even if the environmental
factors are perfectly known, in some situations, the
behavior law parameters can′t be identified because
measurements are not possible under the right exper-
imental conditions. Consequently, to be more realis-
tic, numerical models must now be able to take into
account uncertainties. The stochastic approach,which

consists in representing the uncertain parameters as
random variables, (the output variables are then also
random variables) is one possible way to model and
to evaluate the influence of the uncertainties on the
parameters. In the 90′s, researches on quantification
of uncertainties in numerical models using stochastic
approaches first began in the field of mechanical and
civil engineering [2]. In the 2000′s, this approach has
met with renewed interest with the development of
approximation methods based especially on truncated
polynomial chaos that offer a higher convergence rate
than the Monte Carlo Simulation Method if the model
outputs have smooth variations according to the input
random parameters.

In this communication, we will focus on the solu-
tion of stochastic problems in computational electro-
magnetics using approximation methods. Some appli-
cations in low frequency will be presented in order to
illustrate the possibilities offer by the stochastic ap-
proach but also its current limitations.

2 Solution of the Stochastic Problem

In the deterministic case, the use of a numeri-
cal method to solve a low frequency electromagnetic
problem requires the solution of a linear equation sys-
tem:

SX = F (1)

With X the vector of unknowns, S the stiffness matrix
and F the source vector. When accounting for the un-
certainties using the stochastic approach, the input pa-
rameters are then modelled by random variables p(θ).
The parameters p(θ) are related either to the geome-
try or to the behaviour laws of the materials or to the
sources. The output X of the electromagnetic model
(1) becomes then random and verifies the following
equation system:

S(p(θ))X(p(θ)) = F(p(θ)) (2)

Among the different methods available to solve
the problem (2), approximation methods are of great
interest when the solution is sufficiently regular. In-
deed, the speed of convergence is very fast according
to sampling techniques like the Monte Carlo Simula-
tion Method. We seek for a solution under the form:

1
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X(p(θ)) ≈
P∑

i=0

XiΨi(p(θ)) (3)

With Xi unknown vectors of scalar coefficients and
Ψi[p(θ)] the approximation functions which are of-
ten multivariate polynomials such as truncated Poly-
nomial Chaos Expansion (PCE). The vectors Xi can
be determined by solving only one but often huge
equation system obtained by applying the Galerkin
method, so called intrusive method [2]. Methods (so
called non intrusive) of projection, collocation or re-
gression [4] based on the solution of numerous deter-
ministic problems (1) for well suited parameter values
(p1, ..., pd) can be also implemented. The total num-
ber of polynomials in the truncated PCE is equal to:

P =
(M+p)!
M!p!

(4)

With M the number of random parameters and p the
maximum order of the multivariate polynomials Ψi.
We can see that P increases exponentially with M
which is usually so-called the “curse of dimension-
ality”. In practice, if M is higher than a dozen, the
size P of the approximation basis becomes too large
to be practically computed. It is then necessary to use
adaptive methods, i.e., to build the basis of approx-
imation automatically, according to the model out-
put. Methods have been proposed in the literature to
construct approximations called “sparse” approxima-
tions, in which the number of terms of the basis is
controlled [3–5]. the different types of methods will
be presented and compared.

3 Applications

In the field of computational electromagnetics, the
development and the application of such models have
started in the early 2000′s and know a growing inter-
est in the community [7–9]. To illustrate the stochastic
approach, examples of application will be presented.

A Eddy Current-Non Destructive Testing problem
where some material characteristics are assumed to be
random will be detailled. To solve this problem, the
Galerkin method and an Adaptive Projection method
are compared [4]. This study shows that the stochastic
approach is a powerful tool for improving the accu-
racy of models by determining the input parameters
whose uncertainties strongly influence the quantity of
interest. It can also be very helpful to develop indi-
cators based on measurements that are robust, that is
to say that these indicators are few influenced by the
variability of the input parameters.

The influence of the dimension variability on the
performances of an electrical machine is also stud-
ied when the number of random parameters is about
a dozen [9, 10]. A sparse approximation has been de-
duced applying a least angle regression [5]. The aim
is to propose a methodology based on a stochastic ap-
proach to assess the influence of the variability of the

fabrication process on the performances of the elec-
trical machines.
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Summary. In general, the accuracy of mesh based electro-
magnetic simulations strongly suffers from mesh cells that
are cut by material boundaries under an arbitrary angle. The
topic of this contribution is a generalized material averag-
ing formula for the Finite Integration Technique that is not
deranged by skewed material interfaces. An adapted solver
based on this formula will be shown to yield more accurate
results compared to a conventional approach.

1 Introduction

In order to simulate the electromagnetic properties of
an object, its geometry and material have to be dis-
cretized. Commonly, a computational mesh with a
finite number of elements (nodes, edges, facets and
volumes) is employed for that purpose. The higher
the number of elements, the more accurate the ob-
ject’s discrete representation usually gets. Unfortu-
nately, the computational effort also rises with in-
creasing elements. It is therefore desirable to find a
discretization, that accurately maps the object’s ge-
ometry and material to a reasonably coarse mesh.

A possible approach is to use a mesh, whose facets
adapt well to material discontinuities. The most popu-
lar example of this kind is the tetrahedral mesh. How-
ever, its irregular structure makes it hard to handle ef-
ficiently. Nevertheless, its low discretization error of-
ten makes up for the higher computational effort.

Hexahedral meshes, especially those aligned to a
Cartesian coordinate system, offer superior manage-
ability and, in general, yield faster algorithms com-
pared to tetrahedral meshes. Their main disadvantage
is the preassigned direction of edges and facets along
coordinate lines. Hence, material discontinuities usu-
ally cause higher discretizations errors than on a tetra-
hedral mesh.

Various attempts have been made in order to mit-
igate this error. For interfaces to perfect electric con-
ductor for example, a technique to retain the numeri-
cal method’s original convergence rate is well-estab-
lished [1], [2]. For dielectric interfaces, on the other
hand, ongoing research has not yet culminated in a
method as efficient and at the same time robust as [1],
[2]. The most promising approaches rely on an artifi-
cial anisotropic material tensor ( [3], [4]). A study on
methods based on a priori known field behaviour can
be found in [5].

By means of the Finite Integration Technique [6],
this contribution’s topic is the deduction and applica-
tion of an alternative approach to achieve good accu-
racy for skewed dielectric interfaces.

2 Finite Integration Technique

_ei

Li

__
diÃi

n t

εa

εb

Pi

G

G̃

Fig. 1. Portion of a staggered Cartesian grid system (G: pri-
mary mesh, G̃: dual mesh) with material interface (dashed
line).

By evaluating the integral form of Maxwell’s equa-
tions on a staggered grid system consisting of a pri-
mary (G) and a dual (G̃) mesh (cf. Fig. 1), a matrix-
vector formulation can be derived:

C_e =− d
dt

__b, S̃
__d = q (1)

C̃
_
h =

d
dt

__d+
__
j , S

__b = 0 (2)

For a detailed explanation of the symbols and their
relationship cf. [6]. The electric grid voltage vector _e
contains the electric field integrated along each pri-
mary edge Li. The corresponding electric grid flux is
obtained by integrating the electric displacement D
over the dual facet Ãi:

_e i =
∫
Li

E ·ds,
__
d i =

∫∫
Ãi

D ·dA (3)

Similar to the well-known identity D = εE, there
exists a relationship between electric grid voltages
and fluxes, which can be expressed by means of a di-
agonal matrix Mε :

3
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__d = Mε
_e (4)

In order to derive a closed form expression for Mε , its
ith main diagonal entry is evaluated using (3):

Mε,i =

∫∫
Ãi

D ·dA∫
Li

E ·ds
(5)

Assuming a material interface, that is strictly parallel
or perpendicular to edge Li, (5) approximates to the
following expressions [5]:

M‖
ε,i =

Ãi 〈ε〉Ãi

Li
(6)

M⊥ε,i =
Ãi

Li 〈ε−1〉Li

(7)

Therein, 〈ε〉Ãi
stands for the permittivity’s mean value

over the dual area Ãi and
〈
ε−1
〉

Li
is the inverse per-

mittivity’s mean along the primary edge Li. Note, that
compared to (5), these formulae no longer depend on
the electric field or displacement, which enables them
to be calculated in preprocessing.

However, very often the assumption of parallel or
perpendicular material interfaces can’t be met by the
mesh. In the following section, a more general ap-
proximation to (5) for skewed interfaces is introduced
in order to improve accuracy.

3 Generalized Material Averaging

Starting from (5), the electric field E and displace-
ment D are decomposed into components tangential
(t) and normal (n) to the material interface (cf. Fig.
1). Furthermore, the integrations are carried out

• separately for each side of the interface (indices a
and b)

• over those components, that are continous at the
interface (Et and Dn)

Mε,i =

∫
Ãa
(εaEt +Dn) ·dA+

∫
Ãb
(εbEt +Dn) ·dA∫

La

(
Et +

1
εa

Dn

)
·ds+

∫
Lb

(
Et +

1
εb

Dn

)
·ds

(8)
So far, no approximations are present.

The next step is to assume each integrand being
constant over its respective region of integration. This
leads to an integral-free formulation of (8). Since, in
general, the interface intersects both the primary edge
and dual facet, Et and Dn need to be evaluated at up
to 4 different locations. Advantageously, the restric-
tion to continous components reasonably allows for
the assumption, that each of them can be replaced by
their value at the intersection of edge and facet, de-
noted by Et|Pi and Dn|Pi . The result is the following
generalized material averaging formula:

Mε,i ≈
Ãi

Li

〈ε〉Ãi
eξ ·Et|Pi + eξ ·Dn|Pi

eξ ·Et|Pi + 〈ε−1〉Li
eξ ·Dn|Pi

(9)

The edge’s direction (x, y or z) has to be substituted
for ξ .

If the interface is parallel to the ξ -directed edge,
the dot product eξ ·Dn|Pi vanishes, eξ ·Et|Pi cancels
out and (6) results. Analogously, (7) follows for a per-
pendicular interface.

In all other cases, (9) blends facet based averaging
(〈ε〉Ãi

) with inverse length averaging (
〈
ε−1
〉

Li
). Note,

that opposed to those methods proposed in [3] and [4],
the resulting matrix remains diagonal.

4 Application

In practice, (9) can only be incorporated gradually
into existing algorithms, because usually no field in-
formation is available a priori.

For an electrostatical example, which is based
on iteratively solving a linear system of equations, a
modified solver is studied. Initially, the system matrix
is built by means of (6) or (7). As soon as the solution
is sufficiently accurate, eξ ·Dn|Pi and eξ ·Et|Pi are es-
timated where appropriate. Upon updating the system
matrix according to (9), the solver is restarted. This
procedure can be repeated arbitrarily often. The gain
in accuracy is shown to overcompensate the increased
computational effort.
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Summary. We consider the eddy current model in the pres-
ence of rigid moving conductors, a situation commonly
encountered in the simulation of electrical machines. Our
method exploits the Galilean invariance and uses a La-
grangian description to treat moving parts. The mesh of the
dynamic components is moved in every time step which
leads to sliding, non-conforming mesh interfaces which are
treated in the framework of DG-methods. The resulting sys-
tem matrix is sparse, symmetric positive semi-definite and
is easily solved with iterative methods.

1 Introduction

The Eddy Current model is commonly used for the
simulation of various electrical machines. In many
cases the design consists of moving, conducting parts
which are separated from the static parts by a non-
conducting material (e.g. air). Typical applications are
electric motors/generators, circuit breakers, railguns
or Eddy Current brakes. In order to deal with the mov-
ing components, one can define the electro-magnetic
fields relative to a laboratory frame and extend Ohm’s
law by a convective σv×B term (upwinding may be
necessary [4]).

However, a more elegant method is obtained by
taking a Lagrangian point of view, and attaching the
electro-magnetic quantities to the underlying conduc-
tor. Because the Eddy Current model is invariant un-
der Galilean transformations [2], there is no need to
treat the σv×B term separately (Sect. 3, [3, 6]). This
implies the use of separate sub-meshes for the moving
and the static parts. Non-conforming interfaces with
hanging nodes typically exist between them. Mor-
tar type methods restore the continuity by introduc-
ing additional Lagrange multipliers [7]. Alternatively
one can consider the problem in mixed form and treat
the non-conforming interface with Locally Discontin-
uous Galerkin techniques [1].

In this work we use a single-variable formula-
tion and handle the hanging nodes with Nitsche’s
Method [8], also called Symmetric Interior Penalty
method (see Sect. 2). The resulting method is easily
analyzed in the framework of Discontinuous Galerkin
methods and convergence can be proven [3].

2 Non-conforming interfaces

Consider the setting depicted in Fig. 1: There is a con-
ductor Ωc and two permanent magnets Ωm which are

Fig. 1. Cross section of the 3D tube with the airbox and
permanent magnet inside.

surrounded by the airbox Ωac respectively Ωam. We
are interested in the magnetic field B = ∇×A in the
domain Ω := Ωc ∪Ωac ∪Ωm ∪Ωam, and compute it
by solving Ampère’s Law,

∇×
(

1
µ

∇×A
)
= ∇×Mi,

n×A = 0 on ∂Ω .

(1)

Herein the material has the constant permeability µ

and a magnetization Mi is prescribed on the perma-
nent magnets (supp(Mi) ⊂ Ωm). Note that we have
deliberately omitted a gauge condition (e.g. ∇ ·A = 0)
in (1) which would render the solution unique. The
advantage is that the resulting system matrix is sym-
metric positive semi-definite and can be easily solved
with the preconditioned conjugate gradient method
[5].

For the discretization we require four meshes Tc,
Tac, Tm, Tam which are conforming in the respec-
tive sub-domains. The global mesh T := Tc∪Tac∪
Tm ∪ Tam may have non-conforming interfaces at
Γ := Ωac ∩Ωam, but at all other inter-mesh faces the
elements have to match.

The discrete solution Ah is sought in the space

W h
0 := {Ah ∈ R1 (Tc∪Tac)×R1 (Tm∪Tam)|

n×Ah = 0 on ∂Ω} , (2)

where R1 is the space of first order edge functions.
Note that along Γ the global shape functions are not
even tangentially continuous, i.e. W h

0 6⊂ H(curl;Ω).
It is therefore necessary to couple the degrees of free-
dom across the interface Γ which is realized by pe-
nalizing tangential discontinuities . This is incorpo-
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rated into the variational formulation which reads as
follows (cf. [3]): Find Ah ∈W h

0 such that

aSIP
h (Ah,A′h) =

(
Mi,∇×A′h

)
(3)

for all A′h ∈W h
0 . The bracket (·, ·) denotes the usual

L2 inner product and the Symmetric Interior Penalty
bilinear form is given by

aSIP
h (Ah,A′h) =

∫
Ω

(
1
µ

∇×Ah

)
·
(
∇×A′h

)
−

∑
F⊂Γ

∫
F

{
1
µ

∇×Ah

}
·
[
A′h
]

T −

∑
F⊂Γ

∫
F

{
1
µ

∇×A′h

}
· [Ah]T +

∑
F⊂Γ

η

hF

∫
F
[Ah]T ·

[
A′h
]

T .

(4)

Herein {·} and [·]T stand for the vector average,
respectively the tangential jump across a face F of the
mesh T and η is the penalty parameter (which must
be chosen sufficiently large) [3].

3 Moving frame of reference

In this section we study the evolution of the magnetic
field B = ∇×A; We start from the initial situation
depicted in Fig. 1 and begin to move the conductor
together with its airbox to the right with prescribed
velocity vm(t). The initial state is thus given by the
solution of (3) and the evolution over time is naturally
described by the A-based eddy current model which,
expressed in laboratory coordinates x, reads as

σ
∂A
∂ t

+∇×
(

1
µ

∇×A
)
= ∇×Mi +σv× (∇×A).

(5)
Herein the scalar conductivity σ is zero in Ωac(t)∪
Ωam and positive in Ωm∪Ωc(t), and v(x, t) is the lo-
cal velocity field.

Furthermore we introduce the moving coordinate
system x̃(x, t) = x−

∫ t
0 vm(τ)dτ such that it follows

the moving subdomains Ωc(t)∪Ωac(t).
Thanks to the Galilean invariance [2] the eddy

current equation (5) takes exactly the same form if
it is expressed w.r.t. the local coordinate system x̃:

σ
∂ Ã(x̃, t)

∂ t
+ ∇̃×

(
1
µ

∇̃× Ã(x̃, t)
)
=

∇̃×M̃i
(x̃)+σ ṽ× (∇̃× Ã(x̃, t)). (6)

The quantities in the moving frame are related to the
quantities in the rest frame by [6]

Ẽ = E+vm×B, B̃ = B, M̃i
= Mi,

ṽ = v−vm, t̃ = t, µ̃ = µ, σ̃ = σ ,
(7)

which is accomplished by the transformation [3]

Ã = A−
∫ t

0
∇(vm ·A)dτ. (8)

A proof of this will be presented in the full paper.
Note that the convective term in (6), disappears in

Ωc(t)∪Ωac(t) because v = vm. The same holds for
the convective term of (5) in Ωm∪Ωam.

Because we work in Lagrangian variables this
suggests the following scheme: We discretize the tem-
poral derivative in (6) with the implicit Euler scheme
and move the meshes Tc, Tac in every time step by
vm(t) ∆ t. The moving and the static subdomains are
coupled across the non-conforming interface Γ by pe-
nalizing jumps (Sect. 2). We choose to treat the vector
average and tangential jumps in (4) in the moving co-
ordinate system x̃. I.e. we have to transform the values
of A and Mi in Ωam by (7).

The resulting system matrix is again symmetric
positive semi-definite and only the coupling terms be-
tween the static and the dynamic part have to be re-
assembled in every time step.

It has already been shown by one of the authors
that 2D rotating bodies are successfully simulated by
a similar method [3]. The presented approach is an
extension of this idea to 3D. The results will be pre-
sented at the conference.
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Summary. Static, quasi-static, and transient electromag-
netic fields have traditionally been treated by separate nu-
merical methods. By disregarding displacement currents
or any time-derivatives at all, the respective formulations
achieve minimum complexity and maximum performance.
However, there do exist cases, e.g. in mixed-signal analysis
or model-order reduction, where it is convenient, or even
necessary, to have a single mathematical formulation that
covers the whole range from statics to wave propagation.
This paper presents a new low-frequency stable formula-
tion of the time-harmonic Maxwell equations, which is suit-
able for the finite-element analysis of structures that com-
prise lossy and/or lossless materials. Numerical examples
demonstrate the benefits of the suggested approach.

1 Notation

In the following, subscript C and N, respectively,
stands for conducting and non-conducting material.
Let Ω be a field domain that consists of lossy and
lossless regions, ΩC and ΩN , which may share a com-
mon interface ΓNC. The unit normal vector on ΓNC
from ΩC to ΩN is denoted by n̂NC. So we have

ΩC ∪Ω N = Ω , (1)

ΩC ∩Ω N = ΓNC, (2)
ΩC ∩ΩN = /0. (3)

We consider the time-harmonic Maxwell equa-
tions in the frequency domain and denote the pha-
sors of the electric field intensity, magnetic flux den-
sity, and impressed current density by E, B, and Ji.
The wavenumber, characteristic impedance, and light
speed of free space are abbreviated by k0, η0, and c0,
and the relative magnetic reluctivity, relative electric
permittivity, and electric conductivity by νr, εr, and σ .

2 Low-Frequency Instability

The most common finite-element (FE) formulation
for wave-propagation problems is in terms of E. The
corresponding partial differential equation (PDE) reads

∇× (νr∇×E)+ ik0η0σE− k2
0εrE =−ik0η0Ji. (4)

Applying the divergence operator confirms that, for
non-zero wavenumbers, (4) imposes the continuity
equation of the electric current density in ΩC and the

electric flux balance in ΩN . In (4), however, these con-
ditions are multiplied by k0 and, thus, vanish in the
static limit. As a result, the stability constant worsens
as k0 decays and, finally, at k0 = 0, the formulation
becomes ambiguous.

Even though improved methods have been pro-
posed to alleviate the problem [1–4], none is com-
pletely satisfactory: [1] does not fully cover the lossy
case, [2] lacks unique solutions, [3] utilizes numeri-
cal breakdown of the FE matrix factorization, and [4]
requires a suitably chosen LF threshold.

3 Low-Frequency Stable Formulation

To prevent the difficulties described in Section 2,
we propose a gauged potential formulation which is
based on the magnetic vector potential A as well as
the scalar potentials V and ψ . Specifically, we have

B = ∇×A, (5)
E =−∇V − ik0c0(A+∇Ψ). (6)

The gauge is imposed by the following measures: In
the discretization process, the magnetic vector poten-
tial is taken from an FE subspace of non-vanishing
curl, which is realized by a tree-cotree splitting [5].
This restriction will be indicated by Ac. Moreover, we
impose the gauge conditions

∇ · [(η0σ + ik0εr)(Ac +∇Ψ)] = 0 in ΩC, (7)
Ψ = 0 in ΩN . (8)

Equation (8) means that the support of ψ is restricted
to ΩC. As will be detailed in the full paper, the PDE
(7) needs to be supplemented by an additional bound-
ary condition on the interface ΓNC:

[(η0c0σC + ik0c0εr,C)(Ac
C +∇ΨC)] · n̂NC

= [εr,N (∇VN + ik0c0Ac
N)] · n̂NC. (9)

The proposed formulation always satisfies the whole
set of the Maxwell equations and is therefore appli-
cable to the whole range from statics to wave propa-
gation, without any user-defined LF threshold. More-
over, the resulting FE matrices are symmetric and,
aside from undamped resonances, the solutions are
unique. Compared to the popular field formulation,
the price to be paid is an additional scalar potential
in the conducting region ΩC.
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4 Numerical Examples

4.1 Partially lossy cavity resonator

To demonstrate the LF stability of the proposed for-
mulation, we consider the half-filled resonator of [6].
Figure 1 presents the condition number of the FE ma-
trix as a function of frequency. In case of the field
formulation, it grows strongly with decreasing fre-
quency. The observed saturation in the order of 1017

is due to numerical noise; at this point the FE matrix
is virtually singular. In contrast, the condition number
of the new approach remains almost constant.
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Fig. 1. Condition number of FE matrix versus frequency.
Inset shows resonator of dimensions 22.86 × 2·11.43 ×
10.16 mm3. Materials: εr,N = 1, µr,N = 1, σN = 0 S/m;
εr,C = 2, µr,C = 1, σC = 1 S/m.

4.2 RLC circuit

Our goal is to demonstrate qualitatively that the pro-
posed formulation captures resistive, inductive, and
capacitive effects correctly over the whole range from
statics to the high-frequency regime. For this purpose,
we examine a simple voltage-driven RLC series cir-
cuit using a wire of finite conductivity. The corre-
sponding FE mesh is given in Fig. 2. The resulting
field distributions of E, B, and the conduction current
density Jc =σE are shown in Fig. 3: In the static case,
the capacitor imposes an open circuit; both current
density and magnetic field vanish. In contrast, at 1
MHz there is significant current flow, and the accom-
panying magnetic field is particularly strong inside
the inductor. Moreover, eddy current effects cause a
marked decay in Jc in the interior of the wire.
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Summary. This paper presents numerical procedures ap-
plied to the accurate and robust calculation of thousands of
eigenfrequencies for the Dirac billiard resonator. The eigen-
field calculations are accomplished in two steps. Initially,
the finite integration technique or the finite element method
is used, and further, the (B-)Lanczos method with its varia-
tions is exploited for the eigen pair determination. The com-
parison of the numerical results to the experiments confirms
the applicability of the approaches and points out the signif-
icant reductions of computational costs.

1 Introduction

Over the last years, the increasing number of appli-
cations has stimulated the development of new meth-
ods and software for the numerical solution of large-
scale eigenvalue problems. At the same time, the re-
alistic applications frequently challenge the limit of
both computer hardware and numerical algorithms, as
one might possibly need large number of eigen pairs
for matrices with dimension in excess of several mil-
lions. In the present work, the investigations of the
properties of a graphene using a microwave photonic
crystal (Dirac billard) [1] also emphasize the neces-
sity for calculation of thousands of interior eigenfre-
quencies.

Reflecting the fact that an analytical solution for
the electromagnetic problem of a Dirac billiard is not
available, this work resorts to a numerical solution.
Namely, if the finite element method [2] is utilized
to solve the electromagnetic problem of a supercon-
ducting cavity, the numerical solution of a generalized
large-scale eigenvalue problem

Ax = λ Bx (1)

for given real symmetric matrices A and B is con-
sidered at the end. Thereon, the algebraic eigenvalue
problem is solved with the B-Lanczos solvers [3].
Supposing that the numerical solution of the same
problem is treated by the finite integration technique
[4], finally it yields to a standard eigenvalue problem

Ax = λ x (2)

for a given symmetric sparse matrix A ∈ Rn×n.
Despite the fact that various types of numerical

methods for eigenvalue determination (Krylov-Schur,
Jacobi-Davidson, Arnoldi) are available in different

software packages, not as many are specifically adapt-
ed for computing thousands of eigen pairs. The Lanc-
zos method [5] with its variations is very attractive for
the project necessities, as it reduces the original eigen-
value problem to a tridiagonal one. Among the basic
implementations of the Lanczos algorithm, a combi-
nation with a filtering method is used as a valuable
tool to enable the computation of interior eigen pairs.
Moreover, the implementations exploit all parallelism
from a multithreaded and multiprocess implementa-
tion of the used libraries.

2 Eigenvalue Determination in
Frequency Domain

Within this work, the excited electromagnetic fields
inside closed resonators are considered under the as-
sumption of perfectly electric conducting walls. Prior
to frequency-domain simulations, the related geom-
etry is modeled and decomposed into tetrahedral el-
ements with the CST Microwave Studio. Afterward,
the corresponding mesh information is passed to the
CEM3D solver [2] in order to produce the sparse ma-
trices that are used as input for the eigenmode solvers.

2.1 Lanczos Method with Polynomial Filtering

The Lanczos algorithm with polynomial filtering re-
places the matrix-vector product Av j in the Lanczos
algorithm [3] by ρ(A)v j, where ρ is a polynomial be-
ing determined from the knowledge on the distribu-
tion of the sought eigenvalues. The main goal of the
polynomial filtering is to enhance the Lanczos pro-
jection scheme by processing the vectors v j, such that
their components in the unwanted parts of the spec-
trum are relatively reduced to those in the wanted
parts. It should be noted that the matrices A and ρ(A)
share the same eigenvectors, and the matrix ρ(A) has
eigenvalues ρ(λ1), . . . , ρ(λn), where λ1, . . . , λn are
the eigenvalues of the matrix A.

A fundamental problem lies in computing an ap-
propriate polynomial ρ in order to approximate a step
function that covers the interval of the desired eigen-
values [ξ ,η ]. If the polynomial ρ(λ ) is chosen such
that ρ([ξ ,η ]) is in an extreme region of the spectrum,
the eigenvalues of the matrix ρ(A) in ρ([ξ ,η ]) will be
approximated first. However, a high-degree polyno-
mial approximation to a discontinuous step function

9
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exhibits parasitic oscillations. Therefore, a two-stage
process [6] is adapted. First, a smooth function similar
to the step function is selected and then a polynomial
approximation ρ(λ ) to this function is applied in the
least-squares sense. A variant, known as the filtered
conjugate residual polynomial algorithm is proposed
in [6]. Here, the functions are expanded in the proper
scaled and shifted basis of the Chebyshev polynomi-
als.

3 Application Example: Dirac Billiard

The dedicated eigenmode solvers are implemented in
C++ and based on PETSc data structures. Addition-
ally, the PETSc library enables parallel computing by
employing the MPI standard for all message-passing
communication. Moreover, the implemented solvers
employ the Intel MKL 10.2 library with LAPACK1.
In case of the standard eigenvalue problem (2), the
algorithm presented in Sect. 2.1 performs repeated
computations of matrix-vector products, which are
the only large-scale operations included within this
approach. On the other hand, the solution of the prob-
lem (1) introduces a factorization of the matrix B. The
details are omitted and can be found in [3].

The frequency spectrum from 19GHz to 31GHz
is numerically calculated and then, compared with the
measurements2. During the measurements, the ana-
lyzed structure is cooled down to a temperature of
4.2K, which is naturally accompanied with a geomet-
rical shrinkage. Thus, the raw measurement data are
scaled with a factor that compensates for the differ-
ence in the dimensions of the measured and the sim-
ulated structure. In the numerical studies, the eigen-
frequencies are determined for the cases when the
Dirac billiard is discretized with 4,515,840 hexahe-
drons and 630,348 tetrahedrons by using the Lanczos
solver with polynomial filtering and the B-Lanczos
solver with shift-and-invert, respectively. Finally, the
results for the level-density analysis are compared in
Fig. 1 and evidently, the measured spectrum closely
resembles those obtained by the numerical simula-
tions. In the considered frequency spectrum, only one
band with a Dirac point around 23.5GHz is present.
Below 19GHz and above 31GHz band gaps can be
noticed.

Table 1. Computational costs.

Lanczos with B-Lanczos with
polynomial filtering shift-and-invert

Eigenfrequencies 1,656 1,656
Time (days) 0.4 1.6
Memory/eig (MB) 201.3 295.2

1 The used libraries will be referenced in the full paper.
2 The measurements are kindly provided from the Institute

for Nuclear Physics at TU Darmstadt.
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Fig. 1. Level-density analysis for a Dirac billard.

In terms of computational resources, it was expe-
rienced that 15 cluster nodes are suited for problems
with more than 106 mesh cells when using the Lanc-
zos solver with polynomial filtering. Each node has
two six-core Intel Xeon X5650 3.0GHz processors
and 24GB main memory. On the other side, the B-
Lanczos solver with shift-and-invert is run on a pow-
erful computer with 256GB of RAM memory and two
quad-core Intel Xeon E5-2643 processors, clocked at
3.3GHz. The computational costs for the eigen pair
determination are summarized in Table 1.
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neering at TU Darmstadt.
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Summary. This contributions addresses iterative coupling
schemes for coupled model descriptions in computational
electromagnetics. Theoretical issues of accuracy, stability
and numerical efficiency of the resulting formulations are
addressed along with advantages and disadvantages of the
various approaches. Three application examples are given:
field-circuit coupling, a mechanical-electromagnetic and ther-
mal-electromagnetic problem.

1 Introduction

Today, due to increased accuracy of modeling and
simulation, multiphysical problems become more and
more important in many engineering applications. Of-
ten a monolithic approach, i.e., the solution of all sub-
problems at once, is cumbersome or even impossible
because incompatible algorithms or software pack-
ages are involved. Thus simulation engineers need to
couple subproblems in an efficient and stable way,
where subdomains are solved separately. This intro-
duces a splitting error, which is mitigated by an itera-
tive procedure.

In this contribution we like to advertise the in-
creased accuracy and stability due to iterative pro-
cedures by discussing three examples: field-circuit
coupling in Section 1, a mechanical-electromagnetic
problem in Section 2 and finally a thermal-electro-
magnetic problem in Section 3. In the full contribu-
tion also implementation issues and the practical rel-
evance of those iteration schemes will be discussed.

2 Field-Circuit Problem

For field-circuit coupled models of electrical energy
transducers, two general approaches are well estab-
lished. A first approach consists of extracting lumped
parameters or surrogate models from a field model
and inserting these as a netlist into a Spice-like circuit
simulator. This is circumvented by monolithic cou-
pling, where field and circuit models are solved to-
gether. We propose a particular synthesis: the param-
eter extraction is applied iteratively on time intervals.
The eddy-current field problem on Ω is

σ∂ta(n)+∇×
(

ν(|∇×a(n)|) ∇×a(n)
)
= χj(n)

(a) 2D transformer model

Rload
v(t)

1 2 3 4 5

0
6

RM,2RM,1
LM

(b) rectifier circuit with embeded PDE model

Fig. 1. Simple field-circuit coupled problem.

where a(n) is the magnetic vector potential after the n-
th iteration (with homogeneous Dirichlet conditions),
σ and ν are conductivity and reluctivity, respectively
and the winding functions χ = [χ1, . . . ,χk, . . . ,χK ]

>

are functions of space that distribute the lumped cur-
rents j in the 3D domain. The circuit coupling is es-
tablished via integration

∂t

∫
Ω

χka(n) dx+Rk j(n)k = v(n−1)
k k = 1, . . . ,K

to the circuit system of differential algebraic equa-
tions

AC∂tqC(AT
Cu(n), t)+ARgR(AT

Ru, t)+ALi(n)L

+AMj(n)+AVi(n)V +AIis(t) = 0,

∂tΦL(i
(n)
L , t)−AT

Lu = 0,

AT
Vu−vs(t) = 0,

with incidence matrices A∗ where v∗ = AT
∗u and con-

stitutive laws for conductances, inductances and ca-
pacitances (functions with subscripts R, L and C), in-
dependent sources is and vs, unknowns are the poten-
tials u and currents iL and iV.

In the full paper the convergence, [1, 2], of this it-
eration scheme and tailored time integration will be
discussed. It will be shown that the optimal time inte-
gration order depends on the iteration counter n, [6].

3 Field-Mechanical Problem

The Lorentz detuning of an accelerating cavity, which
is the change of the resonant frequency due to the me-
chanical deformation of the cavity wall induced by the

11
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Fig. 2. One cavity cell with field lines and exaggerated de-
formation, [3]

electromagnetic pressure is a coupled electromagnetic-
mechanical problem. In a first step, Maxwell’s eigen-
problem is solved

∇×
(

1
µ0

∇× e(n)
)
= ω

2
0 ε0e(n) on Ω

(n−1)

where e is the phasor of the electric field with ad-
equate boundary conditions; µ0 and ε0 are the per-
meability and permittivity of vacuum. From this the
magnetic field h can be obtained. Both fields create a
radiation pressure at the boundary of Ω (n−1)

p(n) =−1
2

ε0e(n)⊥
(

e(n)⊥
)∗

+
1
2

µ0h(n)
‖

(
h(n)
‖

)∗
which gives raise to the linear elasticity problem in
the wall of the cavity

∇ ·
(

2η∇
(S)u+λ I∇ ·u

)
= 0

for the displacement u(n) where p(n) is a boundary
condition on the inner boundary. We denote by ∇(S)

the symmetric gradient, while η and λ are the Lamé
constants. Finally a deformed domain

Ω
(n) ≡

{
x+u(n) (x) , x ∈Ω

(0)
}
,

is derived from the initial domain Ω (0) and the it-
eration can be restarted with the computation of an
eigenvalue. In the full paper this scheme will be dis-
cussed in more details. The focus will be on the spatial
discretization with Isogeometric Analyses using Non-
Uniform Rational B-Spline (NURBS) and De-Rham-
conforming B-Splines [3].

4 Field-Thermal Problem

In the previous sections we have discussed the mutual
coupling of transient and frequency-domain to static
problems. The third example revisits the well-known
iterative coupling of frequency to time domain prob-
lems. Again, the electromagnetic field is given by the
curl-curl equation, however since we are in frequency
domain we can regard displacement currents

εω
2a(n)+σ(T (n−1)) jωa(n)+∇× (ν∇×a(n)) = χj.

where a is now a complex phasor. This is coupled to
the heat equation

ρ c∂tT (n) = ∇ · (k∇T (n))+Q(a(n), t)

by the Joule losses Q, where k is the heat conductivity,
ρ the density and c the specific heat capacity. Besides
the electric conductivity σ , all material parameters are
constant. The important modelling step is to relax the
coupling of both problems by introducing a averaged
heat source

Q̄(n) :=
1

t1− t0

∫ t1

t0
Q(a(n)(t), t)ds.

obtained by converting the vector potential a back
to the time domain. Convergence will be discussed
in view of the works [4, 5] and the fractional step
method, [7].
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Summary. Inductive heating is one of the most impor-
tant surface hardening procedures for enhancing mechan-
ical properties of components made from steel. In prac-
tice there exists a growing demand of pre-experiments for
proper adjustment of a set-up for induction hardening of a
newly designed component. We report the model and sim-
ulation of inductive heating, especially present numerical
results of mechanical effects like the residual stress distri-
bution and thermally induced distortions.

1 The model

Inductive heating is one of the most important sur-
face hardening procedures for enhancing mechanical
properties of components made from steel. Fig. 1 de-
picts the inductive heating of a disc from steel. A
mathematical treatment of induction hardening has
been intensively investigated during the last years,
see e.g. [2, 4, 5]. To model the coupled problem of

Fig. 1. Induction heat treatment (by Stiftung Institut für
Werkstofftechnik IWT, Bremen)

electro-thermal-stress in the process of inductive heat-
ing we first define spatial computational domains. Let
D ⊂ R3 be a domain which contains the inductor Ω

and the workpiece Σ , then we consider the govern-
ing equations of the electromagnetic field, the tem-
perature evolution, the mechanical deformations and
stresses as well as the steel phase transformations as
follows:

γ∂tA+ curl µ−1curl A− Jsrc = 0, in D
ρcε ∂tθ −div κ∇θ = F, in Σ

−div σ = 0, in Σ

ż− f (z,θ , t) = 0, in Σ

(1)

where the variables (A,θ ,σ ,z) denote the magnetic
vector potential, the temperature, stress tensor and
phase fraction, respectively. The material dependent

parameters (γ,µ,ρ,cε ,κ) denote electrical conduc-
tivity, magnetic permeability, density of the work-
piece, specific heat and heat conductivity. Jsrc denotes
the source current density satisfying −div Jsrc = 0,
F summarizes the source term caused by Joule heat,
mechanical dissipation and latent heat due to phase
transitions. Here the vector potential formulation of
Maxwell’s equations is taken into account, the heat-
ing equation has been derived from energy balance,
the deformation equation is based on balance of mo-
mentum, the governing equations of phase transitions
that are caused by the enormous changes of tempera-
ture during the heat treatment arise from the Johnson-
Mehl-Avrami equation and Schröder’s approach, see
e.g. [1]. Fig. 2 depicts the interrelations among these
physical model components.
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Fig. 2. Electro-thermal-stress coupling

2 Numerical discretization

The workpiece boundary is dissected into a part τs
which is free from any acting force and a part τu
where the workpiece is fixed. The method of lines
(MOL) is applied for discretization of the equations
(1). The first step is to discretize the partial differen-
tial equations with respect to space while keeping the
time variable continuous. We use curl-conforming fi-
nite elements for the vector potential A. For the tem-
perature θ and the phase fraction z we use classical

13
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H1-conforming elements while the stess tensor σ is
approximated by vector-valued H1 elements. More
precisely, we introduce the spaces as

L2(Σ) =
{

v : Σ → R
∣∣∫

Σ
|v(x)|2dx < ∞

}
H1(Σ) =

{
v : Σ → R

∣∣v ∈ L2(Σ),∇v ∈ [L2(Σ)]3
}

H(curl,D) =
{

v : D→ R3
∣∣v ∈ [L2(D)]3,curl v ∈ [L2(D)]3

}
Xu(Σ) =

{
v : Σ → R3

∣∣v ∈ [H1(Σ)]3,v ·n|τs = 0,v|τu = 0
}

X=
{

v ∈ H(curl,D)
∣∣div v = 0,v×n = 0 on ∂D

}
where n denotes the normal to the boundary.

With these definitions in mind we use a finite el-
ement method (FEM) to compute the projection on
corresponding finite dimensional subspaces.

3 Simulation and experimental
verification

The numerical simulations are carried out on a disc
with diameter 47.7 mm made of steel 42CrMo4. From
symmetry reasons we restrict ourselves to compute a
segment with an angle of π

20 (cf. Fig. 3). All material
parameters associated with 42CrMo4 for the simula-
tions are provided by IWT (Stiftung Institut für Werk-
stofftechnik, Bremen), and parameters for phase tran-
sitions are take from [3]. All numerical results pre-
sented here are accompanied with the thermally in-
duced deformation scaled by 40 to improve their visu-
alizations. According to experimental setting we use
a medium frequency MF= 12kHz with power 100kW
and current 575A.

In such an induction heating process Fig. 4 shows
progressive temperature values for different heating
stages. Fig. 5 depicts the comparison between simu-

Fig. 3. Disc sample and the reduced computational domain

lated and experimentally measured deformation. The
results of axial and tangential residual stresses after
cooling are exhibited in Fig. 6.

Acknowledgement. This research is a part of the project
MeFreSim (Modeling, Simulation and Optimization of Multi-
Frequency Induction Hardening) funded by Bundesminis-
terium für Bildung und Forschung (BMBF).

Fig. 4. Temperature evolution at begin of heating (t =
0.00s), end of heating (t = 1.3s), and end of cooling (t =
14.3s)

Fig. 5. Size changes of disc diameter ( (a): simulated results
scaled by 40, (b): experimental measurements depicted by
the red contours).

Fig. 6. Axial and tangential residual stresses at the sectional
symmetry plane after induction heat treatment
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Summary. Motivated by the aim of an efficient coupled
electromagnetic field and lumped circuit simulation, we
show that one can form the model equations in such a way
that the discretized equation system (using FIT method for
spatial and BDF method for time discretization) has an ex-
ploitable Jacobian structure.

1 Electromagnetic Field Model

The electromagnetic fields can be described by the
full-wave Maxwell’s equations

∇ ·D = ρ, ∇×E =−∂tB
∇ ·B = 0, ∇×H = J+∂tD

equipped with the material laws

D = εE, H = νB,

where D, E, B, H, J and ρ are the displacement field,
electric field, magnetic induction, magnetic field, free
current density and charge density. The material de-
pendent parameters ε and µ = 1/ν are the permittiv-
ity and the magnetic permeability. The charge ρ and
the current density J can be described by the follow-
ing model equations:

ρ =

{
0 for metal and isolator
q(n− p−ND) for semiconductor

(1)

and

J =


σE for metal
Jn +Jp for semiconductor
0 for isolator

(2)

with the electron and hole current densities Jn and Jp
as well as the electron and hole concentrations n and
p satisfying

q∂tn−∇ ·Jn +qR(n, p) = 0 (3)
q∂t p+∇ ·Jp +qR(n, p) = 0 (4)

with

Jn = qDn∇n+qµnnE, Jp =−qDp∇p+qµp pE.

The material depending parameters ND, σ , µn and µp
describe the doping concentration, the conductivity,
the mobility of electrons and the mobility of holes.
The function R gives the recombination rate for elec-
trons and holes. Finally, q is the elementary charge
and Dn, Dp are the diffusion coefficents.

Note that the semiconductor current density model
reflects the drift-diffusion model [9] and should be ex-
tended by an additional current density part caused by
the self-induced Lorentz force in case of circuits with
fast-transient signals, see [8].

To facilitate the coupling between the electromag-
netic field simulation with a lumped circuit simula-
tion, the Maxwell equations are written in potential
form using the scalar potential ϕ and the vector po-
tential A [1, 2] satisfying

B = ∇×A, ∇ϕ =−E−∂tA. (5)

The existence of these potentials follows from the
Gauß’ law ∇ ·B = 0 for magnetism and the Maxwell-
Faraday law ∇×E =−∂tB. For uniqueness of A and
ϕ , we need a gauge condition. Because of numerical
stability reasons [3], we choose the Lorenz gauging

∇ ·A+ c∂tϕ = 0 (6)

with a suitable constant c. Using (5), the full Maxwell
equations reduce to

∇ · (ε∇ϕ + ε∂tA) = −ρ (7)
∇× (ν∇×A)+∂t(ε∇ϕ + ε∂tA) = J (8)

with ρ and J given by (1) and (2) in which E is re-
placed by −∇ϕ − ∂tA. Finally, a new variable, the
pseudo-canonical momentum Π = ∂tA is introduced
to avoid the second-order time derivative [7].

2 Lumped Circuit Equations

For lumped circuit models, the Kirchhoff’s laws are
satisfied and can be written as

Ai = 0, v = A>e (9)

with the incidence matrix A mapping branches to
nodes of the circuit. The circuit variables are the vec-
tor i of all branch currents, the vector v of all branch
voltages and the vector e of all nodal potentials. In
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contrast to the field variables, the circuit variables de-
pend on time t only. Additionally, we have the consti-
tutive element equations

i1 = d
dt q(v1, t)+g(v1, t), v2 =

d
dt φ(i2, t)+ r(i2, t)

for lumped current and voltage controlling elements,
respectively. Notice, all basic types as capacitances,
inductances, resistances and sources are covered by a
suitable choice of the functions q, g, φ and r.

Splitting the branches of the incidence matrix into
A = (A1,A2,A3) with respect to the current control-
ling, voltage controlling and electromagnetic field el-
ement models, the circuit equations can be written
in the compact form of the Modified Nodal Analysis
(MNA) as [6, 7]

A1
d
dt q(A>1 e, t)+A1g(A>1 e, t)+A2i2 +A3i3 = 0 (10)

d
dt φ(i2, t)+ r(i2, t)−A>2 e = 0 (11)

together with v3 = A>3 e.

3 Interface Model

We assume the interface between the electromagnetic
field model and the lumped circuit model to be per-
fectly electric conducting such that B · n⊥ = 0 and
E ·n‖ = 0 with n⊥ and n‖ being the outer unit normal
vectors transversal and parallel to the contact bound-
ary. This motivates the boundary conditions [3]

(∇×A) ·n⊥ = 0, (∇ϕ) ·n‖ = 0. (12)

Denoting by Γk the k-th contact of the electromagnetic
field model element with Γ0 being the reference con-
tact and choosing any position xk ∈ Γk, we obtain the
coupling equations

ik3 =
∫

Γk

[J−∂t(ε(∇ϕ +Π))] ·n⊥ dσ

vk
3 = ϕ(xk)−ϕ(x0)

that can be bundled as

i3 = BJJ+Bϕ ∂tϕ +BΠ ∂tΠ , (13)

A>3 e = Rϕ ϕ. (14)

with linear boundary operators BJ, Bϕ , BΠ and Rϕ .

4 Coupled Model Structure

Discretizing the electromagnetic field model in space
by the FIT discretization as described in [2, 3] and
using as time discretization the BDF methods for the
resulting differential algebraic system as given in [5],
we obtain a Jacobian structure of the form

J =

 JE JEB 0
JBE I JBC
0 JCB JC



with a diagonally dominant matrix JE for the electro-
magnetic and a positive semi-definite matrix JC for
the lumped circuit part, respectively. The field-circuit
coupling is contained in JEB,JBE ,JBC and JCB. The
variable order is ϕ , A, J, n, p, i3, e, i2 and the coupled
equation system order is (7), (8), (2), (3), (4), (13),
(10), (11). Some details about JC and JE are given
in [3,4]. The Jacobian blocks can be constructed from
the discretized versions of the equations (12), (14),
(1), (6) and Π = ∂tA. The end result allows the use
of efficient iterative solvers for the high dimensional
(due to 3D discretization) matrix part JE resolving ϕ ,
A, J, n, p combined with a simple evaluation process
for the determination of the coupling current i3 and
a direct solver for the elimination of the circuit vari-
ables e and i2 after use of a Schur complement ap-
proach.

Acknowledgement. Part of this work was financially sup-
ported by the EU funded FP7 ICT projects nanoCOPS
GA619166, ICESTARS GA214911 and the German DFG
research center MATHEON in Berlin.
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Summary. A novel approach is presented using software
agents for an iterative and distributed solution of a coupled
electromagnetic wave propagation and heat transfer prob-
lem inside a waveguide. Total convergence is reached by
combining individual functionalities of different software
agents within a multi agent system. Single physics agents
cooperatively solve the problem based on specialized, com-
mercial or in-house code. To do so, only an interface for
data exchange is required. Here, three software agents are
used and described in detail.

1 Introduction

An iterative strategy is a common way to solve mul-
tiphysics problems. Therefore, the problem is seg-
regated into multiple single physics problems and
solved by exchanging dependent values. These val-
ues are extracted from one problem and integrated
as boundary conditions or domain sources into loop
wise coupled problems. So multiphysics means the
coupling of different types of fields. Here, a novel
approach for computational electromagnetic is pre-
sented using independent modules [2] for solving a
coupled electromagnetic wave propagation problem
and heat transfer problem inside a waveguide. The
independent modules are implemented regarding the
design rules of software agents. Software agents are
well tested in automation technologies for solving
complex problems. They are independent programs
with individual functionalities based on agent specific
implemented behaviours [1]. Supervising and manag-
ing different numerical methods to solve an equation
system could be some of these behaviours. So only a
management and supervision interface is required to
reuse existing numerical code [3]. Each agent can also
decide within its individual limits and based on its
knowledge to reach its own goals. Due to that, agents
choose best available algorithm for solving its prob-
lems. This gets interesting in front of increasing num-
bers of specific solvers, working best under certain
conditions. Combining the functionalities of multiple
agents within a multi agent system allows each agent
to contribute for a global problem. So a system is cre-
ated where each agent yields its capabilities to solve
complex problems with distributed units.

2 Solver Design

Here the solution process of a coupled electromag-
netic wave propagation problem and a heat trans-
fer problem is considered. The problem is one out
of many to demonstrate the principle of the segre-
gated agent based solution of multiphysics problems.
To solve a coupled electromagnetic wave propagation
problem and a heat transfer problem three software
agents are needed. They run on an Intel(R) Core(TM)
i7-2600 with 4 cores max. 3.4GHz, 16GB(1333MHz)
RAM and Windows 8.1 Enterprise 64-bit. Agent a
segregates the multiphysics problem into two single
physics problems. It distributes the partial problems
to agent b and agent c. These two agents solve the to-
tal problem cooperatively. For the example, agent b
handles the electromagnetic wave simulation accord-
ing to (1) and solve it in frequency domain. The tem-
perature problem, shown in (2) is solved by agent c
for a stationary case. The electric field E and the tem-
perature T represent the two dependent variables.

∇×µ
−1
r (∇×E)− k2

0(εr −
jσ

ωε0
)E = 0 (1)

ρCpv ·∇T = ∇ · (k∇T )+Q (2)

The coupling is realized by a heat source Q represent-
ing the total power dissipation density in agent c and
the temperature dependent electric conductivity σ(T )
in agent b. The slow heating process [s] compared to
the high frequency wave propagation [10GHz] allows
to consider the heat source Q as constant over time.
After receiving the problem, agent b and agent c start
computing in parallel by ignoring coupling. The un-
coupled partial problems can be described for agent b
as in (3) and for agent c as in (4). Here f is the func-
tion to solve, K the stiffness matrix, u the solution and
b the load.

fE = KEuE −bE = 0 (3)

fT = KT uT −bT = 0 (4)

As soon as any agent finishes its calculation, all agents
working on the problem get informed about the avail-
able result. Also derived values from the calculated
results are published. Each agent decides whether to
request the result or to ignore them and continue cal-
culating. For the example, (2) is solved successfully at
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first. Due to the temperature dependent electric con-
ductivity σ(T ) at agent b, its iteratively processed
calculation is interrupted. Now the available results
are included for the calculation. In that way a unidi-
rectional coupling from agent c to agent b is auto-
matically created. The updated problem description is
given in (5). Now the calculation of agent b is con-
tinued. The so far iteratively calculated intermediate
results are used as initial conditions for further calcu-
lations.

fE = KE(uT )uE −bE (5)

Until a solution for (5) is found agent c is informed
about the available result. Now the total power dissi-
pation density of the electromagnetic wave are present
and can be integrated as additional heat source Q into
(2). The Problem can now be described as in (6).

fT = KT (uE)uT −bT (6)

In that way a bidirectional coupling between both
agents is provided. Solving (5) and (6) in a loop fur-
ther precise the result. The loop ends if no changes
for the dependent variables or the derived values at
a next iteration. For the considered example, Table 1
shows the maximum difference of the exchanged val-
ues compared to the previous value. Due to the small
changes at the end of the table, the loop ends.

Table 1. Change of exchanged values for multiple iterations

exchanged value: T Q T Q T

Maxium ∆ : first first 25K 7.64 W
m3 6 ·10−6 K

Table 2 shows a comparison between the agent
based solver system and a segregated solver. Here
identic meshes for both agents and a BiConjugate
Gradient Stabilized solver (BiCGStab) are used. Sim-
ilar results are achieved when using a MUltifrontal
Massively Parallel sparse direct Solver (MUMPS).
The iterative sequence of computed dependent vari-
ables are shown in the first column. To compare the
results no solver is interrupted. The shown error is
computed as maximum node wise difference of the
solution vectors.

Table 2. Solver sequence for the waveguide

Agent Integrate Calculation max. Error rel. Error %

T none 36 lin. iter. 5 ·10−14 2 ·10−14

E new Source(T ) 306 lin. iter. 5 ·10−4 6 ·10−4

T new Source(Q) 77 lin. iter. 0.71 0.21
E update(T ) 1 lin. iter. 5 ·10−4 7 ·10−4

T update(Q) 43 lin. iter. 0.72 0.22

Table 2 also shows, 306 linear iterations were nec-
essary to solve the electric field problem in a sequen-
tial process. To show a solution time advantage of the
agent based solver, the initially uncoupled problems

are solved in parallel. The computation of agent b is
interrupted when the result of agent c gets available.
For example, agent b was interrupted after 160 lin-
ear iterations. After integrating results of agent c, ad-
ditional 212 iterations where needed to solve 5. It is
important to notice, that the remaining 212 iterations
do consume less time compared to the common se-
quential approach with 306 iterations. It is expected
to increase this effect more than two agents working
at a problem. In this context domain decomposition is
also interesting. Figure 1 and Fig. 2 shows the results
of the solved waveguide problem for a mode 10 trans-
verse electromagnetic wave (TE10) at 10GHz and a
convective heat flux at the boundaries of 1 W

m2·K .

Fig. 1. Visualisation of results from agent b.

Fig. 2. Visualisation of results from agent c.
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Summary. The dynamical behavior of coupled systems is
determined by different interconnected subsystems that are
usually governed by entirely different physical laws and
often act in different time and space scales. We discuss
the simulation of coupled nonlinear systems using dynamic
iteration combined with model order reduction. We also
study the convergence of this approach and derive error es-
timates for approximate solutions.

1 Introduction

A wide variety of physical and technical processes
can be modeled by coupled systems of differential
equations. Application areas of coupled systems in-
clude circuit-device simulation and micro-electro-me-
chanical systems. The dynamical behavior of coupled
systems is characterized by different properties of the
interacting subsystems that often describe different
physical effects in the system. The increasing com-
plexity of mathematical models requires the devel-
opment of new simulation techniques for large-scale
coupled systems.

Dynamic iteration (known also as waveform re-
laxation), e.g., [1], has proven to be a useful tool for
simulation of coupled systems since at every itera-
tion, the decoupled subsystems can be solved sepa-
rately. Such a modular approach allows us to use dif-
ferent time steps and to employ most appropriate in-
tegration methods for the different subsystems. In [4],
dynamic iteration was combined with reduced-order
models resulting in a DIRM method. This method in-
volves successive simulation of each unreduced sub-
system coupled with other reduced-order subsystems.
Unfortunately, the convergence analysis carried out
in [4] is restricted to coupled linear time-invariant sys-
tems with a week coupling. In this paper, we extend
these results to coupled nonlinear systems and present
a posteriori error estimation for the DIRM iteration.

2 Dynamic iteration

We consider a coupled system of nonlinear differen-
tial equations

ẋ1 = f1(x1,x2), x1(T0) = x0
1,

ẋ2 = f2(x1,x2), x2(T0) = x0
2,

(1)

where x j : I→Rn j , I=[T0,Te] and f j : Rn1×Rn2→Rn j

for j = 1,2. We assume that f j are continuously dif-
ferentiable and system (1) is solvable. For a better

readability, we restrict ourselves here to the coupling
of two autonomous subsystems, although all results
can easily be extended to a more general case.

The dynamic iteration method for the coupled sys-
tem (1) is formulated as follows. First, the time inter-
val [T0,Te] is split into windows [Tl ,Tl+1] with a time
grid T0 < T1 < .. . < TL = Te. Then a k-th iteration in
the window [Tl ,Tl+1] is determined from

ẋ[k]1 = f1(X
[k]
11 ,X

[k]
12 ), x[k]1 (Tl) = x[kl−1]

1 (Tl),

ẋ[k]2 = f2(X
[k]
21 ,X

[k]
22 ), x[k]2 (Tl) = x[kl−1]

2 (Tl),
(2)

where X [k]
i j = Θ

[0]
i j x[k]j +Θ

[1]
i j x[k−1]

j for i, j = 1,2; k =

1, . . . ,kl , and x[0]j are obtained by extrapolation of

x[kl−1]
j from [Tl−1,Tl ] to [Tl ,Tl+1], respectively the ini-

tial data of (1). Choosing[
Θ

[0]
11 Θ

[0]
12

Θ
[0]
21 Θ

[0]
22

]
=

[
I 0
0 I

]
,

[
Θ

[1]
11 Θ

[1]
12

Θ
[1]
21 Θ

[1]
22

]
=

[
0 I
I 0

]
, (3)

we obtain a Jacobi method, whereas[
Θ

[0]
11 Θ

[0]
12

Θ
[0]
21 Θ

[0]
22

]
=

[
I 0
I I

]
,

[
Θ

[1]
11 Θ

[1]
12

Θ
[1]
21 Θ

[1]
22

]
=

[
0 I
0 0

]
gives a Gauss-Seidel method. The convergence of the
dynamic iteration (2) depends on the window sizes.

2.1 Model order reduction

The goal of model order reduction is to replace a large-
scale dynamical system

ẋ = f (x), x(T0) = x0 (4)

with x : I→ Rn and f : Rn→ Rn by a reduced-order
model

˙̂x = f̂ (x̂), x̂(T0) = x̂0 (5)

with x̂ : I→ Rr, f̂ : Rr→ Rr and r� n which nearly
approximates the dynamical behaviour of (4). A most
popular model reduction method for nonlinear sys-
tems is proper orthogonal decomposition (POD), e.g.,
[5]. It is based on determining a snapshot matrix
X = [x(t1), . . . , x(tq)], q ≤ n, and computing a sin-
gular value decomposition

X = [V,V0]

[
Σ

Σ0

]
[W,W0]

T ,

where the matrices [V,V0] and [W,W0] are orthogonal,
Σ = diag(σ1, . . . ,σr), Σ0 = diag(σr+1, . . . ,σq) and
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σ1 ≤ . . .≤ σr < σr+1 ≤ . . .≤ σq. Then x is approxi-
mated by V x̂, where x̂ solves the reduced-order model
(2.1) with f̂ (x̂) =V T f (V x̂) and x̂0 = V Tx0. Though
this system is of low dimension r, the evaluation of the
nonlinearity V T f (V x̂) still has a computational com-
plexity of n. To overcome this difficulty, the discrete
empirical interpolation method has been developed
in [2] which provides an approximate model

˙̂x =V TU(PTU)−1PT f (V x̂), x̂(T0) = x̂0,

where U ∈ Rn×m is a POD basis matrix obtained
from the snapshot matrix [ f (x(t1)), . . . , f (x(tq))] and
P = [ep1 , . . . ,epm ] ∈ Rn×m is a selector matrix con-
structed from U by a Greedy-algorithm. Here ep j de-
notes the p j-th column of the identity matrix. Note
that PT f (V x̂) needs only m function evaluations. For
a posteriori error estimates for POD-DEIM reduced
models, we refer to [6].

3 Dynamic iteration using reduced-order
models

We consider now the DIRM method from [4] for sim-
ulation of coupled systems using dynamic iteration
combined with POD-DEIM model order reduction.
Let V [k]

j and U [k]
1 , U [k]

2 be the POD basis matrices cal-

culated from the snapshots
{

x[k−1]
j (til)

}ql

i=1
and{

f1
(
x[k−1]

1 (til),V
[k−1]
2 x̂[k−1]

2 (til)
)}ql

i=1
,{

f2
(
V [k−1]

1 x̂[k−1]
1 (til),x

[k−1]
2 (til)

)}ql

i=1
,

respectively, on the time window [Tl ,Tl+1], and let P[k]
j

be the corresponding selector matrices. Then instead
of the Jacobi type system (2) with (3), we solve two
coupled systems

ẋ[k]1 = f1(x
[k]
1 ,V [k]

2 x̂[k]2 ), x[k]1 (Tl) = x[kl−1]
1 (Tl), (6)

˙̂x[k]2 = f̂2(x
[k]
1 , x̂[k]2 ), x̂[k]2 (Tl) = x̂[kl−1]

2 (Tl), (7)

and
˙̂x[k]1 = f̂1( x̂[k]1 ,x[k]2 ), x̂[k]1 (Tl) = x̂[kl−1]

1 (Tl), (8)

ẋ[k]2 = f2(V
[k]
1 x̂[k]1 ,x[k]2 ), x[k]2 (Tl) = x[kl−1]

2 (Tl), (9)

where

f̂1(x̂
[k]
1 ,x[k]2 ) =W [k]

1 f1(V
[k]
1 x̂[k]1 ,x[k]2 ),

f̂2(x
[k]
1 , x̂[k]2 ) =W [k]

2 f2(x
[k]
1 ,V [k]

2 x̂[k]2 ),

and W [k]
j =(V [k]

j )TU [k]
j

(
(P[k]

j )TU [k]
j

)−1
(P[k]

j )T , j = 1,2.
Note that if (7) and (8) have low dimensions, then sol-
ving systems (6), (7) and (8), (9) is only slightly ex-
pensive than that of (2).

In order to analyze the convergence of the DIRM
iteration, we have to study the errors caused by ap-
proximate initial conditions and model reduction in
each window [Tl ,Tl+1] and the error propagation from

one window to the next one. We can show that the
error

e(t) =

[
x1(t)− x[k]1 (t)
x2(t)− x[k]2 (t)

]
, t ∈ (Tl ,Tl+1]

in the k-th iteration is estimated as

‖e(t)‖ ≤
∫ t

Tl

α(s)exp
(∫ t

s
β (τ)

)
ds+‖e(Tl)‖,

where

β (t) =

[
f1(x

[k]
1 ,x[k]2 )− f1(x

[k]
1 ,V [k]

2 x̂[k]2 )

f2(x
[k]
1 ,x[k]2 )− f2(V

[k]
1 x̂[k]1 ,x[k]2 )

]

measure the error in the nonlinearity and

α(t) = L[J f ]
(
x[k](t)

)
is the logarithmic norm of the Jacobian J f

(
x[k](t)

)
of

f =
[

f T
1 , f T

2
]T at x[k](t) =

[
(x[k]1 )T (t),(x[k]2 )T (t)

]T de-
fined as

L[J f ]
(
(x[k](t)

)
=

1
2

λmax

(
J f
(
(x[k](t)

)
+ JT

f
(
(x[k](t)

))
.

Here, λmax denotes the largest eigenvalue of the cor-
responding matrix. The Jacobian logarithmic norm
can be computed efficiently by a successive constraint
method [3] if we first find a low-dimensional ap-
proximation J f (x) ≈ ∑

nJ
j=1 θ j(x)J j, where J j ∈ Rn×n,

θ : Rn→ R and nJ � n = n1 + n2. Such an approxi-
mation can be determined using a matrix DEIM ap-
proach [6]. Numerical examples will demonstrate the
properties of the presented integration method and er-
ror estimations.
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Summary. We address the generation of broadband macro-
models of complex linear systems via rational curve fit-
ting. We show that standard approaches may not ensure that
the macromodel accuracy is preserved in system-level sim-
ulations, under loading conditions that are different from
the adopted identification settings. Our main contribution is
an automated procedure for the definition of a frequency-
dependent norm weighting strategy that tunes the macro-
model accuracy for a specific nominal termination network,
thus improving model robustness under realistic operation.

1 Introduction and problem statement

We consider the situation depicted in Fig. 1. The box
on the left represents a complex (large-scale) Linear
Time Invariant (LTI) system, that we assume with-
out loss of generality to be known through a set of
tabulated frequency samples of its scattering matrix
(ωk, Ŝk) for k = 1, . . . ,K. The box on the right repre-
sents the nominal termination network that is to be
connected to the LTI structure during system-level
verification via transient numerical simuation. This
termination includes at least one transient source u(t)
and at least one output variable y(t) of interest.

Our reference application is Power Integrity (PI)
verification of electronic structures, for which the LTI
system represents the electrical interconnect network
that is responsible for power distribution to the chip
through package and board, and the termination net-
work includes: a number of transient current sources
(the inputs) representing on-chip switching; several
decoupling capacitors; and at least one Voltage Regu-
lator Module (VRM) which defines the nominal sup-
ply voltage Vdd. All these components or subsystems
are connected at suitably defined ports of the Power
Distribution Network (PDN). The outputs of interest
are the transient voltages at all interface ports. The
purpose of PI verification is to make sure that the tran-
sient voltage fluctuations due to the parasitics of the
PDN are kept below a prescribed design threshold.

System-level verification is usually performed via
transient simulation within standard circuit solvers
of the SPICE class. Due to the complexity of the
PDN structure, it is desirable to compute a reduced-
order macromodel described by a state-space realiza-
tion {A,B,C,D}, whose frequency response S(jω) =
D+C(jωI−A)−1B matches closely the raw available
frequency samples. Once synthesized into a SPICE-
compatible netlist, this macromodel allows fast tran-

y

u

Vdd

Large-scale

multiport

LTI system

Fig. 1. System configuration under investigation

sient analysis and enables simulation-driven design,
verification, and optimization flows.

In this work, we concentrate on a black-box macro-
modeling procedure, which constructs the macromodel
in pole-residue form

S(s) = R0 +
N

∑
n=1

Rn

s− pn
(1)

by optimizing poles pn, residue matrices Rn and di-
rect coupling R0 so that the following cost function is
minimized

E2 =
K

∑
k=1

ε
2
k =

K

∑
k=1

w2
k‖S(jωk)− Ŝk‖2

F , (2)

where F denotes the Frobenius norm and wk is a
suitable frequency-dependent weighting scheme. The
standard practice is to set wk = 1. The well-known
Vector Fitting (VF) algorithm [1] computes a solution
to the above optimization problem through a so-called
iterative pole relocation process. The VF algorithm is
the de facto standard rational curve fitting tool in sig-
nal and power integrity modeling, due to its excellent
robustness and scalability properties. Therefore, we
will use this scheme as the main identification engine.

Suppose now that the termination network (Fig. 1,
right box) is known exactly, and let us consider the
frequency samples of the transfer function H(s) be-
tween some input u and some output y. The error be-
tween the exact transfer function Ĥk evaluated using
the raw scattering samples Ŝk and the approximate
samples H(jωk) evaluated using the macromodel can
be defined as

∆
2 =

K

∑
k=1

δ
2
k =

K

∑
k=1
‖H(jωk)− Ĥk‖2

F (3)

The real objective is to control the target error ∆ ,
since this is the error that is observed when running
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a system-level simulation using the macromodel in-
stead of an exact PDN model. The question arises
whether we can control ∆ by minimizing E. Our
main objective is therefore to design optimal weight-
ing coefficients wk that, when used in the minimiza-
tion of (2) through VF, will guarantee a small target
error ∆ < ∆max.

2 Formulation

The main idea is to embed the minimization of (2)
within an outer loop that optimizes the weights wk
through iterations. Denoting the outer iteration index
with µ , we setup the following scheme:

1. set µ = 0 and initialize weights w0
k = 1 for all k;

2. compute by VF a macromodel Sµ(s) by minimiz-
ing (2) based on the current weights wµ

k ;
3. compute the resulting target errors δk and ∆ based

on (3); if ∆ < ∆max, stop;
4. update the weights as wµ+1

k = wµ

k · fk(δ ), where
δ is a vector collecting all δk, and where fk is a
smoothing filter centered at the k-th sample;

5. set µ ← µ +1 and go to step 2.

The above scheme upates the weighting coefficients
in step 4, based on the frequency-dependent target er-
ror δk of the current macromodel. This allows to em-
phasize those frequencies for which there is a large
sensitivity of the target error due to the feedback
mechanism induced by the terminations onto the macro-
model. The smoothing filter f is used to reduce the
influence of noise.

Several improvements are possible and have been
succesfully implemented and tested. For instance, step
1 can start with an initial set of weights determined by
a first-order sensitivity analysis (either numerical or
analytical) of the error transformation δk(εk), see [2].
Alternatively, an elementwise or matrix-based rela-
tive instead of absolute error metric can be used in (2)
and (3). This choice depends on the particular appli-
cation at hand. We finally remark that, once a final set
of weights wk is available, they can be used to define
a cost function to be minimized within standard pas-
sivity enforcement schemes [3], should the computed
macromodel be affected by passivity violations.

3 Results

We demonstrate our proposed scheme on two PDN
examples having 18 and 11 ports, respectively. Both
cases correspond to industrial chip-package structures
and are known through tabulated frequency samples
of their scattering matrix, obtained numerically from
a full-wave solver. In both cases one of the ports is
connected to an ideal voltage source (a VRM model),
and the remaining ports are connected to either decou-
pling capacitor models or to core circuit block mod-
els. The target transfer function is represented by the
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Fig. 2. Comparison between standard and proposed macro-
models (see text).

transfer impedance that returns the voltage at a pre-
scribed node resulting from a uniformly distributed
current excitation at all device ports.

Figure 2 depicts in top and bottom panels the
results obtained from the two cases. The thin solid
blue line represents the nominal impedance computed
from the raw scattering samples describing the PDN.
The black dashed line is the target impedance com-
puted using a standard macromodel, obtained with
relative weights without applying the proposed strat-
egy. The red dashed line reports the result of our pro-
posed approach, which is observed to match now very
closely the nominal impedance. We remark that these
responses are resulting from passive macromodels, as
processed by the passivity enforcement scheme of [3].

In summary, we have proposed a black-box macro-
modeling strategy that optimizes accuracy based on
closed-loop nominal operating conditions, and not on
standard input-output open-loop representations. The
simple proposed approach is able to compensate for
the error amplification that occurs when loading the
macromodel with termination networks.
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Summary. An efficient computational model based on ther-
modynamic principles is crucial for thermal design and
optimization of transformers. In this paper we propose a
thermal/pressure network model of a dry transformer with
forced and natural cooling encapsulated in enclusure with
ventilation grids. The network has been validated by a Com-
putational Fluid Dynamics (CFD) simulation with Fluent
and applied to computation of real transformers.

1 Introduction

For air-insulated (dry) transformers, see Fig. 1, the
heat generated in the windings is transferred via con-
vection to the bulk air above the winding and then dis-
sipated to the ambient air through the ventilation sys-
tem including a fan (which can be optionally switched
off) and the enclosure inlet/outlet openings. For a
numerical simulation of such complex phenomena a
very resource demanding CFD analysis is required
[1]. Therefore, designers of transformers typically cre-
ate their own simplified calculation procedures based
on rough assessment of heat transfer phenomena and
empirical parameters that are valid for specific trans-
former technology [2]. Such procedures are integrated
into transformer design systems and used for opti-
mization. In this paper we propose a new method for
the thermal simulation of a dry transformer together
with the whole cooling system. It is based on a cou-
pled pressure/thermal network approach [3], which
in contrast to simplified engineering methods follows
the physical approach validated by CFD computa-
tions. The new method offers much better computa-
tional performance than the detailed CFD and is ex-
tendable to all transformer technologies and cooling
configurations.

2 Modeling of network components

The network components represent basic thermody-
namic phenomena inside of the transformer and its
cooling system. An example of such a component is
the cooling duct for which the network model has
been developed in [4] and is reused in computations
presented in the next section. In this section we fo-
cus on investigation of a network component (resis-
tor) representing the convection from a vertical heated
(or cooled) wall to the bulk fluid. Fig. 2 shows the

Fig. 1. Dry transformer with forced cooling in enclosure.

results of temperature computation for a cylindrical
surface of a transformer coil. The curves 1 and 2 have
been computed based on the constant temperature and
constant heat flux models, respectively, with laminar
and turbulent flow components [5]. The curves 3 and 4
are calculated using a simple model based on the Nus-
selt number Nu expressed as a function of Rayleigh
number Ra: Nu = c1Ran1 with c1 = 0.59,n1 = 0.25
for laminar flow (curve 3) and c1 = 0.1,n1 = 0.33 for
the turbulent one (curve 4) [6]. It is possible to con-
struct a convection resistor that combines both curves
by switching from the laminar to turbulent model af-
ter the the limit of Ra = 109 has been exceeded.

Fig. 2. Convection models for a vertical wall compared with
CFD results. Heat flux applied Φ̇ = 150W/m2.
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3 Model of a transformer cooling system

CFD Model. For the CFD analysis we selected an
equivalent axisymmetric transformer model consist-
ing of a coil, core leg, fan and enclosure with ventila-
tion openings. The coil includes a low voltage wind-
ing divided into 2 radially stacked parts LV1 and LV2,
a barrier B and a high voltage winding HV embed-
ded in solid insulation. Cooling ducts between them
enable air circulation from the bottom to the top of
the coil. The hot air exits the enclosure through the
outlet opening. The cold air is entering the enclosure
through the inlet opening and is sucked by the fan,
which is blowing it towards the bottom of the coil.
Fig. 3 shows selected CFD simulation results.

Fig. 3. a) Velocity vector plot at the bottom of the coil, b)
Temperature contour plot.

Network model. For exactly the same geometry as
used in the CFD analysis we have created an equiv-
alent network model shown in Fig. 4.

Comparison between CFD and network results. The
winding temperatures are included in Table 1 while
the mass flow rates for the major air streams are
shown in Table 2. More comprehensive comparison
between network and CFD results will follow in the
extended version of the paper.

Fig. 4. Network scheme for the transformer in a cooling
system with fan and enclosure. Note: this scheme shows the
network concept rather than details of the calculated exam-
ple.

Table 1. Winding average temperatures, in ◦C.

LV1 LV2 HV

CFD 107.0 100.9 89.3
Network 108.4 106.7 95.0

Table 2. Mass flow rates, in g/s, for air streams in the trans-
former model (Fan mass flow rate = 208.6 g/s).

core-LV1 LV1-LV2 LV2-B B-HV Bypass Outlet

CFD 9.5 9.1 36.0 40.8 143.9 239.2
Network 9.7 9.0 37.1 40.9 142.0 239.0

4 Computation and optimization of real
transformers. Outlook

We apply the validated network components to the
modeling of real transformers with the full geomet-
rical complexity (non-axisymmetric, 3 phases), with
radiation, non-linear material properties and tempera-
ture dependency of losses. All these phenomena can
be included in the network model without significant
computational effort while an acceptable accuracy ( 5
K standard deviation of temperature from tests re-
sults) can be achieved [4] . The results for real trans-
formers with enclosures will be presented in the ex-
tended version of this paper.

A parametrized equivalent transformer network
model can be incorporated in an optimization loop
for rapid design. In this respect, the use of a gradient-
free optimization algorithm, though being slower than
a gradient-based one, is recommended in order to
avoid local minima and also to smooth the depen-
dence on the initial guess. An optmization example
will be shown in the extended version.
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Summary. Nowadays, faster and smaller electronic de-
vices are more and more required. However, for some cir-
cuits the D&V1 process is still slow. Thus, there is an ur-
gent need for developing new, fast and efficient algorithms
in the EDA2 industry, targeting the 14nm deep submicron,
and even smaller. In this contribution, we describe the prob-
lems that affect PLL3 circuits simulation and propose some
methodologies to address them, in order to drastically speed
up the simulation time of such circuits.

Key words: Electronic Design Automation, Analog
and Mixed-Signal, Transient analysis, Nearly-Periodic
circuits, Stiff systems, Vector Extrapolation methods,
Optimization

1 Introduction

Nowadays, most EDA methods and tools are inade-
quate, since they must account for an enormous num-
ber of design considerations (PVT4 variation, power
consumption, etc.). Advanced numerical techniques
are imperative to address present-day challenges (par-
ticularly with the move to deep submicron CMOS,
going to 14nm) in the electronics industry. In this re-
gard, Analog and Mixed-Signal (AMS) content has
grown in electronic devices. In fact, nearly 70% of to-
days designs can be considered mixed signal (think
about complex ICs5 and PCBs6).The speed limiting
factor of a mixed-signal simulation is the analog
engine, since digital simulators are orders of magni-
tude faster. Designers desperately need a comprehen-
sive transistor-level D&V framework up to the task
of analyzing, optimizing and verifying AMS circuits,
and well before tape-out.

There are several types of circuits for which most
of the Spice and FasterSpice engines have a very long
transient simulation time that make their systematic
use impracticable in the D&V phase. It is typical to
have weeks of simulation even in multi-threaded
mode, and this is in contrast with the Time-to-Market
constraint and the compelling need for faster and
smaller electronic devices. To cite a few, Power reg-
ulators (DC-DC switching regulators, current regula-

1 D&V: Design and Verification
2 EDA: Electronic Design Automation
3 PLL: Phase-Locked Loop
4 PVT: Process, Voltage and Temperature
5 IC: Integrated Circuit
6 PCB: Printed Circuit Board

tors) and PLLs fall into this category. Both are negative-
feedback control systems, comparing the actual out-
put signal, and producing a control signal based on the
difference between the inputs to satisfy desired spec-
ifications, and both exhibit a trade-off between stabil-
ity and speed of the response to changes.

In the next section, we briefly describe the func-
tioning of a PLL and the problems related in its D&V
phase, characterized by a slow transient simulation;
thus, in the following section we propose some method-
ologies to combat with these problems.

2 Phase-Locked Loop device

2.1 Description of a PLL circuit

The PLL is a control system allowing one oscillator
to track with another. It is possible to have a phase
offset between input and output, but when locked, the
frequencies must exactly track [1]:

φout(t) = φin(t)+ const, (1)

ωout(t) = n×ωin(t), (2)

where n is not necessarily an integer.
PLLs are employed in radio, telecommunications,

computers and other electronic applications. Among
its applications, it can be used as a frequency synthe-
sizer (see figure 1).

Fig. 1. Simple blocks schematic PLL (frequency synthe-
sizer).

A frequency synthesizer receives as input a sig-
nal coming from a crystal oscillator, with phase φin(t)
and frequency ωin(t), and compares it by means of
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a Frequency/Phase Detector (FPD) with the outputs
φout(t) and ωout(t), through a feedback. Based on the
phase error between them, a bang-bang charge pump
(switching device) translates the error in two signals
(UP and DOWN), causing the voltage across the Loop
(pass-band) Filter (LPF) to increase or decrease. Sev-
eral considerations can be done about the ability of the
LPF to make the feedback control system stable, and
on its ability to purge from low and high-frequency
noises [1]. The voltage at the output of the LPF is used
to tune a Voltage-Controlled Oscillator (VCO), gen-
erating the desired output signal frequency. The feed-
back block is the Fractional-n Divider, which allows
(output) frequency resolution as fractional portion of
the reference frequency. One of the reason for this ar-
chitecture is to improve phase noise [4]. Finally, the
∆Σ Modulator block generates the number for the Di-
vider block.

Generally, signals in PLLs are phase-modulated,
i.e.:

x(t) = A× cos[ωt +φn(t)], (3)

where x(t) represents voltages and currents through
the device, and φn(t) is the phase that slowly varies
from cycle-to-cycle in the loop.
In fact, the difference between consecutive periods
of the waveform x(t) is small, and the signal only
slightly deviates from a strictly periodic behaviour
(i.e., φi(t) is slightly different from φi−1(t) during the
transient simulation). The signal is then nearly peri-
odic.

2.2 Problems

Various aspects cause a slow transient simulation:

• The charge pump slowly builds a power signal
(in the ms range), cycle after cycle, whereas the
VCO block produce a fast signal (in the ns or
ps range). Because of this, the overall system is
stiff (|ℜ(λmax)|/ |ℜ(λmin)| � 0). Firstly, we note
that we need a reliable transient noise analysis.
Secondly, we observe that we encounter very fast
varying signals. To deal with this, in normal tran-
sient simulation one has to drastically reduce the
step size of the integration, in order to produce
a Local Truncation Error (LTE), caused by ap-
proximating differential equations with difference
ones, within a certain threshold [2];

• Also, the VCO is a problematic block: not only it
is described by nonlinear equations, but also af-
fected by several interferences (power line inter-
ference, thermal noise, etc., resulting in the phase
noise).

2.3 Methodologies

• To deal with the small time step during transient
analysis, we will use vector extrapolation tech-
niques to adaptively skip the computation of some

signal’s time points (without loss of accuracy):
since the slow-varying signals at certain nodes of
the circuits will have a larger step size with re-
spect to the fast-varying ones, one can think of
speeding up the simulation by skipping the com-
putation of the slow-varying variables (node volt-
ages and branch currents) for some discrete time
points, required by the fast-varying signals only,
and use interpolation methods to reconstruct the
solutions of the slow part at those points needed
by the fast dynamics.

• Alternatively to the previous single-time dimen-
sion method, it will be useful to exploit a multi-
time approach (from DAE to multi-rate PDAE,
as in [5]) to represent and simulate stiff circuits
that exhibit multi-time scales, using envelope cir-
cuit equation formulation to have a two-dimensions
(split) signal representation;

• Make use of efficient mathematical methods to
describes nonlinear devices (e.g., the VCO which
is also affected by high-frequency noise), such as
the Perturbation Projection Vector (PPV) for
oscillators [3], which helps using a linearized model
of the VCO that can further speedup the simula-
tion.

• Since time performance is a key requisite of the
algorithm (stability and accuracy are obvious), it
has to be implemented with a multi-threaded
programming language (such as Pthread), to ex-
ploit the powerful of multi-core computers.
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Summary. As per Moore’s law, the number of transistors
on chip doubles every 18 months, with decrease in feature
sizes of transistors in successive generations. Parasitic ef-
fects, like capacitances and leakage currents, of different
transistors and interconnects are becoming more and more
dominant. Coupled with increasing chip density it is becom-
ing increasingly difficult to simulate these circuits with de-
sired accuracy and speed. We aim to work on acceleration
of transient simulation of AMS1 circuits for 14nm deep sub
micron designs.

1 Introduction

The need for faster and accurate EDA2 tools for sim-
ulation of AMS circuits has been evolving with each
new technology generation. In each new technology
generation we have smaller transistors and greater
chip density3. It makes the parasitic effects in the
transistors and parasitic effects of interconnects more
pronounced. Simulation time is also increased with
greater chip density. These in turn pose a more strin-
gent process, voltage, temperature, power consump-
tion and yield requirements.

Nearly 70% of today’s design is mixed signal and
it is the analog engine of AMS simulators, which is
a bottleneck in simulation speed. In order to address
the current challenges (for 14nm), advanced numeri-
cal techniques are needed.

Our aim is to accelerate transient simulation of
AMS circuits. Enhancement in the performance of ex-
isting simulators and parallelization of simulation al-
gorithms, with improved scalability, are targeted. The
idea of parallelization to achieve faster simulation is
not entirely new. The approach has regained interest
recently because of easy availabilities and excellent
price-performance ratio of CMP4s, and the increas-
ingly complex IC5 designs, which is making even the
best serial solvers inadequate in terms of simulation
speed [1].

1 Analog and Mixed Signal
2 Electronic Design Automation
3 Chip density is the number of transistors in a unit area of

chip.
4 Chip Multi Processors or Multi-Core processors
5 Integrated Circuit

2 Acceleration of Circuit Simulation

2.1 Background of Circuit Simulation

In time domain any electronic circuit can be expressed
as a set of DAE6s.

d
dt

q(x(t),u(t))+ f (x(t),u(t)) = 0 (1)

where x(t) ∈ RN is the vector of unknown node volt-
ages and branch currents, u(t) ∈ RN is the input exci-
tation vector, f (x(t),u(t)) ∈ RN is the vector of re-
sistive currents and q(x(t),u(t)) ∈ RN is the vector
of charges or fluxes. Transient simulation involves
solving for values of x(t) at different values of time
t ∈ (t0, t f ). It is an IVP7 where x(t0) = x0. Often x0 is
obtained from the DC analysis. DAEs are discretized
using numerical integration techniques and non-linear
equations are linearized using Newton’s method. Fi-
nally, the linearized set of equations are solved using
linear solvers [2] [1]. The steps in transient simulation
are shown in Fig. 1. The sparse nature of the system
matrix is exploited for better performance by using
algorithms like KLU [6].

Fig. 1. General flow of transient simulation [1].

6 Differential Algebraic Equation
7 Initial Value Problem
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2.2 Parallelization

Parallelization can be at all the different steps of tran-
sient simulation shown in Fig. 1. Device evaluations
and solution of linearized equations are the most time
consuming and have been targets of earlier paral-
lelization efforts. Parallelization of device evaluations
is quite straightforward [1]. Solution of a large sys-
tem of linear equations is more complicated. Circuit
partitioning is an important technique for solving a
large set of equations faster. Parallelism may also be
explored in the time domain by computing the circuit
response at several time points instantaneously [3].

2.3 Circuit Partitioning

Using circuit partitioning techniques, circuits can be
partitioned recursively into sub-circuits [5]. The par-
titioning can be done in a nested manner. The idea of
circuit partitioning is shown in Fig. 2.

Fig. 2. Circuits partitioning through node tearing [4]. N1,
N2, N3, N4 and N5 are interconnect nodes between differ-
ent sub-circuits.

2.4 Problem

Existing simulators with serial and parallel solvers are
becoming inadequate with growing size and complex-
ity of IC designs. A part of the problem is in improv-
ing the performance of different simulation steps of
serial solvers. Another problem is in finding good al-
gorithms for partitioning and task scheduling, which
would keep the overheads of parallelization low and
remain scalable. The existing parallel direct matrix
solvers are not highly scalable. Parasitic coupling be-
tween different circuit nodes in 14nm would not be
negligible [1]. Non-negligible parasitics would re-
quire that the device model used in simulators account
for the parasitics as well. The application of relaxation
methods, which hold promise for large circuits, would
be difficult because of the coupling. Relaxation meth-
ods exploit unidirectionality of signal propagation to
achieve fast convergence. Contribution of parasitics
would reduce the sparsity of the Jacobian.

In circuit partitioning the interconnects between
different sub-circuits present a serial bottleneck. Achiev-
ing a suitable level of granularity and load balance is a
challenging task, which is essential to obtain efficient
resource utilization. In addition different sub-circuits
converge at different rates. Using same time steps for
all the sub circuits, therefore, leads to inefficient re-
source utilization.

2.5 Methodologies

Some of the ways in which the problem can be ap-
proached are:

• Improvements in the partitioning algorithm and
scheduling of tasks on different cores can be made.

• Application of mixed granularity to achieve better
load balance.

• General purpose parallel matrix solvers, involving
task graphs and supernodes, can be adapted for
circuit simulation.

• Use of relaxation methods with parallel Schwarz
preconditioners.

• Adoption of partial LU factorization and partial
forward substitution.

• Parallelization of LU factorization and solves for
the different sub-circuits in hierarchial solvers.

• Application of latency and multi-rate techniques
to different levels of hierarchy, in time integration
and newton’s iterations.

• Reduction of computations by non-linear model
order reduction and through development of non-
linear macro models.
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Summary. The numerical simulation of large area semi-
conductor devices for power electronics applications, such
as Phase Control Thyristors (PCTs) or Bimode Insulated
Gate Transistor (BIGTs) requires full-scale 3D simulations.
Furthermore the lack of efficient and accurate lumped el-
ement models for complex power devices, demands for
mixed mode simulation of distributed devices coupled to
external controlling circuits. Here we propose a strategy for
the coupled electrothermal simulation of 3D semiconductor-
oxide devices and lumped circuit elements, with particular
emphasis on the performance of iterative solution strategies
for nonlinear equations.

1 Introduction

Advanced power semiconductor devices are charac-
terized by complex 3D geometries and therefore can
be studied accurately only with 3D simulations.

Commercial 3D TCAD simulators, are mainly fo-
cused on the numerical modeling of CMOS devices
rather than on providing the computational efficiency
required for the simulation of large devices with com-
plex geometries. For this reason MOX and ABB ini-
tiated a collaboration aimed at studying algorithms
for large scale simulation of power electronics de-
vices, and developed an experimental TCAD simu-
lator based on the in-house finite element libraries
LDGH and BIM++, already in use at MOX.

2 Coupled mathematical model

Let Ω be the device domain, Γ
N be the insulated de-

vice boundary, and Γ
D
i represent each of the Nc con-

tacts of the device. Let ΩSi and ΩSiO2 be the silicon
and silicon-oxide regions respectively. A general as-
sumption is made that voltage over a contact surface
is uniform: the voltages Fi, with i = 1 : Nc, are added
to the system as additional variables. We suppose for
the sake of simplicity that each contact is connected
to one of the Nc pins of the connected circuit, whose
voltage is represented as one of the N f circuit state
variables.

The model reads:

−∇ · (ε∇φ)+q(n− p−D) = 0
∂n
∂ t +∇ · Jn +RG(n, p,∇φ) = 0
∂ p
∂ t +∇ · Jp +RG(n, p,∇φ) = 0

in the silicon domain ΩSi, where φ is the electric
potential, ε is the material absolute permittivity, n
and p are the electron and hole number densities, q
is the elementary charge, D is the doping density, t
is time, RG(n, p,φ) is the recombination-generation
rate, Jn =−(µnVth∇n−µnn∇(φ +φBGN)) and
Jp =−(µpVth∇p+µp p∇(φ −φBGN)) are the electron
and hole fluxes, µn and µp are the (variable) electron
and hole mobilities, Vth is the thermal voltage, and
φBGN is the half-bandgap voltage variation due to dop-
ing effects. In the oxide domain ΩSiO2, the equations
reduce to:

−∇ · (ε∇φ) = 0, n = p = 0.

The conditions on the boundaries read:

D+ p−n= 0 n= ni exp
(

Fi−φ

Vth

)
p= ni exp

(
φ−Fi
Vth

)
on Γ D

i ∩ΩSi,∀i = 1 : Nc,

∇φ ·νN = 0 Jn ·νN = 0 Jp ·νN = 0

on Γ N ∩ΩSi,

φ −Fi = Φbi n = p = 0

on Γ D
i ∩ΩSiO2, ∀i = 1 : Nc, and

∇φ ·νN = 0 n = p = 0

on Γ N ∩ΩSiO2, νN and νD
i being the outward nor-

mal versors on Γ N and Γ D
i , respectively. The device-

circuit coupling reads

A
d
dt

x+Bx+C+ rI = 0

with x j = Fi, r j,k ∈ {0,1} ⇐⇒ (Mcont.(k) =Γ D
i )∧

(Mpins(k) = j), where x j are the electrical and ther-
mal degrees of freedom describing the circuit state,
according to the models of [4–6], A, B are the matri-
ces and C the source term of the descriptor system for
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the circuit, and I is the vector of the currents outflow-
ing the device contacts, defined as:

Ik =
∫

Γ D
i =Mpins(k)

(
− d

dt (ε∇φ)+q(Jp− Jn)
)
·νD

i dΓ ,

The maps Mcont. and Mpins, defined from {1,2, . . .Nc}
onto the set of contacts

{
Γ D

i
}

i and the circuit vari-
ables indexes {1,2, . . .N f } respectively, represent the
device-circuit connections, r being a tensor coupling
the k-th current with the j-th circuit equation, accord-
ing to both the map Mpins and the kind of control to
be imposed.

3 Device Structure

As a benchmark test case, we consider the power
diode studied in [7]. Such diodes are irradiated with
1−5 MeV electrons at a dose between 5 and 20 kGy
and 5− 12 MeVHe at doses ranging between 1010−
1011 cm−2 and annealed at a temperature below 300 ◦C.
In these conditions the dominant deep levels are the
vacancy-oxygen pair (V-O) at ' EC− 0.16 eV and
the divacancy (V-V) at ' EC−0.42 eV.

As a result, an accurate model of the recombination-
generation centers in the semiconductor, is necessary
to precisely reproduce the reverse recovery character-
istics of the diode. Since the inclusion of the com-
plete trap models is computationally expensive and
degrades convergence, an effective carrier lifetime
profile was computed via a commercial simulator ([8])
and introduced with a conventional SRH type recom-
bination model.

The schematic of testing circuit used for reverse
recovery measurements is shown in Fig. 1. The exact
value of the inductance LS used in the test is fine-
tuned to match the dI/dt of the measurements. The
measured reverse recovery current at temperatures of
80 ◦C, 125 ◦C, and 140 ◦C is shown in Fig. 2.

Fig. 1. Schematic structure of the simulated circuit.
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Summary. The aim of our research work is to analyse tan-
dem thin-film Silicon solar cells, optimizing the optical ef-
ficiency vs cost trade-off. The model used to compute cells
quantum efficiency is composed of i) a Maxwell simulation,
which captures light scattering through nano-textured inter-
faces, and ii) a photonic Monte Carlo approach to statisti-
cally evaluate coherent and scattered photon absorption in
within the cell layers. The model is undergone to the Mor-
ris screening method and its Sobol indexes are calculated,
in order to have both a qualitative and quantitative Sensitiv-
ity Analysis measure. Sensitivity Analysis results are hence
used to efficiently optimize the model, reducing its order:
ad hoc Single Objective Optimization Algorithm (MCS) is
applied only on the most sensitive parameters to fully max-
imize the Quantum efficiency and ad hoc derivative-free
Multi Objective Evolutionary Algorithm (NSGA-II) is used
(again considering only the most sensitive parameters) in
order to balance efficiency and cost. Optimal designs ro-
bustness is evaluated throughout the computation of three
different statistical indexes: Local (which gives information
about single parameter variations effect on a given design),
Global (which evaluate the effect on a given designs when
all parameters are varying) and Glocal (which compute the
largest stable neighborhood of a given design). At last, no-
table points set are analysed by a data-based Identifiability
Analysis algorithm (MOTA), to infer functional relation-
ships between the parameters considered. The results ob-
tained (up to a 5.88% total absorption improvement) widely
demonstrate the solidity and the strength of our approach
balancing optimality and computational efficiency.
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An advanced transmitter and receiver modelling scheme for the EMC
analysis of smart grid components
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Summary. The comprehensive EMC analysis of smart grids
includes, as fundamental basis, the physical layer of sig-
nal transmission. In this contribution it is pointed out that
also the data link layer should be included into the analysis.
As a consequence, traditional transmitter and receiver EMC
models need to be combined with the concepts of modern
communication theory. As an example, the performance of
a generic OFDM data link under the influence of external
interference is studied.

1 Introduction

Modern communication systems have become an es-
sential part of todays power supply networks that of-
ten are referred to as smart grids [1]. The merging
of communication systems and power supply net-
works, however, also has led to considerable prob-
lems concerning their Electromagnetic Compatibil-
ity (EMC) [2, 3]. Corresponding analysis methods
and countermeasures require concepts that are beyond
analog data transmission and additionally require dig-
ital signal processing [4]. These concepts do not ap-
pear in classical EMC models, such as the ones out-
lined in [5, 6], and the question appears how to in-
clude them in an EMC analysis. Refering to the In-
ternational Standards Organization / Open System In-
terconnection (ISO/OSI) layer model, as illustrated in
Fig. 1, this implies to investigate whether besides the
physical layer 1 also the data link layer 2 can be in-
cluded in an EMC analysis. Generally, this encom-
passes transmitter, propagation, and receiver mod-
els. The propagation models typically are described
by transmission line or electromagnetic theory and
the inclusion of digital signal processing mainly re-
quires appropriate and advanced transmitter and re-
ceiver models.

2 Traditional and advanced transmitter
and receiver models

The notion of traditional transmitter and receiver mod-
els is not well-defined. In view of the EMC of smart
grids there are established models which take into
account properties such as the spectral content of a
signal, the type of modulation used, the signal to
noise ratio, and the receiver bandwith and sensitivity,
e.g. [8]. In these models the different stages of data
transmission are analog and, in the linear case, can

Fig. 1. ISO/OSI layers which characterize digital communi-
cation systems by a hierarchical layer model [7]. The usual
EMC analysis concerns the physical layer 1 which, in par-
ticular, contains the physical wired or wireless data connec-
tions. The data link layer 2 already involves advanced meth-
ods of digital signal processing and includes error detection
and the digital elimination of unwanted signals, as possibly
produced by EMI sources.

be modelled by means of transfer functions. To also
include digital signal processing they have to be sup-
plemented by operations such as analog-digital con-
version, digital modulation, synchronization, and er-
ror detection.

As an example for a digital transmitter and re-
ceiver configuration, in Fig. 2 a generic model of an
Orthogonal Frequency Divison Multiplexing (OFDM)
data link is shown. On the transmitter side, initial data
words are mapped on a complex Quadrature Ampli-
tude Modulation (QAM) plane and eventually mod-
ulated, digitally upconverted, and finally converted
to the analog domain. On the receiver side, the in-
coming signal is converted back to the digital do-
main, digitally down-converted, demodulated and fi-
nally demapped on a complex QAM plane.

The single steps that are necessary to perform the
transmission can, in principle, be done analytically by
hand. However, it is more feasible to model and im-
plement the data transmission within a software envi-
ronment such as MATLAB/SIMULINK [9]. It is then
possible to also add disturbing signals to the propaga-
tion channel and to investigate their influence on the
received data words. In Fig. 3 the influence of some
specific interferences are shown and illustrated.
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Fig. 2. Transmitter and receiver configuration of a generic
OFDM data link.

Fig. 3. Resulting data word sets, obtained under the influ-
ence of, from left to right: (i) noise, (ii) phase shift, (iii)
damping, and (iv) multipath effects. It is noted that the data
link model does not include synchronization and error cor-
rection.

3 Example: Symbol error rate of a
generic OFDM data link for smart grid
power line communication

A transmitter and receiver configuration as shown
above can be used, for example along the lines of [10–
12], to study the symbol error rate (SER) in depen-
dency of various disturbances. For a generic OFDM
data link a number of parameters have to be set. These
concern the different simulation blocks where modu-
lation/demodulation, up-/down-conversion, and DA-
/AD-conversion take place. For a fixed setting, Fig. 4
shows the SER in dependency of different parameters
of a damped sinusoidal pulse which affects the propa-
gation paths. The SER increases with increasing pulse
amplitude and peaks at a pulse carrier frequency of
about 1 MHz which corresponds to a passband fre-
quency of the transmitter. Also other observables and
dependencies can be analyzed in this framework.
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Fig. 4. Illustration of a Symbol Error Rate in dependency
of specific damped sinusoidal pulses that separately act as
disturbances. The Symbol Error Rate refers to a generic
OFDM data link.
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Summary. A method to extract macromodels for RF MEMS
switches is proposed. The macromodels include both the
coupled structural-electric behaviour of the switch as well
as its RF behaviour. The device with distributed parameters
is subject to several analyses from which the parameters of
the macromodel are extracted, by model reduction. Finally,
all parameters are combined in a Spice circuit model, which
is controlled by the MEMS actuation voltage and is excited
with the RF signal.

1 Context

RF MEMS switches are devices containing electro-
static actuated movable parts with two stable states
(up and down), used to allow or block the paths of
RF signals in various applications. They are based
on micromachining technologies, being more suitable
than solid electronic switching devices [1]. A typi-
cal capacitive RF switch contains an elastic bridge
over a coplanar waveguide line (Fig. 1). The capac-
itance between the grounded bridge and the signal
line, isolated with a dielectric layer is strongly de-
pendent on the bridge position. The design of this

Fig. 1. Typical capacitive RF switch.

device focuses not only on the RF performances (S
parameters at the RF terminals) in its stable states,
but also on relevant quantities (pull-in/out voltages at
the actuation terminals, commutation time between
the stable states) related to its switching from one
stable state to the other. The investigation of the lat-
ter aspects needs multiphysics simulations since sev-
eral physical effects (mechanical motion, air damp-
ing, electrostatic actuation) come together. Even since
the early development of these devices, the computa-
tional challenges identified, are the multiphysics level
modelling, required for the estimation of the switch-
ing properties, and the nonlinear macromodelling or

the nonlinear order reduction, which is very important
for the designers who need dynamical device-level
models. The effective macromodels should be accu-
rate enough and have few degrees of freedom, and
they have to be correlated to design parameters such
as dimensions and material properties, with the aim of
being embedded in system-level models [2]. The mul-
tiphysics modeling is still a difficult challenge [3].

A common approach is to use separate macro-
models for the physical domains involved, depending
on the investigated properties. The RF macromodels,
consist of short sections of transmission lines and R,
L, C elements (Fig. 2), and they are used to model
the S-parameters of the switch in its stable states. The
values of the capacitance are different for the down
and up states. They are computed with simple formu-
las based on an uniform electrostatic field assumption
as in [4], whereas R and L are computed from down-
state simulations with an EM field solver and fitting
of the obtained S parameters.

Fig. 2. Typical RF macromodel.

Circuit macromodels are also proposed for the
multphysics domain, as in [5], where large signal dy-
namic circuit circuit simulation models for MEMS
devices using controlled current sources are proposed
and implemented in APLAC. The importance of de-
vice level models is that they can be combined and
integrated into existing design environments [6]. As-
pects related to the mixed-domain electromechanical
and electromagnetic simulation of RF-MEMS devices
and network are reported in [7] . Combined tech-
niques that derive both lumped and distributed com-
ponents are used to obtain a fully coupled model desc-
sribed in a hardware description language. A MEMS
component model library is offered by this team at
http://rfmems.sourceforge.net/.
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2 Mixed Domain Macro-Models

The device with distributed parameters is subject to
several field analyses from which the parameters of
the macromodel are extracted, by model reduction.
From the RF characteristics in several positions (Fig. 3),
including up/down stable states, the TL parameters
and the longitudinal R, L values of the switch are
extracted with a procedure we previously proposed
for passive components. From the coupled structural-
electrostatic-fluidic numeric (FEM) analysis the lumped
parameters of the switch are extracted (Fig. 4 and
Fig. 5). Finally, all parameters are combined in a
Spice circuit model, which is controlled by the MEMS
actuation voltage and is excited with the RF signal
(Fig. 6). This circuit describes the reduced (1D) equa-
tion of the mechanical movement: md2 z/d t2 + kz+
bdz/d t = Fes(u,z), where the forces are described by
behavioural current source. They include the electric
forceFes(u,z) that depends on the actuation voltage
u and the capacitance of the switch which is depen-
dent on the displacement z, as well as the damping
force that depends on the bridge velocity v = dz/d t
with a global damping coefficient b, the elastic forces
that depend on the displacement z and on an equiva-
lent global elastic coefficients k. The ”current” flow-
ing through the massic capacitance m is in fact the
inertial force mdv/d t.

Fig. 3. RF caracteristics. Reduced models of very low order
are needed for the RF domain

Fig. 4. Fluid flow lines around the bridge.

Fig. 5. Damping parameter extracted from the multiphysics
simulation.

Fig. 6. Multiphysics macromodel described as a circuit
(CCCS/VCCS = current/voltage controlled current source;
BCS/BVS = behavioural current/voltage source). This
schematic replaces the parametric capacitor in Fig. 2.
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Summary. Modeling the parasitic noise between electrical
devices which are sitting in the neighboring area in electro-
magnetic systems, the so-called crosstalk phenomenon, may
lead to differential-algebraic equations (DAEs) obtained by
bilateral coupling of two subsystems of differential equa-
tions.

In this article, modeling of the crosstalk phenomenon
based on the bilateral coupling and analysis of the obtained
coupled system in terms of its index where the index is the
differentiation index are considered .

1 Introduction

In the field of chip design, modeling, simulation and
control of the reliability issues such as crosstalk phe-
nomenon is of the great interest. The crosstalk phe-
nomenon can be modeled by the bilateral coupling
of two subsystems of the improved Maxwell system,
obtained by the Maxwell equations, and the Modified
Nodal Analysis system, derived by the circuit equa-
tions. Considering the suitable coupling relations, we
obtain the coupled system of partial differential-algebraic
equations (PDAEs).

The semi-discretization of the partial differential
equations contained in the PDAEs in space by fi-
nite element method yields a large DAE system with
higher differentiation index compared to the index of
the Modified Nodal Analysis system due to the cou-
pling relations. In fact, it can be shown that the un-
derlying equations of the Modified Nodal Analysis
system is a DAE system where the associated index
doesn’t exceed 2 under some conditions on the topo-
logical structure of the integrated devices in the elec-
trical circuit. Structural complexity of a DAE system
is presented by its index, and therefore index analysis
for the purpose of time integration is necessary.

2 Modeling

Improved Maxwell system

For the vector fields magnetic flux density B, electric
field E and the magnetic field H defined by

B,E,H : Ω × I→ R3

the improved set of Maxwell system read as

∇ ·B = 0, in Ω × I
∇×E =−∂tB, in Ω × I
∇×H = ∂t(ε0E +P)+σE + Ja, in Ω × I

∇ · (ε0E +P) = ρ, in Ω × I
∇ · (σE + Ja) =−∂tρ, in Ω × I

where Ω ⊆ R3 is assumed to be bounded and Lips-
chitz domain, and I is a closed interval of R. Therein,
the polarization current density and the electric charge
density are denoted by P and ρ , respectively. Further-
more, ε0 is the vacuum permittivity,σ is the electrical
conductivity, and Ja is the applied current density.

Modified Nodal Analysis system

The dynamical behavior of the electrical circuits con-
sisting of linear electrical devices such as the capac-
itor with the capacitance C, the inductor with the in-
ductance L and the resistor with the resistance R is
described by the Modified Nodal Analysis system

ACCAT
C 0 0 0

0 L 0 0
0 0 0 0
0 0 0 0




η̇

ı̇L
ı̇CV
ı̇V



=


−ARGAT

R −AL −ACV −AV
AT

L 0 0 0
AT

CV 0 0 0
AT

V 0 0 0




η

ıL
ıCV
ıV



+


−ACC −AI 0 0

0 0 0 0
0 0 −I 0
0 0 0 −I




ıCC
ıI

uCV
uV


where ACC and ACV denote the associated incident
matrices to the controlled current sources and to the
controlled voltage sources respectively, and η denotes
the nodal potential of the electrical circuit. In addi-
tion, the corresponding incidence matrices to the de-
vices are denoted by Ai where i ∈ {C,L,R,V}.

3 Index analysis

We are interested in the structural properties of the
coupled system in terms of its index which are impor-
tant for the purpose of numerical integration. In prin-
ciple, high index may lead to the not reliable results
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while simulation. For instance, it may lead to instabil-
ities and inconsistencies in the numerical treatment.
Therefore, it is essential to determine the index of the
obtained coupled system before time integration.

The corresponding differential-algebraic equations
to the coupled system is of the type of quasi-linear
DAEs with high index due to the hidden constraints
established by the coupling relations. In this article,
the index of this quasi-linear DAEs is analyzed and
some requirements for the smoothness is also consid-
ered.
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Summary. Changing the topology of a power system dur-
ing operation typically causes temporary high-frequency
oscillations. These transients can be described by a system
of linear ordinary differential equations that can be inte-
grated in time by a semi-explicit Runge-Kutta method. This
Rung-Kutta method is implicit and consequently requires a
linear solver. In this work, several transients are computed
for different stiffnesses and problem sizes in order to show
the impact of different linear solvers in terms of computa-
tion time. This study suggests that the computing time is
faster with one iteration of iLU(l) with l = 20 as a basic
iterative method.

1 Introduction

A transient appears when the topology of a power sys-
tem changes. The transient is the transition between
two steady states and this transition is generally com-
posed of high-frequency oscillations [1]. Numerical
integration methods of stiff equations for large system
of differential equations require an important compu-
tation time.

The system of equations to integrate is a linear
system of ordinary differential equations (ODEs). The
system of ODEs are obtained from the block mod-
elling method [2]. The principle of this method is to
connect different ODEs which represent the differ-
ent elements of a power system in a large system of
ODEs.

Runge-Kutta method are used in different scien-
tific domains [3]. We are interested in the adaptive
fourth order Runge-Kutta which is semi-explicit (di-
agonally implicit numerical integration method) and
is able to control the time step [4]. This method needs
a linear solver [5] (implicit method). However, the
linear solver requires a large amount of computation
time. For this reason, in order to reduce the computa-
tion time, we have investigated different linear solvers
which could be used with the time integration method.

To study the different linear solvers used with
the Adaptive Runge-Kutta 4 (ARK4), the software
PETSc is used [6]. This mathematical tool is devel-
oped for large-scale applications. It implements var-
ious algorithms for system of linear and non-linear
equations allowing to experiment with various op-
tions such as ordering methods, fill in, residual error,
... .

Several test cases with diverse proprieties (size
and eigenvalues) are used to study the different lin-
ear solvers. From these test cases, it is shown that
one iteration of iLU(l) with l = 20 as basic iterative
method (BIM) works efficiently for any size of system
of ODEs and for large eigenvalue problems.

The abstract is organized as follows. Section 2
presents the different test cases. Section 3 is a small
reminder about semi-explicit Runge-Kutta method.
Section 4 shows the different solvers used in the pa-
per. Numerical results are shown in section 5. Finally,
section 6 draws the conclusion.

2 Test cases

The block modelling method [2] is used to obtain a
linear system of ODEs. The main idea of the method
is to connect a multitude of small systems of ODEs
which represent some components of the power sys-
tem inside of a large system of ODEs. This method
gives the following formulation:

ẋ = Ax+Bu(t) (1)

where A∈Rn×n, B∈Rn×ng , x∈Rn and u(t)∈Rng , n is
the number of differential variables (currents through
inductances and voltages across capacitances) and ng
is the number of sources.

We consider six test cases. The four first test cases
(TC 1 to 4) have different sizes from the less to
the most import number of differential variables (98,
1034, 4195 and 20999). Finally we consider two test
cases (TC 5 and 6) with a number differential vari-
ables of 1050 and 104640. The difference is that the
stiffness is more important for the test case 5 and 6
than for the test case 1 to 4.

3 Runge-Kutta methods

The Runge-Kutta method used in this paper is the
Adaptive Runge-Kutta 4 (ARK4) and the Butcher
tableau [7] of this method is given in [4]. This method
has six stages (s = 6), is a four order method (p = 4)
and has the ability to control the time step. The time
steeping control used is shown in [3]. The system of
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linear equations to solve due to the ARK4 algorithm
is:

(I−Āii∆ tA)ki =A

(
un +∆ t

i−1

∑
j=1

Āi jkj

)
+Bu(tn+ci∆ t)

(2)
where Ā and ci come from the Butcher tableau [4] and
1≤ i≤ s

4 Linear solver

In order to solve the Equation (2), a linear solver is
necessary. In this work, we compare the following lin-
ear solvers: one iteration of GMRES with iLU as pre-
conditioner, one iteration of GMRES with iLU(l) as
pre-conditioner, one iteration of iLU as BIM and one
iteration of iLU(l) as BIM where l = 20. Moreover,
re-ordering method is used to reduce fill in.

At each time step of a numerical integration meth-
od a local truncation error is made. The basic idea is
to approximate the linear solver. By using an approx-
imation of the linear solver, we guess that the compu-
tation time would be smaller than with an exact linear
solver. Moreover, the increase of the local truncation
error due to the approximation of the linear solver will
be negligible.

5 Results

The following table (Table 1) shows the computation
time of the simulation of the different test cases (TC
1 to TC 6). The tolerance of the numerical integration
method is 0.0001, the simulation time is 0.05s and the
initial condition is x0 = 0.

Table 1. CPU time in second

GMRES+iLU GMRES+iLU(20) iLU iLU(20)

TC 1 5.3 5.3 4.5 4.5
TC 2 14.7 14.2 10.1 10.4
TC 3 48.1 46.9 30.7 32.3
TC 4 284.7 286.0 201.4 210.9
TC 5 <300 13.3 <300 9.9
TC 6 <1000 629.5 <1000 348

From Table 1, we can see that one iteration of
iLU(20) as BIM is faster for large eigenvalue prob-
lems. Furthermore, the solution found by iLU(20) is
accurate. However, one iteration of iLU(20) as BIM
is slower than one iteration of iLU as BIM method
for small eigenvalues problems. However, at the be-
ginning of a simulation, usually, eigenvalues are un-
known.

6 Conclusion

In this work, we have studied approximate linear sol-
vers with an adaptive Runge-Kutta method (ARK4)
for the computation of transients in power systems.
From the different test cases, we can state that one it-
eration of iLU as BIM is sufficient with the ARK4 and
is faster than GMRES with iLU as pre-conditioner
if the matrix A is well conditioned. However, when
the eigenvalues of the matrix A become large, iLU(l)
is more efficient. For this reason, by using all time
iLU(l) as BIM with for example l = 20 is impor-
tant. This strategy takes into account the values of the
eigenvalues of the matrix A especially if the matrix A
is badly conditioned. Of course, if the eigenvalues of
the matrix A are known, it is possible to choose iLU
or iLU(l) with an appropriate l. Further work needs to
be investigated to understand these results.
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Summary. A general framework for the computational iden-
tification of design and process parameters in electrical en-
gineering is presented and applied to eddy current and wave
problems. The method is based on an appropriate discretiza-
tion of a mathematical process model, e.g., by finite ele-
ments. The discretized relations are employed as constraints
in a rigorous mathematical optimization program.

1 Optimization of Technical Processes

We present a method for the numerical identification
of suitable design and process parameters of electro-
magnetic devices. The main purpose of this work is
to make this method applicable for engineering prob-
lems. The abstract framework and its numerical treat-
ment are described in Section 1. In Section 2 it is ap-
plied to two design problems: an electromagnetic-me-
chanical process and the optimization of a reverbera-
tion chamber’s ergodicity.

1.1 Abstract Formulation

Let Ω ⊂ R3 be a domain and P ⊂ RN a set of vec-
tors, each modelling a list of N real parameters for an
electrotechnical process in Ω . The space of square-
integrable vector fields defined in Ω with values in
R3 is denoted L2, and V is a Sobolev space of vector
fields on Ω with dual Sobolev space V ′⊃ L2⊃V with
respect to the scalar product in L2. Further, let Λp be a
linear operator Λp : V →V ′ with additional regularity
properties (see below) and fp ∈V ′, both smoothly de-
pending on p, i.e., the partial derivatives in the sense
of Banach-space valued functions with respect to the
components of p up to order 2 exist and are all contin-
uous. Finally, let Φ : V → R be a functional, which
is bounded from below. We are looking for a vector
field umin ∈V such that

Φ(umin) = min
p∈P,up∈V

Φ(up) , s.t. Λpup = fp . (1)

Applied to an electrotechnical problem, u ∈ V will
represent a magnetic vector-potential or another elec-
tromagnetic field and Λpu = fp the weak form of the
model equations, whose coefficients, e.g., electrical
conductivity κ , permittivity ε , and permeability µ ,
depend on the design parameter p, and whose right
hand side fp represents a source term, e.g., an imposed
current density.

1.2 Numerical Solution Procedure

There are two ways to solve (1): first discretize then
optimize and first optimize then discretize, e.g. [1].
The second method requires the formulation of an op-
timization method in the scope of functional spaces.
The derived relations characterizing a minimum con-
figuration are then discretized and finally solved nu-
merically. In the first method, which will be em-
ployed here, the optimization procedure is applied to
the discretized model equations. This has the advan-
tage of obtaining a standard optimization problem af-
ter discretization. However, without further algorith-
mic control, it is not clear, if local or global minima of
the discrete optimization problem are close to minima
of the continuous one. To obtain an algorithm whose
convergence can be granted, we intend to adapt the
discretization of (1) to the current state of the opti-
mization problem, controlled, e.g., by the duality gap.
To this end we work with a family of discretizations
Λ δ

p : V δ →V δ ′ with finite dimensional vector spaces

V δ ⊂V and fδ
p ∈V δ ′, controlled via the real parameter

δ > 0. Both V δ and V δ ′ are isomorphic to the same
space Rn with n = n(δ ). We further claim uδ → u
in V for δ → 0 uniformly with respect to p, where
uδ denotes the solution of the discretized problems
Λ δ

p uδ = fδ
p , uδ ∈ V δ , and u the solution of the con-

tinuous problem. In practical problems the latter will
usually be a consequence of standard finite element
convergence theory. In this case, δ is typically related
to the maximum element size in a quasi-conformal
meshing of Ω .

In the first discretize then optimize approach, we
replace any quantity in (1) by its discretized counter-
part obtaining a standard optimization problem with
a few number of parameters p1, . . . , pN , a large set
of state variables uδ =

(
uδ

1 , . . .u
δ
n
)>

, a functional
Φ(uδ

1 , . . .u
δ
n ) in the state variables, which is chosen

as simple as possible, e.g., as a quadratic function,
and a large number of constraints linear in the state
variables and usually non-linear in the parameters:

Φ(uδ
min) = min

p∈P,uδ
p∈V δ

Φ(uδ
p) , s.t. Λ

δ
p uδ

p = fδ
p . (2)

For any discretization parameter δ , this problem can
be solved with standard methods in mathematical op-
timization – we particularly apply an efficient interior
point method according to [3]. Remarkably, for solv-
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ing (2), an explicit solution of Λ δ
p uδ

p = fδ
p is not re-

quired.

2 Examples from Electrical Engineering

We next apply the general framework described above
first to a magnetic force optimization and then to a
wave problem.

2.1 Design of Magneto-Mechanical Processes

Coupled electromagnetic-mechanical devices are usu-
ally difficult to design if no experience from forego-
ing versions is available. Hence, application of formal
optimization methods may be useful. For this type
of problems, the involved electromagentic fields can
usually be computed in magneto-quasistastic approx-
imation, i.e., the eddy current equation

∇×
(

1
µ

∇×A
)
+κp

∂A
∂ t

=−κp∇ϕp (3)

is relevant for the magnetic vector potential A defined
in a domain Ω containing the tool coil S and the good
conduction material T to be formed. If a Coulomb
gauge ∇ ·A = 0 is imposed, ϕp fulfills ∆ϕp = 0 in
Sp with boundary conditions accounting for the im-
posed voltage Up(t) applied between the connection
surfaces. The parameter vector p comprises geomet-
ric properties of the tool coil modelled via the spatial
distribution of the conductivity κp and the area Sp,
where ϕp 6= 0. Additional parameters arise from the
total discharging current Ip(t) the tool coil is supplied
with. The target function Φ may, e.g., be modeled via
an optimum Lorentz force distribution fideal:

Φ(Ap) =
∫

T

∣∣∣∣κp
∂Ap

∂ t
× (∇×Ap)− fideal

∣∣∣∣2 dV . (4)

Further equations for the mechanical system can ad-
ditionally be considered. Then the deviation from a
prescribed shape of the electromagnetically deformed
body can be chosen as target function. In an axisym-
metric context, a Coulomb gauge is trivially fulfilled
and standard piecewise linear finite elements suffice.
Otherwise, Nédélec finite elements are an appropri-
ate choice (see below). In addition to metal forming,
also electromagnetic acceleration can be treated with
small modifications within this framework.

2.2 Shape Optimization of Cavity Resonators

Testing the reaction of a technical or biological sys-
tem to an electromagnetic field requires to generate a
field of defined magnitude, direction and polarization.
This often limits the possibility to reproduce electro-
magnetic compatibility tests or tests of biological ma-
terial, particularly at high frequencies. To avoid this
delicate problem, a reverberation chamber, i.e., a cav-
ity resonator with variable geometry, can be employed

to produce a series of field distributions at a certain
frequency whose average is in all respects equally dis-
tributed, e.g., [2]. To reach this goal, the chamber is
equipped with a mode stirrer. For a sufficiently large
number of stirrer positions the chamber is excited at
a frequency ω in a range where the eigenfrequen-
cies of the resonator are that close to each other that
the resulting resonance curves overlap, so that several
eigenmodes are excited at the single frequency ω . The
device under test is exposed to the different emerg-
ing standing waves. If the chamber is sufficiently er-
godic the average of these electromagnetic fields are
nearly equidistributed. Assuming constant permeabil-
ity µ and omitting losses, the linear operator defining
the constraints in (1) is deduced from the Helmholtz
equation for the amplitude Ek of a time harmonic
electrical field generated in the reverberation cham-
ber with stirrer at the kth position (1≤ k≤ K) excited
via an adequate boundary condition on Γ ⊂ ∂Ω at the
frequency ω:

1
µ

∆Ek +ω
2
εEk = 0 , ∇ · (εEk) = 0 , in Ω ,

n×Ek = 0 on ∂Ω \Γ . (5)

To obtain Λp, this problem is transferred in its weak
form. As state variables the whole list u = (E)k of
electrical fields computed for different stirrer posi-
tions is considered. As indicator for the ergodicity of
the chamber the functional

Φ(up) =
∫

Qk,p

∣∣∣∣∣
∣∣∣∣∣ 1
K ∑

k
∇Ek,p

∣∣∣∣∣
∣∣∣∣∣
2

dV (6)

is defined, where Qk,p ⊂ Ω denotes the resonating
volume for the kth stirrer position depending on the
design parameter vector p, and || · || is an adequate
matrix norm. By a conforming disretization with Né-
délec elements, (5) is transformed in a system of lin-
ear equations providing the constraints in (2).
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Summary. In this abstract electromagnetic compatibility
(EMC) simulations in complex scenarios of urban areas are
considered. Here, a coupled MoM / FITD method is pre-
sented that evaluates the calculations of the electric field
distribution at an electronic device in an office with an ex-
emplary ground floor of a building.

1 Introduction

Since EMC simulations in complex scenarios may in-
clude large distances and also require a sufficiently
high resolution of the discrete problems, the numeri-
cal solution of these simulations become more chal-
lenging to compute. Geometrically large scenarios
to analyze [1]-[2] protection measures against inten-
tional electromagnetic interference (IEMI) of critical
infrastructure (CI) can incorporate detailed geome-
tries like laptops or any other critical object [3]. While
commercial hardware and simulation software tech-
nologies are available for this task, careful choice of
the numerical techniques must be taken into account
to make use of the specific strengths and limitations
of each method available.

The Finite Integration Time Domain (FITD) tech-
nique [4] can be used for full wave electromagnetic
field simulations which tend to be numerical expen-
sive for larger distances but it typically yields suffi-
ciently accurate results for in-homogeneous dielec-
tric material distribution. The Method of Moment
approach states an established simulation technique
based on the combined field integral equation and cal-
culates surface currents on illuminated perfect elec-
tric conductive surfaces. It is well suited for antenna
problems and electrically large problems but the ap-
plicability for simulations featuring lossy dielectric
objects is reduced. In order to combine these advan-
tages, an iterative coupling may become mandatory
[5]. For EMC related large scale problems, however,
a two-step MoM/FITD method [6]-[7] may yield suf-
ficient accuracy.

The coupling of these techniques with Huygens’
surfaces as an interface in between is used to compute
a large scale problem but also leads to an inherent nu-
merical uncertainty. This combination of methods has
shown to be a feasible approach [7] and in this paper,
the first results for the implemented coupling are ini-
tially examined by comparison to a monolithic FITD

simulation using multi GPU accelerated high perfor-
mance computing.

z

𝑥

y

𝐸

𝐻

𝑘

Plane Wave

y = 8.1 m

Fig. 1. Perspective view on the simulation model, indicated
plane wave excitation and the office area in red

2 The MoM-FITD Method

The aim of the coupling approach is to get a credible
representation of the field distribution based on Huy-
gens’ surfaces featuring the field equivalence princi-
ple [8]-[11] in a distinct area to expose yet unknown
devices under test (DUT) to a specific em-field for fur-
ther emc analysis.

Therefor a first simulation step is performed by
using the combined field integral equation technique
and is evaluated on a closed cuboid surface around a
target area. The extracted field representation is used
as an near field source in a second step for numerical
simulation of a smaller yet more complex area with
the Finite Integration Technique (FIT) to include de-
tailed objects and lossy dielectrics.

3 Numerical Test Example

For the simulation of the electric field distribution in
a typical office building exposed to an external field
source a building with a base area of about 63 m2 is
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modeled (Fig. 1) using perfectly electric conducting
(PEC) walls. The office is represented by a wooden
desk (εr = 2.5; σ = 0.004 S/m; 1 m height and 4 cm
thickness) and a laptop (PTFE εr = 2.5; σ = 0 S/m;
2 cm thickness).

The excitation is modeled as a plane wave prop-
agating through the front apertures which is linearly
polarized perpendicular to the ground plane and has
an amplitude of 1 V /m. The boundaries are perfect
matched layers (also known as absorbing boundary
conditions) in 0.5 m distance, except for the basement
where an electric boundary condition (Etan = 0) is ap-
plied.

The reference FITD simulation is compared to the
two-step approach using MoM simulation results of
the metallic structures and a subsequent FITD simula-
tion. This second step (FITD) now includes the office
area where a near field source approximates the for-
mer recorded field distribution on the Huygens’ sur-
faces. An excerpt of the electric field distribution for
y= 8.1 m in a vertical cross-section through the model
is shown in Fig. 2 and additionally the uncertainty in-
troduced by the coupling method as absolute error.

The qualitative good agreement of the absolute er-
ror in Fig. 2 is further examined on a quantitative ba-
sis in Fig. 3. The peak electric field strength along an
evaluation line through the area of interest, desk and
laptop respectively, shows an error of < 5% (Error /
% = 100(|(ERe f −ECoupling)|/|ERe f |)) in the area of
interest and therefor is considered to be sufficiently
accurate.
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𝐸  𝑉 𝑚
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z

Evaluation line

b)a)

Fig. 2. Peak electric field distribution for a) y = 8.1 m in the
office area and b) error introduced by coupling and imple-
mentation of the method as absolute error
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Summary. We consider Krylov subspace techniques to it-
eratively compute f (A)b , where A is a (large) square matrix,
b a vector and f a function. We will focus on efficient and
stable restart procedures as well as results on convergence
and error estimates. Particular emphasis will be given to the
case where f is from the class of Stieltjes functions, which
include the fractional power functions with exponents from
(−1,0).

1 The Arnoldi Approximation

The computation of f (A)b , the action of a matrix
function f (A) ∈ CN×N on a vector b ∈ CN , is an im-
portant task in many areas of science and engineer-
ing. Examples include the matrix exponential func-
tion f (z) = ez, which is at the heart of exponential in-
tegrators for the solution of differential equations, the
logarithm f (z) = log(z) used, e.g. in Markov model
analysis and identification problems for linear conti-
nuous-time multivariable systems, fractional powers
f (z) = zα in fractional differential equations and the
sign function f (z) = sign(z) which is often related to
spectral projectors and also appears in lattice quantum
chromodynamics.

In many of these applications, the matrix A is
sparse and large so that the explicit computation of
the generally dense matrix f (A) by direct methods
is infeasible. Instead, one seeks to directly approxi-
mate the vector f (A)b by iterative methods. By far
the most important class of iterative methods for this
purpose are Krylov subspace methods. These methods
extract their approximations to f (A)b from Krylov
subspaces Km(A,b) = span{b,Ab, . . . ,Am−1b}. As-
sume that we are given an Arnoldi decomposition

AVm =VmHm +hm+1,mvm+1ê
T
m ,

where the columns of Vm = [v1|v2| · · · |vm] ∈ CN×m

are an orthonormal basis of Km(A,b) obtained from
m steps of the Arnoldi orthogonalization process, Hm ∈
Cm×m is an upper Hessenberg matrix, and êm ∈ Rm

corresponds to the m-th canonical unit vector. Then
a popular approach for approximating f (A)b is the
Arnoldi approximation

fm =Vm f (Hm)V H
m b = ‖b‖Vm f (Hm)ê1. (1)

One way to interprete the Arnoldi approximation is
that we obtain fm as pm−1(A)b , where pm−1 is the

polynomial of degree m− 1 which interpolates f on
the Ritz values of A w.r.t Km(A,b), i.e. the eigenval-
ues of Hm.

2 Restarts

One of the main computational problems associated
with the Arnoldi approximation (1) is that the full
Arnoldi basis Vm needs to be stored, even when A
is Hermitian. This storage requirement may limit the
number of iterations m that can be performed in prac-
tice, and thus the accuracy that can be achieved for
large problems. A further limiting factor is the grow-
ing orthogonalization cost of computing Vmin the non-
Hermitian case and the cost of evaluating f (Hm) for
larger values of m.

In computational practice one is therefore inter-
ested in ways to restart, similar to what is often done
for the solution of (non-Hermitian) linear systems of
equations (the case f (z) = z−1). This was already
investigated several times [1–4, 8], but none of the
restarting approaches for general matrix functions was
completely satisfactory until now. All of these vari-
ants solved the storage problem for the Arnoldi basis,
but still had to deal with growing cost per restart cy-
cle [3], were numerically unstable [8], or required an
accurate rational approximation r(z) ≈ f (z) for all z
in some spectral region of A [2]. Instead of relying on
an error representation involving divided differences
(see [3, 8]), we propose here a novel algorithm based
on an integral representation of the error. This results
in a numerically stable restart procedure.

The crucial result for this restart procedure is for-
mualted in the following theorem, see [5].

Theorem 1. Let Ω ⊂C be a region and let f : Ω→C
be analytic with the integral representation

f (z) =
∫

Γ

g(t)
t− z

dt, z ∈Ω ,

with a path Γ ⊂ C\Ω and a function g : Γ → C. Let
A ∈ CN×N with spec(A) ⊂ Ω and b ∈ CN be given.
Denote by fm the m-th Arnoldi approximation (1) to
f (A)b with spec(Hm) = {θ1, . . . ,θm}⊂Ω . Then, pro-
vided that the integral on the right hand side in (2)
with wm(t) = (t−θ1) · · ·(t−θm) exists, we have
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f (A)b− fm = γm

∫
Γ

g(t)
wm(t)

(tI−A)−1vm+1 dt (2)

=: em(A)vm+1,

where γm = ∏
m
i=1 hi+1,i.

Theorem 1 shows that the error of the Arnoldi ap-
proximation fm to f (A)b can again be interpreted as
an error matrix function em(A) applied to a vector,
vm+1. The error function is now represented via an
integral instead of divided differences, and this new
representation can be used in a restart algorithm, in
which the occuring integrals have to be approximated
via numerical integration. A MATLAB implementa-
tion is publically available, see [6]

3 Convergence Results

As is known from Krylov subspace methods for linear
systems, restarts may slow down or even completely
destroy convergence of the method to the solution. It
is therefore of paramount importance to obtain con-
vergence results for the restarted Arnodli method for
matrix functions. We here focus on the class of Stielt-
jes functions.

Definition 1. A Stieltjes function f is a function f :
C− (−∞,0]→ C with

f (z) =
∫

∞

0

1
t + z

dµ, (3)

where the integral in (3) is to be understood as a
Riemann-Stieltjes integral with respect to a function
µ(t) which is monotonically increasing and positive
on [0,∞) and satisfies the condition∫

∞

0

1
t +1

dµ < ∞.

The class of Stieltjes functions includes the func-
tions z−α for α ∈ (0,1) and log(1+z)

z .
The following two results are shown in [7].

Theorem 1. Let f be a Stieltjes function and A be
Hermitian and positive definite. Moreover, let κ de-
note the condition number of A, c = (

√
κ−1)/(

√
κ +

1) and let m be the restart length. Finally, let f (k)
m be

the approximation to f (A)b obtained after k restarts
of length m. Then

‖ f (A)b− f
(k)

m ‖A ≤Cα
k
m,

where αm = 2
cosh(m lnc) and C > 0.

If A is not Hermitian and positive definite, there
are examples where the approximation sequence of
the restarted method diverges, even when f is a Stielt-
jes function and A is positive real, meaning that its
field of values lies in the left half plane. Convergence
can be restored, though, if one modifies the Arnoldi
approximation.

Theorem 2. Let f be a Stieltjes function and A be
positive real. Modify the Arnoldi approximations in
such a way that instead of interpolating in the Ritz
values we now interpolate in the harmonic Ritz val-
ues. Then limk→∞ ‖ f (A)b− f

(k)
m ‖2 = 0.
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Summary. The ADAMANT (Advanced coDe for Aniso-
tropic Media and ANTennas) code has been developed with
the aim of computing the power injected into the plasma by
RF antennas, especially in the case of thrusters for space ap-
plications. The code implements the numerical solution of
coupled surface-volume integral equations by the Method
of Moments, which lends itself to parallel execution. The
parallelization and sparsification of the assembling phase
are discussed, and results concerning the speed-up and mem-
ory use obtained for different test cases are presented.

1 Formulation and Numerical Approach

The typical problem includes a metallic RF antenna
that surrounds a cylindrical plasma column; we as-
sume all metallic parts to be perfectly electric conduc-
tors (PEC). By invoking the surface and the volume
equivalence principle [1], we substitute the antenna
with an equivalent electric surface current density JA,
and the plasma with a volume polarization current
JP = jω(I− εεε

−1
r ) ·DP = jωααα ·DP; here, εεεr denotes

the permittivity of the plasma relative to vacuum. A
time dependence in the form exp(jωt) for fields and
sources is assumed and suppressed throughout. We
formulate the problem as a surface integral equation
on the antenna surface SA, and a volume integral equa-
tion within the plasma region VP

E i
A(r)− jωµ0G(r) ∗. JA(r)

+ω
2
µ0G(r) ∗. [ααα(r) ·DP(r)]

∣∣∣
tan

= 0, r ∈ SA, (1)

εεε
−1
r ·DP(r) =−jωε0µ0G(r) ∗. JA(r)

+ k2
0G(r) ∗. [ααα(r) ·DP(r)], r ∈VP, (2)

where G(r) is the dyadic Green’s function, ‘∗.’ indi-
cates the 3-D spatial convolution and scalar product,
while E i

A, and E i
P are the impressed electric fields

on the antenna surface SA, and in the plasma volume
VP, respectively. The antenna conductors are modeled
with a 3-D triangular mesh and the plasma with a
tetrahedral mesh. Linear vector divergence-conforming
surface (volume) basis functions are associated with

the inner edges (all the facets) of the triangular (tetra-
hedral) mesh, in order to expand JA (DP). Besides, we
employ the notion of voltage gap to model the excita-
tion of the antenna; as a result, E i

A(r) is non-zero only
at the antenna ports, whereas E i

P(r) is zero and drops
out of (2).

The plasma is assumed to be cold, collisional, and
magnetized by an external magnetostatic field B0 par-
allel to the axis of the cylinder so that in a system of
Cartesian coordinates with B0 = B0ẑ, εεεr is :

εεεr =

 S jD 0
− jD S 0

0 0 P

 , (3)

where S, D and P are function of the plasma frequency
ωpα ≡

√
nα q2

α/ε0mα , the gyrofrequency ωcα ≡ qα B0/mα ,
the collision frequency να ; the superscript α refers
to the index of the plasma species. Besides, as εεεr
is considered as a function of position, profiles of
plasma density, magnetic field, electron temperature,
and neutral pressure can be modelled.

The simulation strategy based on equations (1),
(2) together with the MoM solution in the form of
Galerkin has been implemented in ADAMANT [2].

2 Parallelization and sparsification

In ADAMANT, the weak form corresponding to (1),
(2) is the algebraic system[

[ZAA] [ZAP]
[ZPA] [ZPP]

][
Z0 [JA]
[DP]/ε0

]
=−

[
[VG]
[0]

]
, (4)

where the intrinsic impedance of free space Z0 ≡
(µ0/ε0)

1/2 and ε0 have been factored out and paired
with the vectors of unknown coefficients to improve
the conditioning of the matrix. With these assump-
tionns Z0 [JA] and [DP]/ε0 have the physical dimen-
sions of an electric field. The column vectors [JA]
and [DP] contain the expansion coefficients of JA and
JP, respectively. The system matrix is naturally par-
titioned into four blocks, where the off-diagonal sub-
matrices [ZAP] and [ZPA] are related to the EM interac-
tion between the antenna surface and the plasma vol-
ume; [ZAA] is a surface contribution, while [ZPP] is a
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volume contribution, related to the antenna current JA
and plasma current JP, respectively, radiating in free
space.

Since the numerical solution through the MoM
leads to large dense matrices, both matrix filling and
inversion time can be reduced by parallelization. How-
ever, the computational time required for the con-
struction of the four blocks can be larger than the
inversion time. Additionally, the assembling time of
the [ZPP] sub-matrix is the most important contribu-
tion in the overall time to compute the system matrix.
This is due to (i) the adoption of the volume-integral-
equation formulation in the plasma region, and (ii) to
the very nature of the problems we deal with, in which
the plasma region is substantially larger than the vol-
ume occupied by the metallic parts.

Furthermore, realistic problems not only call for
parallelization to reduce computational times, but may
quickly exceed the memory capacity even of very
large machines since the matrices are fully populated.
To be able to solve realistic problems it is necessary
to compress these matrices with suitable techniques.
Among others, the Fast Multiple Method (FMM) [3]
is maybe the most popular for both low and high fre-
quency problems. One more recent approach for in-
tegral operators with asymptotically smooth kernels,
is based on the adaptive cross approximation (ACA)
coupled with hierarchical matrix (H -matrix) arith-
metics [4].

In contrast with the FMM, where the kernel is ap-
proximated by a sum of spherical multipole functions,
ACA generates low-rank approximations of far-field
blocks from the entries of the original matrix. From
an implementation viewpoint, ACA can directly use
the computational routines of the existing code with-
out any major change. The specific implementation
within ADAMANT has been achieved through the
hlibpro library [5].

3 Results

We have considered a test case with 72 and 924 sub-
sectional basis functions on the antenna and in the
plasma regions, respectively. We have analyzed the
code scalability with respect to the number of threads.
In Fig. 1, we report the speedup related to the overall
time of the system matrix assembling, and the code
performs in accordance with Amdahl’s law [6]:

Telapsed (P) =
(

f
P
+1− f +OPP

)
Tserial (5)

where P is the number of threads and f is the fraction
of parallelized code. It can be seen that the speedup
is almost optimal since f = 0.984 and the speedup
saturation is entirely due to the communication over-
head OP caused by different processes which access
the shared memory area containing the full matrices.

As far as sparsification is concerned, Table 1 shows
the level of compression that can be achieved for [ZAA]
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Fig. 1. Speedup obtained with OpenMP compared with
Amdahl’s law for the assembling phase of the system ma-
trix.

in the case of two typical triangular meshes with 3000
and 9000 basis functions which would result in full
matrices of 111.32 MB and 1302.48 MB of memory,
respectively.

Table 1. H -matrix compression

Unknowns ε MB % Compression ratio |Zantenna|[Ω ]

3000 E-10 85.78 77.03 0.569
3000 E-6 56.88 51.10 0.569
3000 E-4 42.11 38.10 0.557
3000 E-3 34.22 30.74 0.627
9000 E-10 614.19 47.16 0.585
9000 E-6 357.77 27.96 0.585
9000 E-4 233.84 17.94 0.586
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Summary. An inverse fast Fourier transform (IFFT) ac-
celerated Ewald summation technique is presented. The
Green’s function of the rectangular cavity is reformulated
and sampled on a uniform grid such that the IFFT can be
applied. Values in between the grid are interpolated us-
ing Lagrange polynomials. The IFFT accelerated approach
achieves a speed-up of up to four orders of magnitude ver-
sus the standard Ewald summation.

1 Introduction

The Green’s function of the rectangular cavity is uti-
lized in boundary integral (BI) formulations to model
microwave resonators [Borji and Safavi-Naeini(2004)]
and reverberation chambers [Gronwald(2005), Carl-
berg et al.(2005)Carlberg, Kildal, and Carlsson]. The
use of the cavity Green’s function instead of the free-
space Green’s function in the BI formulation super-
sedes the discretization of the cavity walls. Depend-
ing on the number and the size of the objects within
the cavity, the number of unknowns is considerably
reduced. Most researchers accelerated the evaluation
of the cavity Green’s function with the Ewald summa-
tion technique [Ewald(1921)] which splits the Green’s
function into two exponentially convergent series: the
spatial and the spectral series. Still, compared to the
free-space Green’s function, the cavity Green’s func-
tion remains computationally expensive. Hence, most
previous work was restricted to small one-dimensional
objects, such as dipole antennas [Gronwald(2005),
Carlberg et al.(2005)Carlberg, Kildal, and Carlsson].

To avoid the computationally intensive evaluation
of the cavity Green’s function, Borji et al. [Borji and
Safavi-Naeini(2004)] proposed a best polynomial ap-
proximation: the costly cavity Green’s function is re-
quired only once to generate the polynomial coef-
ficients. Couplings between observation and source
points are calculated with the cheaper polynomial ap-
proximation. In the low frequency regime the best
polynomial approximation achieved a speed-up of about
one order of magnitude. However, in the over-moded
frequency range the number of necessary terms in the
spectral series grows cubically with frequency. The
cubic frequency dependence of the Ewald summation
technique and the higher polynomial order deteriorate
the efficiency of the best polynomial approximation.

To overcome the bad frequency complexity of the
Ewald summation technique, it is accelerated by an

inverse fast Fourier transform (IFFT) in this work.
The computationally dominant spectral series, which
naturally depends on observation and source point
(i.e., it is a six-variable function), is rewritten as a sum
of eight three-variable functions. The three-variable
function is computed with the IFFT on a uniform grid.
Values in between the grid are computed using La-
grange polynomial interpolation. Results show that
the proposed approach accelerates the computation of
the cavity Green’s function by up to four orders of
magnitude.

2 Inverse Fast Fourier Transform
Accelerated Ewald Summation

Consider a rectangular cavity of size a× b× c with
perfectly electrically conducting walls. The Green’s
function of the rectangular cavity of the magnetic vec-
tor potential has the form [Borji and Safavi-Naeini(2004)]

GA
= GA

xx x̂xxx̂xx+GA
yy ŷyyŷyy+GA

zz ẑzzẑzz . (1)

The Ewald summation technique decomposes the cav-
ity Green’s function into a spatial and a spectral series
[Park et al.(1998)Park, Park, and Nam]. In the over-
moded frequency range the spectral series dominates
the overall computational burden as the number of
necessary terms in the spectral series increases cubi-
cally with frequency. According to [Park et al.(1998)Park,
Park, and Nam], the spectral series has the form

GA
spec
(
r,r′
)
= µ

∞

∑
m,n,p=0

Hmnp

[
φx (r)φx

(
r′
)

x̂xxx̂xx

+φy (r)φy
(
r′
)

ŷyyŷyy+φz (r)φz
(
r′
)

ẑzzẑzz
]

(2)

where r and r′ are the observation and the source
point, respectively, m, n, p are the indices of the re-
spective cavity mode, and φx, φy, φz are the eigenfunc-
tions of the rectangular cavity. The function

Hmnp =

exp
(
− k2

x+k2
y+k2

z−k2

4E2

)
k2

x + k2
y + k2

z − k2 (3)

where kx, ky, kz are the wavenumbers in the respec-
tive direction, k is the wavenumber of the material
in the cavity, and E is the splitting parameter of the
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Ewald summation technique [Park et al.(1998)Park,
Park, and Nam].

In the form of (2) the spectral series depends on
r and r′ (i.e., it is a six-variable function). Sampling
a six-variable function causes a prohibitively high
memory consumption. Using the exponential form of
sine and cosine, the spectral series becomes

GA
spec
(
r,r′
)
=

µ

8abc

7

∑
q=0

Q
(
xq,yq,zq

)(
Aq,x x̂xxx̂xx

+Aq,y ŷyyŷyy+Aq,z ẑzzẑzz
)

(4)

where Aq,x =±1 , Aq,y =±1 , Aq,z =±1 ,

Q
(
xq,yq,zq

)
=

∞

∑
m,n,p=−∞

Hmnp ejkxxqejkyyqejkzzq , (5)

xq = x±x′ , yq = y±y′ , and zq = z±z′ [Park et al.(1998)Park,
Park, and Nam]. When xq, yq, and zq are sampled eq-
uispaced, Q

(
xq,yq,zq

)
is the IFFT of Hmnp . Points at

arbitrary positions in between the regular grid are in-
terpolated using Lagrange polynomials.

3 Results

An ideal reverberation chamber of size 5.1m×2.5m×
2.9m is considered. The resonance frequency of the
fundamental mode is 59.5 MHz. The Q-array is sam-
pled with 15 samples per wavelength. The sampling
rate and a Lagrange polynomial order of four yield an
accuracy of at least 10−4 for the cavity Green’s func-
tion. Table 1 shows the average computation times of
the standard Ewald and the IFFT accelerated Ewald
summation for one billion Green’s function computa-
tions. The times needed by the Lagrange interpolation
and the sampling of the Q-array are displayed. The
computation time of the standard Ewald summation
grows cubically with frequency while the time of the
Lagrange interpolation is almost constant. The time of
the IFFT is negligible for a large number of Green’s
function computations. Thus, the IFFT acceleration
performs best at high frequencies: at 1600 MHz the
speed-up is approximately four orders of magnitude.

Table 1. Average computation times of the IFFT accelerated
Ewald summation and the standard Ewald summation for
one billion samples.

Ewald IFFT Lagrange

f (MHz) tEwald (s) tLagrange (s) tQ-array (s)

200 0.7 ·106 16.1 ·103 0.06
400 4.6 ·106 17.7 ·103 0.48
800 34.2 ·106 20.0 ·103 3.51

1600 246.4 ·106 24.3 ·103 31.30

As an application example, a w-shaped stirrer is
placed in the considered reverberation chamber. The

scenario is modeled using the IFFT accelerated cavity
Green’s function in a boundary integral formulation.
Figure 1 shows the surface current density on the stir-
rer at 800 MHz. The simulation needed roughly 800
million Green’s function computations and took about
2.5 h on a single core PC. For comparison, a mul-
tilevel fast multipole method (MLFMM) accelerated
BI method with the free-space Green’s function [Eib-
ert(2005)] needed about 15 h. Thus, the IFFT acceler-
ated Ewald summation technique proves not only to
efficiently compute the cavity Green’s function, but is
also relevant for numerical application.

Fig. 1. Absolute value of the surface current density on the
w-shaped stirrer at 800 MHz in Am−1.
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Summary. We are interested in solving Helmholtz and
Maxwell transmission problems for heterogeneous penetra-
ble scatterers. Contrary to most common approaches based
on integral boundary operators, one can derive a formu-
lation named Multiple Traces Formulation (MTF) (Hipt-
mair & Jerez-Hanckes [2]) by imposing local Dirichlet and
Neumann traces per subdomain. The MTF is shown to
be a Fredholm first-kind system of integral equations free
from spurious resonances, easy to construct with standard
codes, entirely parallelizable and, though ill-conditioned, it
is amenable to preconditioning via diagonal or Calderón-
type techniques. We present new results for higher frequen-
cies via conforming spectral discretizations.

1 Introduction

Consider the simple geometry shown in Fig. 1 where
Ω := Ω̄1 ∪ Ω̄2 is a heterogenous scatterer, composed
of two bounded subdomains Ω1,Ω2. The exterior do-
main is denoted by Ω0 := Rd \ Ω̄ and interfaces by
Γi j := ∂Ωi∩∂Ω j. For an exciting plane wave uinc, we
seek u representing the field scattered in Ω0 and to-
tal fields in Ω which satisfy homogeneous Helmholtz
equations, with constant wavenumbers κi ∈C\R− in
each subdomain Ωi, i = 0,1,2. Standard Dirichelt and
Neumann transmission conditions have to be fulfilled
across each Γi j. With this, the local MTF hinges on
the following ideas:

1. Every pair of interior Dirichlet and Neumann traces
defined on subdomains Ωi, λ i := (λ i

D,λ
i
N) are un-

knowns;
2. Transmission conditions across each interface Γi j

are enforced weakly via local restriction and nor-
mal orientation operators;

3. Integral representations in each subdomain are
used to set up Calderón identities over boundaries
∂Ωi, such that

λ
i =

(
1
2

Id+Ai

)
λ

i

=

( 1
2 Id−Ki Vi

Wi
1
2 Id+K′i

)(
λ i

D
λ i

N

)
,

where Ai contains the standard weakly singular,
double layer, adjoint double layer and hypersin-
gular integral operators, denoted Vi,Ki,K

′
i and

Wi, respectively, over ∂Ωi for a wavenumber κi.

Fig. 1. Simple model geometry. Observe normal definitions.

In order to enforce transmission conditions us-
ing interior traces, with their opposite normals, we
make use of restriction-orientation-and-extension op-
erators, X̃i j. With the above, the variational form of
the MTF system is〈

M

λ0
λ1
λ2

 ,

ϕ0

ϕ1

ϕ2

〉
×

=

〈 g0

g1

g2

 ,

ϕ0

ϕ1

ϕ2

〉
×
(1)

where
〈
λ i , ϕ j

〉
× =

〈
λ i

D , ϕ
j

N

〉
+
〈

λ i
N , ϕ

j
D

〉
and

M :=

 A0 − 1
2 X̃01 − 1

2 X̃02

− 1
2 X̃10 A1 − 1

2 X̃12

− 1
2 X̃20 − 1

2 X̃21 A2

 . (2)

The MTF is amenable to parallelization but requires
local test functions to have restrictions to interfaces
Γi j lying in H̃1/2(Γi j)× H̃−1/2(Γi j). In practical terms,
this means that Dirichlet traces have to become zero
at triple points for 2D or at triple edges in the case
of 3D, while for Neumann data standard bases can be
used. Physically, triple points are responsible for the
need of such ∼-spaces.

Theorem 1 (Existence and Uniqueness [2]). The lo-
cal MTF system has a unique solution for all g in
H1/2(∂Ωi)×H−1/2(∂Ωi).

2 Numerical Approximation via Spectral
bases

Existing numerical experiments for the MTF are based
on mesh refinements using low-order elements, i.e.
Dirichlet traces are represented by p.w.-linear func-
tions while Neumann ones via p.w.-constants [1, 2].
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Results reveal the expected increasing ill-conditioning
of the matrices for decreasing h and show the very
positive counter-effects of diagonal and Calderón type
preconditioning. Still, such low-orders approximations
remain unsuitable for mid-to-high frequencies. Hence,
the interest in spectral elements.

In what follows, we prove the amenability of the
MTF for spectral elements in 2D under the simple
case of a circle of unitary radius divided in two halves
left (Ω1) and right (Ω2). Reference approximation
bases are mapped through parametrizations of the
boundaries and interfaces –circles for the subdomain
boundaries ∂Ωi and segments [−1,1] for the inter-
faces Γi j.

2.1 Trial spaces

To approximate standard spaces H±1/2(∂Ωi), we use
Fourier polynomials of the form:

χ̂m(θ) := eimθ , θ ∈ (0,2π), m ∈ Z, (3)

for both Dirichlet and Neumann unknowns λi, so that
λi =(∑m λ m

d χ i
m,∑m λ m

n χ i
m), where χm is defined as χ̂m

mapped onto the actual subdomain boundary.

2.2 Test spaces

We use weighted Tchebyshev polynomials of the first
and second kind, denoted by Ul and Tl , respectively,
defined over [−1,1], as these bases are shown to be
dense in the required functional spaces H̃±1/2([−1,1]),
accordingly [3]. Thus, reference approximation bases

q̂+l (x) := w(x)Ul(x), q̂−l (x) := w−1(x)Tl(x), (4)

with w =
√

1− x2 and l = 0, . . . ,Li, Li being the max-
imum degree of polynomials used in subdomains ∂Ωi
are mapped at each interface Γi j, so that for each
i = 0,1,2

ϕi = (q−i j,l ,q
+
i j,l) for j ∈ {0,1,2}, j 6= i . (5)

Consequently, the structure of test bases depends on
the number of interfaces and number of Fourier bases
to describe λi. In the case of 3 subdomains in which
every subdomain intersect another in a non empty set,
we have that there are 2× 2(Li + 1) possibilities for
ϕi. In order to achieve square matrices per subdomain
we impose

Li = Mi ∀ i = 0,1,2, (6)

and for numerical purposes we set all equal for each
i. This observation also justifies an even total number
of degrees of freedom for the trial spaces.

2.3 Computational Results

Computational experiments were programmed in MAT-
LAB. Duality products and integration is done semi-
analy-tically when possible. Figure 2 presents the ex-
terior Dirichlet trace λ 0

D for N = 2 using same k1 = k2
are shown in. Error convergences are obtained against
reference solutions due to Mie series.
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Fig. 2. Dirichlet trace approximation for different harmon-
ics used. Parameters used k1 = k2 = 20, k0 = 1.
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Fig. 3. Error convergence for Dirichlet data for k1 = k2 = 1
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2 4 6 8 10 12 14 16 18
10

−15

10
−10

10
−5

10
0

10
5

N

lo
g

 e
rr

o
r

H−1/2 error Neumann trace

 

 
K0 :2
K0 :4
K0 :8

Fig. 4. Error convergence for Neumann data for k1 = k2 = 1
and different k0.

Acknowledgement. This work has been partially supported
by Project Fondecyt Iniciación 11121166 and Conicyt ACT
1118 ANANUM.

References

1. X. Claeys, R. Hiptmair, C. Jerez-Hanckes, and S.
Pintarelli. Novel Multi-Trace Boundary Integral Equa-
tions for Transmission Boundary Value Problems, SAM
Report, 5, 2014.

2. R. Hiptmair and C. Jerez-Hanckes, Multiple traces
boundary integral formulation for Helmholtz transmis-
sion problems, Adv. Comput. Math., 37:39–91, 2012.

3. C. Jerez-Hanckes and J.-C. Nédelec, Explicit variational
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Summary. The simulation of eddy currents in laminated
nonlinear iron cores by the finite element method is of
great interest in the design of electrical devices. The dimen-
sions of the iron core and the thickness of the laminates
are very different. Thus, finite element models considering
each laminate require many finite elements leading to ex-
tremely large systems of equations. A multi-scale finite ele-
ment method has been developed to cope with this problem.
Numerical simulations in 2D demostrate an excellent accu-
racy and very low computational costs.

1 Introduction

The simulation of the eddy current losses in laminated
iron cores is still a challenging task [1]. Brute force
methods apply for instance an anisotropic conductiv-
ity [2]. These solutions are frequently corrected in a
second step [3]. The method proposed in [4] imposes
the magnetic properties in a weak sense using skin
effect sub-basis functions. The multi-scale finite ele-
ment method (MSFEM) in [5,6] is extended by higher
order micro-shape functions in this work.

2 Standard Eddy Current Problem

2.1 Boundary Value Problem

In the standard eddy current problem each laminate is
resolved by finite elements. The eddy current problem
to be solved is sketched in Fig. 1. It consists of a con-
ducting domain (iron) Ωc and air Ω0, i.e., Ω =Ωc∪Ω0
with the boundary Γ = ΓD ∪ ΓN . The material pa-
rameters are the magnetic permeability µ(A) and the
electric conductivityσ, respectively. The eddy current
problem with the magnetic vector potential A in the
time domain reads as

Fig. 1. Standard boundary value problem.

curl
1

µ(A)
curl A +σ

∂

∂t
A = J0 in Ω ⊂R3, (1)

A× n = α on ΓD, (2)
1

µ(A)
curl A× n = K on ΓN , (3)

where J0 in (1) stands for an impressed current den-
sity, α in (2) represents a magnetic flux and K in (3)
descripes a surface current density.

2.2 Weak Form

Equations (1) to (3) lead to the following weak form
for the finite element method (FEM). Find Ah ∈Vα :=
{Ah ∈ Vh : Ah× n = αh on Γ}, such that∫
Ω

1
µ(Ah)

curl Ah · curlvh dΩ+
∂

∂t

∫
Ω
σAh ·vh dΩ = (4)∫

Ω
J0 · vh +

∫
ΓN

K · vh

for all vh ∈ V0 := {vh ∈ Vh : vh × n = 0 on ΓD}, where
Vh is a finite element subspace of H(curl,Ω).

3 Multi-Scale Finite Element Method
MSFEM

3.1 Multi-Scale Method

Standard FEM provides accurate approximations as
long as the unknown solution is smooth. To avoid
large equation systems for equations with rough co-
efficients the standard polynomial basis is augmented
by special functions including a priori information
into the ansatz space

uh(x) =

n∑
i

m∑
j

ui jϕi(x)ψ j(x) =

n∑
i

m∑
j

ui jφi j(x), (5)

where n is the number of standard polynomials ϕi, m
the number of special functions ψ j and ui j are the co-
efficients of the approximated solution uh. The spe-
cial functions representing a local basis approximate
well the solution locally [7]. Based on (5) a MSFEM
for the eddy current problem with laminated iron has
been constructed. The MSFEM and the used local ba-
sis are presented below.
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Fig. 2. Micro-shape functions.

3.2 Micro-Shape Function Basis for MSFEM

The micro-shape functions considering the periodic
structure of a laminated stack are shown in Fig. 2.
The tooth-shaped function φ1 is continuous and piece-
wise linear. The thicknesses of iron layers and air gaps
are d and d0, respectively. The feasibility considering
only φ1 with respect to the penedration depth have
been shown in [6, 8]. Gauss-Lobatto shape functions
were selected for the higher order micro-shape func-
tions. Fig. 2 shows them transformed into the intervall
[0,d]. The higher order micro-shape functions φ3 and
φ5 represent bubble functions and are equal to zero in
the air gap. Thus, {φ1, φ3, φ5} span a subspace of the
periodic and continuous functions H1

per(Ω).

3.3 Multi-Scale Approach

Standard polynomial basis functions [9] are augmented
by the micro-shape functions leading to the multi-
scale approach

Ã = A0 +
∑

i∈{1,3,5}

(
φi

(
0, Ai,2, Ai,3

)T
+∇(φiwi)

)
(6)

where the lamination is perpendicular to the x-direction.
The mean value A0 considers the smooth variation of
the marcro-structure, the scalar functions Ai,2h, Ai,3h,
wi with φi, respectively, take into acount of the peri-
odic micro-structure of the laminated iron. The main
magnetic flux density is an even function across a
laminate. Consequently, the variation of A is an odd
function. Thus, it suffices to consider only odd micro-
shape functions in approach (4). An extension of (6)
to higher order again is straightforward.

3.4 Weak Form of MSFEM

Replacing A in (1) to (3) by (6) leads to the weak
form: Find (A0h,Ai,2h,Ai,3h,wi,h) ∈ Vα := {(A0h,Ai,2h,
Ai,3h,wi,h) : A0h ∈ Uh, (Ai,2h,Ai,3h) ∈ Vh, (wi,h) ∈Wh
and A0h×n = αh on Γ}, such that∫
Ω

1
µ(Ãh)

curl Ãh · curl ṽh dΩ+σ
∂

∂t

∫
Ω
σÃh · ṽh dΩ = (7)∫

Ω
J0 · ṽh +

∫
ΓN

K · ṽh

Fig. 3. Multi-scale boundary value problem.

for all (v0h,vi,2h,vi,3h,qi,h) ∈V0 := {(v0h,vi,2h,v2,3h,qi,h) :
v0h ∈ Uh, (vi,2h,vi,3h) ∈ Vh, (qi,h) ∈Wh and v0h ×n =

0 on ΓD}, where Uh is a finite element subspace of
H(curl,Ω), Vh of L2(Ωm) and Wh of H1(Ωm), re-
spectively, and {φ1,φ3,φ5} is a subspace of Hper(Ωm).
The subdomain Ωm comprises the iron laminates and
the air gaps in between as indicated in Fig. 3. Natural
boundary conditions hold on the interface Γm0. The
main magnetic flux was studied in 2D in [8]. Here, the
magnetic stray flux is also taken into account in 3D.
The orientation of the lamination can vary arbitrarily
in space [5].
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Summary. Automotive product development comes with
high requirements for reliability, functionality, package space,
temperature stability, mechanical resilience, electromagnetic
compatibility and cost efficiency. To meet these require-
ments, simulations have become an indispensable part of
the development and production process. Electric vehicles
provide further challenges to automotive electronics engi-
neering, due to their high power and energy densities. In this
talk, the application of simulation techniques to the auto-
motive development process is presented with the example
of an electric vehicles board net, high power, DC-DC con-
verter. One main challenge in the design process turns out
to be the magnetic interferences of the high current and high
frequency parts. To capture their behavior, a coupled elec-
tromagnetic simulation of all involved components is neces-
sary. The nonlinear properties of the semiconductor power
switches further require a harmonic balance approach. It is
shown that the used simulation model allows an insight into
the system behavior, which would not be possible with a
separate simulation of the single components, or a purely
linear model. The gathered information can be used to pre-
vent design flaws and optimize the system behavior. Finally
an outlook is given how the electromagnetic model can be
expanded to a multiphysics model, including the devices en-
vironment.
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Summary. This abstract presents the simulation based de-
sign and verification of Cyber-Physical Systems (CPS) from
a system point of view.

1 Abstract

The rapidly developing application of Cyber-Physical
Systems (CPS) in our daily life is driven by a closer
integration of computational systems (the cloud) and
local devices like sensors and actors networked with
each other. This results is a novel class of applica-
tions that can execute complex system tasks flexi-
bly autonomously and even allow optional individ-
ual user interaction. The design and development of
such systems requires a large range of expertise and
technological components, spanning from heteroge-
neous sensor elements and communication systems
over scalable data processing systems to physical ob-
jects involving also humans as users.

The electrical architecture of a vehicle can be seen as
such, although in the past this was not the case. Recent
trends in the in-vehicle electrical/electronic architec-
tures brought a rapid shift towards multicore, hetero-
geneous, networked and reconfigurable systems. This
makes the design of such systems extremely complex
and imposes a large effort for designers (hard- and
software) to design their applications. The next gen-
eration of such systems should be able to allow ap-
plications to run in parallel on different parts (elec-
tronic control units (ECU) and/or processors, DSPs
within a multicore architecture of a single ECU) of
the system such as Multimedia, Human Machine In-
terface (HMI) like car infotainment or nomadic device
(Tablet, Smart Phone) ad-hoc interconnect, Naviga-
tion, Advanced Driver Assistance Systems (ADAS)
and many more. This has been acknowledged also on
a European Industry Level [1] [2].

Beside performance, power consumption and of course
safety relevant aspects have to be considered as well
once a certain Automotive Safety Integrity Level (ASIL)
needs to be applied.

To guarantee the safety of these systems, they have
to follow standards like the ISO 26262 [3]. The ISO
26262 standard is an adaption of the functional safety
standard IEC 61508 for automotive electric/electronic
systems. Today, the compliance of the standard is op-

tional but is more often required from the automotive-
companies and their partners.To be ISO 26262 con-
form it’s important to proof the whole system towards
its safety goals, not a set of specialized parts. As a re-
sult of the foregoing, such a CPS realized in cars de-
mands very fast executable specifications to validate
the system concepts and proof the system with partic-
ular emphasis on safety relevant criteria.

System level modeling is nowadays a commonly used
methodology in design and verification of complex
embedded real-time systems to reduce engineering
risks through an early, fast and flexible method to de-
tect design flaws. Designs can be verified and simu-
lated long before committing to its implementation.
But most of the engineers involved in these tasks ap-
ply EDA tools like e.g. Matlab/Simulink [4]. This ap-
proach is direct and effective. On the other hand most
details of the realized system, code generation for the
target hardware platform, parameter descriptions etc.
are linked with a dedicated hardware implementation
and unlinked with the global system requirements.

As a consequence a paradigm shift will be necessary
to further abstract the system modeling languages ap-
plied to simulation and verification of CPS. A Uni-
fied Modeling Language (UML [5]) is a language that
might be considered for modeling of application mod-
els.

Further the language SYSML [6] can be considered as
extension/subset of UML to better address the consid-
eration of requirements and the description of system
parameters.

Another approach is MARTE [7] as domain-specific
modeling language intended for model-based design
and analysis of realtime and embedded software of
cyber-physical systems. MARTE is an extension to
UML, providing additional parameters for real-time
systems, which are missing in UML. Non-functional
properties are very important to evaluate the func-
tional safety of the system. With MARTE it is possi-
ble to map functional (structural and behavioral) and
non-functional (power, thermal, time) properties to
models. With MARTE Allocation it is possible to as-
sociate the functional application elements with the
available resources (execution platform). For interop-
erability with other tools and the use of standardized
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IP-models, the open standard IP-XACT [8] can be
used.

1.1 Model-to-text transformation

For the simulation of system-models based on MARTE,
the high level language code is generated through a
model-to-text transformation process. One of the lan-
guages used for this approach is SystemC [9]. Sys-
temC is gaining increasing attention because of its
great flexibility in describing the components at dif-
ferent levels of abstraction, from system and transac-
tion level down to RTL level. Even extensions to de-
scribe analog and mixed signal systems are available.
A second important SystemC extension is SystemC-
TLM to describe transaction driven sytems. This al-
lows a faster modeling and simulation time while de-
veloping phase, to detect HW/SW integration issues.
Another language used in this approach is Matlab.
Matlab/Simulink is well established in simulation of
systems in different domains and used by many other
tool vendors but shall not be used in the future for
system level descriptions.

1.2 Simulation based verification

To test the system towards their safety goals, test-
benches are automatically generated from the safety
functions defined in the ISO 26262 process. An auto-
matic stimulus generator and a protocol checker are
used to verify the system. The testbenches support
transaction level modeling and are written in UVM
[10] (Universal Verification Methodology).

Acknowledgement. The approach presented above is exper-
imented in the Catrene (OpenES) research program sup-
ported by the FFG (Austrian Research Promotion Agency)
in cooperation with the technical University of Graz.
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Summary. We present a further improvement of the wavelet
multirate circuit simulation. In the new algorithm we use
different grids for the approximation of the solution on dif-
ferent circuit parts. In particular, for circuits with latencies
the grids can be much sparser, which results in the reduction
of the overall problem size and leads to a faster simulation.

1 The multi-rate circuit simulation
problem

We consider circuit equations in the charge/flux ori-
ented modified nodal analysis (MNA) formulation,
which yields a mathematical model in the form of a
system of differential-algebraic equations (DAEs):

d
dt q
(
x(t)
)
+g
(
x(t)
)
= s(t). (1)

To separate different time scales the problem is refor-
mulated as a multi-rate PDAE, i.e.,(

∂

∂τ
+ω(τ) ∂

∂ t

)
q
(
x̂(τ, t)

)
+g
(
x̂(τ, t)

)
= ŝ
(
τ, t
)

(2)

with mixed initial-boundary conditions x(0, t) =X0(t)
and x(τ, t) = x(τ, t+P). A solution of the original cir-
cuit equations can be found along certain characteris-
tic lines [3]

Discretization with respect to τ (Rothe method)
using a linear multi step method results in a periodic
boundary value problem in t of the form

ωk
d
dt qk

(
Xk(t))+ fk(Xk, t) = 0, (3)
Xk(t) =Xk(t +P),

where Xk(t) is the approximation of x̂(τk, t) for the
k-th time step τk (cf. [1, 3]). The periodic boundary
value problem (3) can be solved by several meth-
ods, as Shooting, Finite Differences, Harmonic Bal-
ance, etc. Here, we consider the spline wavelet based
method introduced by the authors in [1]. One problem
of traditional methods is that all signals in the circuit
are discretized over the same grid. This can pose a
problem if different signal shapes are present in the
circuit, which may be approximated more efficient if
individual grids are used for each of the signals. As
an example we consider a chain of 5 frequency di-
viders (as part of a PLL). In each step the frequency
is reduced by a factor 2 as one can see in Fig. 1. Ob-
viously, for the low frequency signals towards the end
of the divider chain a much sparser grid would be suf-
ficient for an accurate representation, in comparison
to the high frequency input signal.

0 5 10 15 20 25 30 35 40

−3

−2

−1

0

1

2

3

t in µs

V

 

 
PFD
Divider 5
Divider 4
Divider 3
Divider 2
Divider 1

Fig. 1. Several signals in a frequency divider chain as part
of a PLL.

2 Division into subcircuits and
connections

Although the representation of each signal over its
own individual grid seems to give maximal flexibil-
ity, this approach leads to several problems, which
makes the simulation inefficient. Therefore, we con-
sider groups of signals with similar shape appearing
in a part of the circuit. The circuit is divided into N
subcircuits which are connected at common nodes.
Two facilitate different expansions of signals on the
subcircuits we replace each common node by a pair
of nodes connected by a perfect conductor. Namely,
we introduce the “connection” Ck,`

µ,ν , if the µ-th node
of subcircuit is identified with the ν-th node in sub-
circuit `, as one can see in Fig. 2. Thus, we have the
current through the connection Ck,`

µ,ν , as additional un-
knowns ik

µ and i`ν for each of the two involved subcir-
cuits, as well as the equations

uk
µ(t)−u`ν(t) = 0 and ik(t)

µ − i`ν(t) = 0. (4)

in addition to the circuit equations

d
dt qk(xk(t)

)
+gk(xk(t), t

)
= 0, k = 1, . . . ,N (5)

of the N subcircuits.
Using the Rothe’s method on the multirate PDAE’s

will yield a system of DAE’s as introduced in (5) and
(4). Therefore we consider the solution of the periodic
problem for the above DAE’s.

3 Spline Galerkin discretization and
wavelet based adaptivity

Our goal is to approximate the solution of the equa-
tions (4) and (5) by spline functions as it was done
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Fig. 2. Splitting of a circuit into subcircuits witch connec-
tions.

in [1]. However, we use a different spline representa-
tions xi(t) =∑

ni
k=1 ci

kϕ i
k(t), i= 1, . . . ,N, for each of the

subcircuits. A Petrow-Galerkin discretization yields
the nonlinear system of equations∫

τ i
`

τ i
`−1

d
dt qi(xi(t)

)
+gi(xi(t), t

)
dt = 0, `= 1, . . . ,ni,

for each subcircuit and∫
τ i
`

τ i
`−1

ui
µ(t)−u j

ν(t)dt = 0, `= 1, . . . ,ni (6)

∫
τ

j
`

τ
j
`−1

iiµ(t)+ i j
ν(t)dt = 0, `= 1, . . . ,n j (7)

for each connection Ci, j
µ,ν between subcircuits. The

splitting points τ i
` are chosen in close relation to the

spline grid.
The wavelet based coarsening and refinement meth-

ods described in [1, 2] are used to generate adaptive
grids for an efficient signal representation.

4 Numerical test

Fig. 3 shows the spline grid generated for the classical
algorithm using the same grid for all signals. We have
plotted the grid points ti against their index i, which
allows to recognize the local density of the grid.
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Fig. 3. Grid of the single grid method.

The grids used in our new multiple grid method
can be seen in Fig. 4. Obviously, one gets much better

adapted, smaller grids for the lower frequency signals.
This leads to a reduction of the total number of equa-
tions from roughly 130,000 to 85,000. The number of
nonzeros in the Jacobian for Newton’s method is re-
duces from 5,000,000 to 2,500,000. Consequently the
time for assembling resp. solving the linear system
was reduced from 4s to 2s resp. 8s to 4s.
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Fig. 4. Several signals in a frequency divider chain as part
of a PLL.

A further effect is that the larger the nonlinear sys-
tem is harder to solve by Newton’s method, which re-
sults in more Newton iterations as well as shorter en-
velope time steps. Thus, an envelope simulation with
a frequency modulated signal over 0.3s worked well
for the multiple grid method and was done in 37min.
A similar simulation by the single grid method needed
almost 5 hours.

Acknowledgement. This work has been partly supported
by the ENIAC research project ARTEMOS under grant
829397 and the FWF under grant P22549.
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Summary. Numerical simulations of graphene nanoribbons
are presented. The model has been obtained from the hierar-
chy of the moment systems associated to the transport equa-
tions and the needed closure relations have been achieved
by resorting to the maximum entropy principle. Compar-
isons with Monte Carlo data are included.

1 The model

Monte Carlo investigations of electron transport in
suspended graphene monolayers are available in the
literature [1] along with direct solutions of the Boltz-
mann equations [2]. However the computational com-
plexity makes it desirable to have simpler mesoscopic
models, like hydrodynamical models, more suitable
for computer-aided-design purposes.

The aim of this paper is to formulate a hydrody-
namical model for charge transport in graphene nano-
ribbons based on the maximum entropy principle [3].
The charge carriers are divided into electrons and
holes. The evolution equations for macroscopic vari-
ables like density, energy, velocity and energy-flux
are obtained by taking the moments of the transport
equations. All the main scattering mechanisms are
included: both acoustic phonons and optical phonon
interactions. Degeneracy is also taken into account.
The model has been formulated in a planar geometry,
which is the natural one for graphene nano ribbons.

Graphene is a gapless semiconductor made of a
single layer sheet of carbon atoms arranged into a
honeycomb hexagonal lattice. It has, with good ap-
proximation, a conical band structure. The electron
energy in graphene depends on a wave vector k be-
longing to a bidimensional Brillouin zone which has
an hexagonal shape. The most part of electrons are in
the valleys around the vertices of the Brillouin zone,
called Dirac points or K and K′ points. We treat the K-
valley and the K′-valley as a single equivalent valley.
With a very good approximation [4] a linear disper-
sion relation holds for the energy bands εα around the
equivalent Dirac points, that is εα = α h̄vF k, where
the index α = 1 in the conduction or π∗ band (pos-
itive energy) and α = −1 in the valence or π band
(negative energy). vF is the (constant) Fermi velocity,
h̄ the reduced Planck constant and k is the modulus of
the wave vector. For consistency k will be allowed to
vary in all R2. A reference frame centered in the K or
the K′-point will be used.

In a semiclassical kinetic setting, the charge trans-
port in graphene is described by two Boltzmann equa-

tions, one for electrons in the valence (π) band and the
other for electrons in the conduction (π∗) band

∂ f A

∂ t
+vA ·∇r f A +

e
h̄

E ·∇k f A = C A, A = π,π∗, (1)

f A(r,k, t) representing the distribution function of
charge carriers in the A-band at position r, time t and
wave-vector k. ∇r and ∇k are the gradients with re-
spect to the position and wave vector respectively, e
is the elementary (negative) charge while the micro-
scopic group velocity v is related to the energy band

by v =
1
h̄

∇kεα = αvF
k
k

. E is the electric field ob-
tained by the Poisson equation which must be coupled
with the above system. C A is the collision term repre-
senting the interactions of electrons with acoustic and
optical phonons. Optical phonon scatterings can be
intra-band, that leave the electron in the same band, or
inter-band pushing the electron from an initial band to
the other one. In particular the scattering with optical
phonons of K type can push electrons from a valley to
a neighbor one (inter-valley scattering). However we
will consider the several K-valleys as equivalent.

The collision term is given by the sum of the
contributions of the several types of scatterings. The
generic term due to a single scattering between a state
k in the A-band and a state k′ in the B-band reads
(omitting the dependence on space and time for the
sake of simplicity)

C A(k) =
2

(2π)2

∫
R2

[
w(k′,k) f B(k′)

(
1− f A(k)

)
−

w(k,k′) f A(k)
(
1− f B(k′)

)]
d2k′,

where w(k′,k) is the transition rate [5, 6].
For the acoustic phonons, the elastic approxima-

tion is used. As regards the optical phonons, the longi-
tudinal optical (LO), the transversal optical (TO) and
the K phonons are included.

Since the relaxation time necessary for the de-
caying of optical phonons into acoustic ones is much
longer than the electron relaxation time, phonons are
out of equilibrium. Therefore also the phonon trans-
port equations are taken into account.

2 Moment equations

Macroscopic quantities can be defined as moments of
the distribution function with respect to some suit-
able weight functions, assuming a sufficient regularity
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for the existence of the involved integral. In particular
we propose a set of moment equations comprising for
each band the balance equations for average densities
ρA, velocities VA, energies WA and energy fluxes SA
defined as

ρA =
2

(2π)2

∫
R2

f A(r,k, t)d2k, (2)

ρAVA =
2

(2π)2

∫
R2

f A(r,k, t)vd2k, (3)

ρAWA =
2

(2π)2

∫
R2

f A(r,k, t)ε d2k, (4)

ρASA =
2

(2π)2

∫
R2

f A(r,k, t)εvd2k, (5)

where A = e stands for electron variables and A = h
stands for hole variables. We remark that the veloc-
ity of both electrons and holes is given by v = h̄vF

k
k .

By integrating the Boltzmann equation with respect
to k, after multiplication by the weight, one has the
balance equations for the above defined macroscopic
quantities (A = e,h)

∂

∂ t
ρA +∇r · (ρA VA) = ρA CρA

∂

∂ t
(ρA VA)+∇r ·

(
ρA F(0)

A

)
−α eρAG(0) ·E = ρA CVA

∂

∂ t
(ρA WA)+∇r · (ρA SA)−α eρAE ·VA = ρA CWA

∂

∂ t
(ρA SA)+∇r ·

(
ρA F(1)

A

)
−α eρAG(1) ·E=ρA CSA ,

α =+1 for the electrons and α =−1 for the holes.

Similar equations hold for the phonon subsystem.
We note that, besides the average densities, veloc-

ities, energies and energy fluxes, additional quantities
appears (omitting for the sake of brevity the depen-
dence on space and time)

ρA CρA =
2

(2π)2

∫
R2

C A(k)d2 k,

ρA CVA =
2

(2π)2

∫
R2

vC A(k)d2 k,

ρA CWA =
2

(2π)2

∫
R2

ε C A(k)d2 k,

ρA CSA =
2

(2π)2

∫
R2

ε vC A(k)d2 k,

ρA

(
F(0)

A

F(1)
A

)
=

2
(2π)2

∫
R2

(
1
ε

)
v⊗v fA(r,k, t)d2k,

ρA

(
G(0)

A

G(1)
A

)
=

2
h̄(2π)2

∫
R2

fA(r,k, t)∇k

(
v

ε v

)
d2k,

that must be expressed as functions of the basic vari-
ables ρA, VA, WA, SA (closure problem). A similar
question arises for the average phonon quantities.

3 Closure relations

A well theoretically motivated way to get the de-
sired closure relations is to resort to the maximum
entropy principle [3] for estimating the distributions
f e, f h, f ph of electrons, holes and phonons. The de-
tails will be given in the complete paper. Here we
present some preliminary results with phonons at ther-
mal equilibrium at the temperature TL of the lattice.
The typical saturation and overshoot phenomena are
captured as shown in Fig. 1 where the average elec-
tron velocity is shown in the case of a doping density
of 1012 cm−2 and electric fields of 1kV/cm, 5 kV/cm,
10 kV/cm, 20 kV/cm.
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Fig. 1. Average electron velocity in the case of a dop-
ing density of 1012 cm−2 and electric fields of 1kV/cm, 5
kV/cm, 10 kV/cm, 20 kV/cm .
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Summary. Co-simulation is an important approach for cou-

pled systems in time domain analysis. Applied to coupled

differential algebraic equations, convergence can only be

guaranteed if certain contraction properties are given. This

paper takes a closer look at the coupling structure of electri-

cal circuits where no contraction would be inferred (via the

known theory). By a detailed analysis, we can prove conver-

gence for certain examples. Furthermore we investigate an

example of co-simulation with uncertain parameters using

uncertainty quantification.

1 Introduction

If the monolithic description of a complex system is

not realisable and/or suitable software tools for the

subsystems are available, then co-simulation is rel-

evant choice. In the case of coupled ordinary dif-

ferential equations (ODEs), convergence of the co-

simulation can be achieved always. But the situation

is different for coupled differential algebraic equa-

tions (DAEs). Here convergence can only be guar-

anteed if certain contraction properties are fulfilled.

Then convergence means that in an iteration process

the distance to the analytic solution eventually de-

creases to zero. Thus the subsystems are solved mul-

tiple times. In our simulations, the data transfer be-

tween the subsystems is realised by a so-called Gauß-

Seidel type of iteration scheme. Furthermore, in co-

simulation applications it matters in which sequence

these subsystems are solved (see e.g. [1]).

2 DAE-DAE Coupling

We assume that we are able to split our whole system

into r subsystems. Then the i-th subsystem is given

by an initial value problem of differential algebraic

equations (for i = 1, . . . ,r)

ẏi = fi (y,z) , yi(0) = yi,0, with yT = [y1
T , . . . ,yr

T ],

0 = gi (y,z) , with zT = [z1
T , . . . ,zr

T ],
(1)

for the unknowns [yT ,zT ]. All subsystems must fulfill

the index-1 assumption, i.e., we require that the Ja-

cobian ∂gi/∂zi is not singular. Furthermore the over-

all system shall be of index-1, such that we have the

global the differential part fT = [f1
T , . . . , fr

T ] and al-

gebraic part gT = [g1
T , . . . ,gr

T ]. Using splitting func-

tions G, F, the co-simulation scheme is encoded. For

further details see [3, 4]. To analyse the iteration, we

start from two waveforms X, X̃ on the nth time win-

dow [tn, tn+1] and perform k iterations. The difference

is measured by ∆
(k)
n (t) := X

(k)
n (t)− X̃

(k)
n (t), δ

(k)
n :=

‖∆
(k)
n ‖2,∞. Then, the standard recursion estimation for

contraction reads (see [2])

[

δ
(k)
y,n

δ
(k)
z,n

]

≤ K

[

δ
(k−1)
y,n

δ
(k−1)
z,n

]

:=

[

CHn CHn

C CHn +αn

][

δ
(k−1)
y,n

δ
(k−1)
z,n

]

, (2)

with αn := (1 +Cd)‖G−1

z(k)
G

z(k−1)‖2,∞ +Cd (C > 1,

d > 0) and G
z(k)

, G
z(k−1) denote partials Jacobians

of G. A sufficient condition for contraction of (2)

(i.e., spectral radius ρ(K) < 1) is ‖G−1

z(k)
G

z(k−1)‖ < 1

(see [1, 2]). Hence it matters whether there are old al-

gebraic constraints depends on old algebraic iterates.

The objective should be to design the coupling inter-

face in such a way to keep the contraction factor αn

as small as possible.

3 Information Loss During Lumping

Let Ke ∈R
ny+nz×ny+nz denote the fine structure, exact

recursion matrix:




∆
(k)
y,n

∆
(k)
z,n



= Ke





∆
(k−1)
y,n

∆
(k−1)
z,n



 :=





A B

C D









∆
(k−1)
y,n

∆
(k−1)
z,n



 . (3)

Applying the maximum norm of each submatrix, we

obtain an estimation where the information on con-

traction may be disappeared, i.e., ρ(Ke)< 1 is trans-

formed into ρ(K)≥ 1. In the general case, e.g. of non-

linear networks, the calculation of the explicit recur-

sion matrix will not be a very easy task. Therefore an

important question to be answered is, whether we can

derive information about stability and contraction di-

rectly from the network structure.

We partition a 2-Level RLC-Circuit into two sub-

systems (r = 2), see Fig. 1. For the co-simulation in-

terface we apply source coupling, which implies that

we use an voltage source and current source to couple

these two systems. Both systems fulfill the index-1 as-

sumption. The Gauss-Seidel-type iteration scheme is

applied to (1) with constant extrapolation for the ini-

tial guess. Explicit calculation of the contraction con-

dition gives for the two settings:

Sub.1 first: ‖G−1

z(k)
G

z(k−1)‖2 = R2 ·
√

2 (R2 > 0), (4a)
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Uin(t)

Iin

R1

UCo

ICo

L1

C1

R2U1 U2 U3 UCo U4 U5

ICo

L2

C2

Fig. 1. 2-Level RLC co-simulation model. For the network

components, we choose: R1 = R2 = 10kΩ , L1 = L2 =
1mH, C1 = C2 = 1nF, Uin(t) = 1Vcos(2π · 5kHz · t). Left

subsystem 1, right subsystem 2.

Sub.2 first: ‖G−1

z(k)
G

z(k−1)‖2 = 1. (4b)

Convergence rate and contraction of the 2-Level RLC

co-simulation model is shown in Fig. 2. Notice that
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Fig. 2. (Left) Convergence of the 2-Level RLC-Circuit co-

simulation model for different time step sizes H with one

iteration per time window after t0 = 0.4 ms. (Right) Error

of the network components in dependence of the iteration

steps k on the time window [t0, t0 +H], H = 0.1 ms.

in both cases (4a) for R ≫ 1 and (4b) the contraction

condition is not fulfilled. In contrast, for both cases we

find window sizes H < Hmax where the error decrease

for increasing iteration k. Using (3) we can prove con-

vergence for this network.

4 Uncertainty Quantification Combined

with Co-simulation

Another very important field concerns the parameter

uncertainty in applications. In practice components

will have variations around a nominal values, which

could change the circuit properties. Uncertainty quan-

tification tries to determine how likely certain out-

comes are if some aspects of the system are not ex-

actly known.

We define the resistors R1, R2 from Fig. 1 with

nominal value 〈Ri〉 with a variation of 10% (δRi =
0.1):

Ri = 〈Ri〉 · (1+δRi ·Z) , (5)

where Z is a uniformly distributed random variable on

[−1, 1]. To determine evolution of uncertainty, gener-

alized polynomial chaos (gPC) method is used. The

sensitivity of R2 for different iteration steps k is shown

in Fig. 3. It becomes apparent that we get good ap-

proach of the sensitivity already for a small number

of iteration steps k.
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Fig. 3. Sensitivity of the resistor R2 after t0 = 0.4 ms on

one time window [t0, t0 +H], H = 0.1 ms for different iter-

ation steps k = 3, . . . ,9 in comparison with the monolithic

solution.

5 Conclusions

Formulating the explicit recursion matrix, we demon-

strated stability and contraction cannot be always de-

tacted by using the standard theory of co-simulation.

It is a future aim to investigate stability and contrac-

tion derived directly from the network structure.

Additionally we started combining uncertainty quan-

tification with co-simulation and will analyse the in-

fluence on the contraction properties.

References

1. Arnold, M., Günther, M.: Preconditioned Dynamic It-

eration for Coupled Differential-Algebraic Systems. In:

BIT, vol. 41, pp. 1–25 (2001)

2. Bartel, A., Brunk, M., Günther, M. and Schöps, S.: Dy-
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Summary. The correlation between the electronic struc-
ture and electronic transport properties of doped and de-
fected graphene systems in the quantum coherent regime is
presented and discussed. The calibration of effective Hamil-
tonians using ab initio methods and transport calculations
based on the Non-Equilibrium Green Function formalism
allow for the accurate simulation of the device features in
realistic configurations.

1 Introduction

The continuous development of the nano-electronics
is ruled by the scaling law of the critical sizes of active
device regions. Although the length of the CMOS’s
channel Lch is the most cited parameter, its width Wch
and height Hch also follow this aggressive scaling. In
particular, when Lch will achieve the deep sub−10nm
range, channels with Hch in atomic range have to be
fabricated. In this sense, the use of two dimensional
2D materials is imposed by the future trend of nano-
electronics and the recent explosive development of
graphene knowledge and technology is a lucky coin-
cidence.

Graphene-based nano-structures expose an one-
atom-thick surface and as a consequence their prop-
erties are deeply subjected to the interaction with the
surrounding environment. This interaction is bound
to induce various levels of disorder in these materi-
als giving rise to important alterations in their con-
ductance characteristics. The theoretical understand-
ing of disorder on the conductance features of these
systems and in general the study of coherent transport
represents a fundamental background for the devel-
opment of graphene-based nano-electronics. More-
over, the transport study in this case is tightly re-
lated to electronic structure calculations starting from
the correct atomic configuration of the system, since
even a single atom alteration could drastically im-
pact the transport features. This issue complements
the studies on diffusive transport and it is crucial
for predicting the electrical characteristics in the case
of nano-device configurations: i.e. when the device
length scale is lower than the characteristic lengths
of inelastic interactions that give rise to a diffusive
behavior or the dephasing of the electron wave func-
tions.

Here we discuss the correlation between the elec-
tronic structure and electronic transport properties of

doped and defected graphene systems in the quantum
coherent regime.

2 Methods

Without lack of generality, we consider the general-
ized transport problem of a two-terminal geometry.
Assuming that a matrix representation of the Hamil-
tonian can be obtained using a suitable base. We can
write the Hamiltonian of the entire system as:

H =

 HL −τL 0
−τ

†
L H0 −τ

†
R

0 −τR HR

 (1)

Here, H0 is the device Hamiltonian and HL,R are the
bulk contact Hamiltonians, while τL,R describe the
coupling between the contacts and the device. The
matrix Green function G can be defined by the so-
lutions to the following equation

(EI −H)G (E) = I (2)

where E is the energy and I is the unitary matrix (for
an orthonormal basis set). The generally infinite prob-
lem in eq. 2 can be mapped in a finite one, if we
now define the self-energies of the two contacts as
ΣL = τ

†
LgLτL,ΣR = τ

†
RgRτR, where gL,R are the Green

functions of the left and right contact respectively.
The problem here is the transformation of these two
(∞,N) matrices into (N,N) ones. Such a procedure is
feasible analytically or numerically since it takes ad-
vantage of the semi-infinite lattice symmetry of the
two leads. Conceptually one can think of ΣL,R as ma-
trices that by being added to the bare device Hamilto-
nian result in an effective Hamiltonian that accounts
also for the exact effect of the leads. This concept is
very powerful and can be extended to other types of
interaction that take place in the device channel dur-
ing conduction (e.g. el-ph interactions). The final ver-
sion of the Green’s function matrix of the device that
takes also account for the interaction with the two
contacts via the two self-energy terms is:

G = (EI −H0 −ΣL −ΣR)
−1 (3)

Using the Green function we can calculate the quan-
tity of interest. The density matrix is:

ρ =
1

2π

∫
∞

−∞

( fLG ΓLG † + fRG ΓRG †)dE, (4)
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where fL,(R) is the Fermi-Dirac function of the left
(right) contact and Γ = ı(Σ −Σ †). The total current
is

I = IinR − IoutR =
e
h

∫
∞

−∞

Trace(ΓRG ΓLG †)( fL− fR)dE

(5)
where the transmission probability is:

T (E) = Trace(ΓLG ΓRG †) (6)

Fig. 1. (a) Structure of a 18 × 18 graphene supercell.
(b) Folded (lines) and unfolded (points) band structure of
a (18 × 18) graphene supercell in its primitive Brillouin
zone.(c) Effective band structure obtained for C-orbital con-
tributions for a (18× 18) graphene supercell having a con-
centration of 0.62% of B impurities in a graphitic configu-
ration.

3 Results

The derivation of a suitable electron Hamiltonian is
the prerequisite of any coherent transport calculation.
The application of a first principles approach is feasi-
ble only for very small systems. However we can use
ab initio calculations to calibrate effective Hamiltoni-
ans in the class of the tight-binding models [1–5]. De-
fective systems have to be studied in super celsl and
unfolding procedure is necessary for the proper use
of the results. Original unfolding techniques [6] are
extensively applied to the calibration procedure iden-
tifying the alterations with respect to the ideal band
structures and the residual graphene-character of the
bands in non ideal systems (see fig. 1 for an example).

By varying both the width and the length of two-
terminal devices from the nano- to the micro-scale,
we study localization phenomena, the formation of
pseudo-gaps, transport length scales and conductance
characteristics for numerous defect/impurity concen-
trations (see fig. 2 for an example). When the lateral

Fig. 2. Average conductance < g > as a function of the en-
ergy E, for an N-doped N=45 aGNR of different lengths.
Plotted values represent statistical averages over more than
500 equivalent replicas of the system.

confinement is strong (i.e. in the case of graphene
nanoribbons), we show that localization due to scat-
tering is strongly energy dependent, and this fact leads
to the appearance of conductance quasi-gaps in the
spectral region of the resonance states. Moreover, con-
ductance fluctuations are very large in the quasi-gap
regions, indicating significant electrical disorder. We
then focus on the conductance variations when gradu-
ally passing from the quasi-1D limit (graphene nanorib-
bons) to the 2D case (graphene). The evaluation of
the weights of the phase breaking scattering processes
(e.g. electron-phonon scattering) and the phase co-
herent interactions with defects and impurities in the
transport behavior of these systems demonstrate that
the latter are dominant in constrained graphene sys-
tems.
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Summary. We aim at finding optimal designs for electric
motors. On the one hand, we use a sensitivity-based topol-
ogy optimization method where material is removed at the
most favorable positions. On the other hand, we use a shape
optimization technique where an interface is moved along
a vector field that assures a decrease of the objective func-
tional. Coupling of topology and shape optimization leads
to a powerful design tool.

1 Problem Description

When designing electrical machines it is a crucial task
to determine a design that is optimal with respect to
some goal. As a model problem we consider an inte-
rior permanent magnet (IPM) brushless electric motor
consisting of a rotor (inner part) and a stator (outer
part), which are separated by a small air gap. Both
parts have an iron core, the rotor contains permanent
magnets which are magnetized in the indicated direc-
tions (see Figure 1). The coil areas are on the inner
part of the stator. In general, inducing current in the
coils will cause the rotor to rotate due to the interac-
tion between the electric field and the magnetic field
generated by the magnets.

In our special application, we aim at minimizing
the total harmonic distortion (THD) such that the re-
sulting motor rotates as smoothly as possible. For this
purpose, we are only interested in the magnetic flux
density B for one fixed rotor position without any cur-
rent induced. The task is to find the material distribu-
tion in the design areas that drives the radial compo-
nent of the magnetic flux density B along a circle Γ0
in the air gap as close as possible to a prescribed sine
curve Bd

r (see Figure 2). The underlying PDE (2) is
the equation of 2D magnetostatics. The optimization
problem looks as follows:

min
Ωiron

J (u) := ‖Br(u)−Bd
r ‖2

L2(Γ0)
(1)

s.t.
{
−div

(
ν(|∇u|)∇u−M⊥

)
= J in Ω

u = 0 on ∂Ω
(2)

Here, the state variable u is the z-component of the
vector potential of the magnetic flux density, B(u) =
curl

(
(0,0,u)T

)
. Further, M⊥=(−M2,M1)

T and J de-
note the perpendicular of the permanent magnetiza-
tion and the current density, which vanish outside the

permanent magnets and the coils, respectively. Since,
in our special application, we do not consider any cur-
rent, we set J = 0. The coefficient function ν rep-
resents the magnetic reluctivity which is a nonlinear
function ν̂ of the magnetic field in the presence of fer-
romagnetic material (e.g. iron) and a constant ν0 else,

ν(|∇u|) = χΩiron ν̂(|∇u|)+χΩair ν0. (3)

In a simplified linear setting we replace the nonlinear
function ν̂ by a constant ν1 and (2) becomes a linear
PDE with the coefficient function

ν = χΩiron ν1 +χΩair ν0. (4)

Fig. 1. Electric motor with different components
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Fig. 2. Radial component of magnetic flux density B along
circle Γ0 in air gap for initial design as depicted in Fig. 1
(blue curve) and desired curve Bd

r (dashed green curve)
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2 Topology Optimization Using
Topological Sensitivities

We apply a sensitivity-based topology optimization
method, the so-called ON/OFF method proposed by
M. Ohtake, Y. Okamoto and N. Takahashi in 2005 [2],
to problem (1) - (2) and show its connection to the
mathematical concept of the topological derivative.

2.1 Toplogical Derivative

The topological derivative (or topological gradient) of
a domain-dependent functional J = J (Ω) is the
sensitivity of J with respect to the introduction of a
small hole ωε = x0 + εD of radius ε around a point
x0 in the domain. Here, D is a fixed bounded domain
containing the origin with connected and piecewise
C1 boundary and specifies the shape of the pertur-
bation (e.g. unit disk). Denoting the original domain
by Ω and the perturbed domain by Ωε = Ω \ωε , the
topological derivative of J at a spatial point x0 is de-
fined as the quantity G(x0) satisfying the toplogical
asymptotic expansion

J (Ωε)−J (Ω) = f (ε)G(x0)+o( f (ε))

for some positive function f with lim
ε→0

f (ε) [1].

We derive the topological derivative for problem
(1) - (2) under the simplifying assumption of a linear
state equation (4).

2.2 ON/OFF Method

The ON/OFF method was designed for the optimiza-
tion of electrical machines. It searches for the opti-
mal distribution of iron and air in a design area. The
method is based on the fact that the difference be-
tween iron and air is only reflected in the magnetic
reluctivity ν in (2) which is a constant ν = ν0 in the
air subdomain and a nonlinear function ν̂ in the iron
subdomain, see (3), where the values attained in the
iron are much smaller compared to the reluctivity of
air, ν̂(|∇u|)� ν0. After discretization of the compu-
tational domain, the method uses information on the
sensitivity of the objective functional J with respect
to a local perturbation of the magnetic reluctivity in
every single element of the mesh in the design area. If
this sensitivity,

dJ

dνk
, (5)

in element k is negative then increasing the magnetic
reluctivity in the element would lead to a decrease of
the objective function. This is realized by setting the
element to air (OFF) as ν̂(|∇u|)� ν0. On the other
hand, if the sensitivity is positive then a smaller reluc-
tivity value is favorable which is realized by switching
the element to iron (ON).

We compute the sensitivities (5) and show the
connection to the topological derivative in the case of

a linear state equation. The generalization of (5) to the
case of a nonlinear state equation is straightforward
whereas the computation of the topological derivative
for that case is an open problem. We show numerical
results obtained by applying the following algorithm
to problem (1) - (2) with the nonlinear material coef-
ficient (3).

Algorithm (ON/OFF method):
Initialize all elements in design area with iron
While not converged do

- Solve (2) for u
- Compute sensitivities (5) for each element in de-

sign area
- Determine element with most negative sensitivity

and introduce hole of certain radius around it

3 Shape Optimization

We address the optimization problem (1) - (2) by
shape optimization where the interface between the
iron and air subdomain in the design area is moved in
such a way that the objective functional decreases.

Velocity Method

In the velocity method for shape optimization, one
computes a vector field V in such a way that mov-
ing the geometry along V results in a decrease of the
objective functional. For a vector field V and a real
number t ≥ 0 let Ωt = Ω + tV.

Definition 1. The Eulerian semi-derivative (or shape
derivative) of a domain-dependent functional J in
direction of a smooth vector field V is defined as

dJ (Ω ;V) := lim
t→0

J (Ωt)−J (Ω)

t
.

A common procedure to find a descent direction V is
to define a positive definite bilinear form b(·, ·) and to
compute V as the solution to a variational problem

b(V,W) =−dJ (Ω ;W) ∀W

with properly chosen spaces for V and W. We com-
pute the Eulerian semi-derivative for problem (1) - (2)
and show numerical results.
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Summary. We consider a two-temperature energy-trasport
model for semiconductors, with electron temperature and
lattice temperature as independent variables. For the steady-
state case, we prove an existence and uniqueness result.

1 Introduction

The energy-transport model for semiconductors was
first introduced by Stratton [1], in 1962. The first
mathematical results had to wait 35 years after the
presentation of the model, and are due to Degond,
Génieys and Jüngel [2, 3]. They consider a general
parabolic-elliptic system, arising in irreversible ther-
modynamics with thermal and electrical effects, which
includes as a special case the energy-transport model.
This general model is studied in a bounded multi-
dimansional domain, with physics-based mixed Diri-
chlet-Neumann boundary conditions, under the re-
strictive hypothesis of uniform parabolicity and ex-
istence of a strictly positive energy.

A few years later, Chen, Hsiao and Li consider the
same model, with unphysical no-flow boundary con-
ditions, proving a stability theorem for small initial
perturbations, without the last two restrictive assump-
tions [4].

An improvement on this result is due to Nishi-
bata and Suzuki, who in a recent publication [5],
for a one-dimensional energy-transport model, are
able to prove existence and uniqueness, under phys-
ical boundary conditions, without assuming uniform
parabolicity and existence of a strictly positive energy.

In this work we extend Nishibata and Suzuki’s
results to a two-energy energy-transport model for
semiconductor. The inclusion of the lattice tempera-
ture as an additional unknown is demanded for an ac-
curate description of heat effects in semiconductors.

2 Main result

We consider an energy-transport model for semicon-
ductors for the following unknowns: the electron num-
ber density n, the electron temperature T , the lattice
temperature θ , and the electric potential φ . In the
steady-state one-dimensional case, after scaling, the
system can be written as follows:

Jx = 0, (1)
J = nφx− (nT )x, (2)(

5
2

T J−κTx

)
x
= Jφx−

3
2τ

n(T −θ), (3)

(−κLθx)x =
3

2τ
n(T −θ)− 1

τL
(θ −1), (4)

φxx = n−D, (5)

with x ∈ (0,1). Here, J is the current density, κ and
κL the electron and phonon thermal conductivities, re-
spectively, τ and τL the electron and phonon energy
relaxation times, D(x) the doping profile. We assume
the following physics-based boundary conditions:

n(0) = nl , n(1) = nr, (6)
T (0) = θ(0), T (1) = θ(1), (7)

κLθx(0) =
1
R
(θ(0)−1),

−κLθx(1) =
1
R
(θ(1)−1), (8)

φ(0) = 0, φ(1) = φr. (9)

For the above problem we establish a first existence
and uniqueness result, under the assumption of small-
ness of the relaxation times τ , τL, and of the parameter
δ := |nr − nl |+ |φr|, related to the boundary condi-
tions.
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Global Solvability of Nonlinear Parabolic PDAEs: A Coupled Systems
Approach and its Application to Circuit Simulation
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Summary. Applications like electrical circuits including
electromagnetic devices, semiconductor devices or thermal
elements give rise to a mix of PDEs and DAEs. Such a mix
is called a partial differential-algebraic equation (PDAE).
We investigate a prototype for nonlinear parabolic coupled
PDAE systems. The objective is to prove the global exis-
tence and uniqueness of a solution for this prototype class.
Regarding the applications we consider the simulation of
electric circuits including thermal resistors.

1 Introduction

Numerous mathematical models in science and engi-
neering give rise to systems comprising partial dif-
ferential equations (PDEs) and differential-algebraic
equations (DAEs). These systems are called partial
differential-algebraic equations (PDAEs) and occur
frequently in application areas such as electric circuit
simulation, flexible multibody systems, gas or water
distribution network simulation or chemical engineer-
ing, see [1–3]. In literature the research is mainly fo-
cused on the space-discretized system while we in-
vestigate the non-discretized system. We will use the
term abstract differential-algebraic equation (ADAE)
for the non-discretized system. The definition and de-
termination of indexes for linear ADAEs has received
attention in recent literature, see [2–6]. ADAEs are
also treated with respect to existence under the term
degenerate differential equations mainly for the linear
case, see [7], but also for certain classes of nonlinear
ADAEs, see [8,9]. However, the theoretical treatment
of nonlinear ADAEs and their numerical treatment is
still at an initial stage. We are interested in a system-
atic treatment of nonlinear ADAEs. We formulate a
parabolic prototype of an ADAE and address the fol-
lowing questions.

What conditions must be met for an ADAE to be
globally solvable? When is the solution unique and
which applications fulfill these conditions?

2 A Parabolic Prototype

We consider the following parabolic prototype of a
coupled system. Let I := [t0,T ] be an interval and
V ⊆ H ⊆V ∗ be an evolution triple. Consider the sys-
tem

m′(x(t), t)+ f (x(t),y(t),u(t), t) = 0, (1a)
g(x(t),y(t), t) = 0, (1b)

u′(t)+B(u(t))+R(u(t),x(t),y(t), t) = 0, (1c)
x(t0) = x0, u(t0) = u0 (1d)

with functions m : Rnx ×I → Rnx , f : Rnx+ny ×H×
I → Rnx , g : Rnx+ny ×I → Rny and operators B :
V → V ∗ and R : V ×Rnx+ny ×I → V ∗. The un-
knowns are x(t) ∈ Rnx , y(t) ∈ Rny and u(t) ∈ V for
t ∈ I . We also use the convention to write z(t) =
(x(t),y(t)), nz = nx + ny. The initial values x0 ∈ Rnx

and u0 ∈ H are given. Note that equations (1a), (1b)
represent a semi-linear (finite dimensional) DAE with
a non-linear derivative-term whereas (1c) is an (infi-
nite dimensional) evolution equation involving a gen-
eralized derivative where a solution u will be in the
space

W 1
2 (I ;V,H) =

{
u ∈ L2(I ,V )| u′ ∈ L2(I ,V ∗)

}
.

L2(I ,V ) is the space of square integrable functions
on I with values in the Banach space V . The cou-
pling of these two systems is realized by letting f de-
pend on u and R depend on z.

3 Global Solvability and Uniqueness

We will investigate (1) regarding its global unique
solvability. First we assemble the following assump-
tions.

Assumption 1
Let the following assumptions hold for system (1):

1. m ∈ C1(Rnx ×I → Rnx) is strongly monotone
w.r.t. x ∈ Rnx .

2. f ∈C(Rnz ×H×I ,Rnx) is Lipschitz continuous
w.r.t. z and u.

3. g∈C(Rnz×I ,Rny) is strongly monotone w.r.t. y∈
Rny and Lipschitz continuous w.r.t. x.

4. B : V →V ∗ is Lipschitz continuous and strongly
monotone.

5. R ∈C(V ×Rnz×I ,V ∗) is monotone w.r.t. u and
Lipschitz continuous w.r.t. z. Furthermore there
are cR,1,cR,2 > 0 such that

‖R(u,0, t)‖V ∗ ≤ cR,1 ‖u‖V + cR,2 ∀u ∈V.
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Here we call a map f : V ×M→W Lipschitz contin-
uous on V if there is L > 0 such that

‖ f (v,z)− f (v̄,z)‖W ≤ L‖v− v̄‖V

for all v, v̄ ∈ V,z ∈ M with M ⊆ X being a subset of
the Banach space X . Furthermore we say that f is
strongly monotone on V if W = V ∗ and if there is
µ > 0 such that

〈 f (v,z)− f (v̄,z),v− v̄〉V ≥ µ ‖v− v̄‖2
V

for all v, v̄ ∈V,z ∈M. If µ = 0 we call f monotone on
V . Note here that L and µ do not depend on z ∈ M.
With the help of Assumption 1 we are able to formu-
late the following theorem.

Theorem 2. Let Assumption 1 be fulfilled. Then (1)
has a unique solution (z,u)∈C(I ,Rnz×H) with x ∈
C1(I ,Rnx) and u ∈W 1

2 (I ;V,H).

We prove the global unique solvability as follows.
First, we show the uniqueness of a possible solu-
tion to (1). Then we prove a priori estimates for the
Galerkin solutions and prove the unique solvability of
the Galerkin equations which are given as follows:

m′(xn(t), t)+ f (xn(t),yn(t),un(t), t) = 0, (2a)
g(xn(t),yn(t), t) = 0, (2b)

〈u′n(t),vi〉V + 〈B(un(t)),vi〉V
+〈R(un(t),xn(t),yn(t), t),vi〉V = 0, (2c)

xn(t0) = x0, un(t0) = un0, (2d)

for i = 1, . . . ,n. The operator equation (2c) is for-
mulated on the finite dimensional subspace Vn ⊆ V .
So un(t) is in Vn which also influences the finite
dimensional variable z through the coupling. Hence
zn = (xn,yn), too, depends on the Galerkin step n. Fi-
nally, we will be able to prove the convergence of the
Galerkin solutions and thereby we prove the solvabil-
ity of (1) by showing that the limit of the Galerkin
solutions is the solution of (1).

4 Application to Circuit Simulation

In the classical formulation of the Modified Nodal
Analysis equations, cf. [10], heating effects of cer-
tain circuit elements are not included. Nevertheless
it is well known that resistors, for example, may de-
pend significantly on their temperature. Due to minia-
turization in chip design heating effects become ever
more important. Accordingly, the influence of heat-
ing effects on the circuit’s behavior has to be simu-
lated as well. In [11] a first coupled thermal-electric
model was described which adds thermal effects to
the circuit by means of an additional 1D heat equa-
tion. Furthermore, comprehensive information on var-
ious heating models for resistors and diodes is given.
This approach has been extended to coupled systems
involving semiconductors, cf. [12], and 2D/3D heat
diffusion effects, cf. [13].

We consider electric circuits including standard
elements like capacitors, resistors, inductors and in-
dependent sources and also thermally active resistors.
For the resulting system we prove the global unique
solvability by transforming it into the form of the pro-
totype (1) and applying Theorem 2.

Acknowledgement. The Deutsche Forschungsgemeinschaft
supported the authors through the Project ”Numerische Anal-
ysis Abstrakter Differential-Algebraischer Gleichungen”.
The authors thank C. Tischendorf for setting the project up.
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Summary. We investigate the influence of the uncertainty
in the knowledge of the electrical conductivity of biologi-
cal tissues on the induced electric field during transcranial
magnetic stimulation. Three different tissues, namely cere-
brospinal fluid, grey matter, and white matter, are modeled
as random variables. The investigations were performed on
a simplified model of a cortical sulcus. The results quantify
the major influence of uncertainty in TMS.

1 Introduction

Transcranial magnetic stimulation (TMS) is a non-
invasive technique to stimulate cortical regions of the
human brain by the principle of electromagnetic in-
duction [1]. In biphasic stimulation, a time changing
current with sinusoidal waveform is driven through an
excitation coil. As a consequence, an electric field is
induced inside the human brain due to Faraday’s law.
Due to the complex geometry of the human brain, nu-
merical techniques such as the finite element method
(FEM) have to be applied in order to compute the spa-
tial distribution of the induced electric field [2]. How-
ever, this implies the exact knowledge of the corre-
sponding electrical conductivity. That is almost not
possible due to the difficulty of obtaining accurate
data measured in vivo as well as due to the variabil-
ity between subjects. Hence, available data shows a
wide spread and exact predictions seem to be impos-
sible. For that reason, an analysis regarding the un-
certainty of the induced electric field in TMS appears
imperative. Sampling methods such as Monte Carlo
approaches (MC) are not applicable due to their dis-
advantage of slow convergence and the need of a high
amount of sampling points (104 − 106). For that rea-
son, we propose to apply a generalized polynomial
chaos expansion (gPC) based on spectral projection.

2 Deterministic FEM model

A simplified FEM model of a cortical sulcus, similar
to the one in [6], is adopted. A commercial figure-
of-8 coil1 acts as excitation coil, assuming a cur-

1 2nd Generation Double 70mm - 3191-00 (Magstim
Company Ltd, Whitland, United Kingdom)

Figure-of-8 coil
Cerebrospinal fluid (CSF)
Grey matter (GM)
White matter (WM)
Sulcus

xy

z

Fig. 1. Quarter-model of the investigated cortical sulcus.

rent amplitude of 5488 A and a frequency of exci-
tation of 2.9 kHz. The coil is positioned such that the
normal component of the induced current density is
maximum i.e. the long axis of the coil is parallel to
the artificial sulcus. Due to the validity of the quasi-
static approximation in TMS, the magnetic field pro-
duced by the coil is calculated in advance by means
of the magnetic vector potential A. The induced elec-
tric field is given by E = − jωA−∇ϕ . Commercial
FEM software is used to determine the scalar elec-
tric potential ϕ [7]. The FEM model shown in Fig. 1
makes use of two symmetry planes to further reduce
computational cost.

3 Polynomial Chaos Expansion

Considering the available data for cerebrospinal fluid
(CSF), grey matter (GM), and white matter (WM),
a wide spread of the electrical conductivity can be
observed [2–4]. Since the statistical properties of the
tissues are not known, they are modeled as indepen-
dent and uniform distributed random variables with
the following limits: 1.4341 ≤ σCSF ≤ 1.9487 S/m,
0.1224 ≤ σGM ≤ 0.5106 S/m, and 0.0957 ≤ σWM ≤
0.1663 S/m. They are combined in a three-variate ran-
dom vector ξξξ located in the probability space (Ξ ,Σ ,P).
The event space Ξ contains all possible events, Σ is a
σ -algebra which is a subset of Ξ , and P is a measure
for the probability of occurrence. Based on this, the
gPC for uniform distributed random variables is de-
fined by a truncated expansion of Legendre polyno-
mials ψn(ξξξ ) weighted by the gPC coefficients ûk [5]:
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E(r,ξξξ ) =
∞

∑
k=0

ûk(r)ψk(ξξξ )≈
Nc−1

∑
k=0

ûk(r)ψk(ξξξ ). (1)

In the present framework, the output E(r,ξξξ ) is
the magnitude of the induced electric field at a cer-
tain point r. The gPC-coefficients are determined by
means of a regression approach by solving the least
squares problem Ψ û(r) = s(r), where Ψ denotes the
gPC-matrix and s(r) the solution vector determined
by the forward simulations.

4 Numerical Results

The results are obtained using an order p = 7 expan-
sion. Considering N = 3 random variables, this re-
sults in Nc =

(N+p
N

)
= 120 gPC-coefficients. In order

to provide a certain amount of oversampling, a ten-
sored Gauss-Legendre grid with 73 = 343 points is
used. Figure 2 shows the mean of the induced elec-
tric field and the standard deviation in the xz-plane
at y = 0. Furthermore, the probability density func-
tion (PDF) at point (x,z) = (2.8,−31.1) mm located
close to the sulcus, in the center of GM, is presented.
The PDF is obtained by direct MC-sampling with 104

points and by sampling the gPC expansion E(r,ξξξ )
from (1) with 105 points. The mean of the induced
electric field shows high values in the region of the
gyri crown. The standard deviation is highest at lo-
cations where the normal component of the induced
current density is maximum. This behaviour was es-
pecially observed in GM. The standard deviation is in
the range of 20-40% of the mean induced electric field
in this region. The obtained PDFs show good agree-
ment and indicate values between 30-160 V/m. Both
PDFs are clearly non-symmetric, which indicates a
non-negligible third moment (skewness).

5 Conclusion

The results indicate how drastically the electric field is
influenced by the uncertainty of the input parameters.
Besides geometrical variations between patients, the
uncertainty of electrical conductivity could explain
the variability between clinical TMS studies. In the
full paper we are going to compare quadrature and
collocation approaches [5] with the results obtained
by regression. In addition, the spatial distribution of
the global sensitivity coefficients of all three tissues
will be presented. Finally, we will study the conver-
gence characteristics with respect to the order of ex-
pansion as well as the associated simulation time.

Acknowledgement. The present work is supported by the
Deutsche Forschungsgemeinschaft (DFG) in the framework
of the Research Training Group 1567 at the Technische Uni-
versitaet Ilmenau, Germany.
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Summary. BEM1 is an efficient simulation technique in
industrial environments. In contrast to early BEM imple-
mentations based on fully populated matrices the novel
techniques like FEM2 or ACA3 succeed in reducing mem-
ory consumption but require more complex parallelization
schemes, which generally do not scale properly. In this pa-
per, we compare four different BEM implementations and
propose a localized matrix compression technique which re-
duces memory consumption but at the same time maintains
the straightforward parallelization scheme.

1 Introduction

Electrostatic simulation of power devices is used to
ensure sufficient safety margins without the need to
perform expensive tests with prototypes during initial
development and allows the engineer to assess and, if
necessary, improve critical parts of the device.

Fig. 1 shows the results of a BEM based simu-
lation performed for a switchgear component where
colors represent electric field strength, increasing from
blue to red. Such simulation models can nowadays be
created in a very user friendly manner using CAD sys-
tems. Through this, the model created by the designer
can be taken as is and easily be discretized directly
inside the CAD system. As a consequence, the over-
all time for obtaining the electric field distribution as
depicted in Fig. 1 from a raw CAD model could be re-
duced to the order of tens of minutes. Therefore, the
remaining bottleneck is the BEM solver computation
time, which can become very long for large dimen-
sions.

Fig. 1. Visualization of Gas Insulated Switchgear (GIS)
Component, Matrix Dimension ≈ 150.000

1 Boundary Element Method
2 Fast Multipole Method
3 Adaptive Cross Approximation

2 Simulation Solvers

Based on recent cooperation projects between indus-
try and academia [5], the following BEM implemen-
tations have been investigated:
Polopt0: Developed by ABB and implementing BEM
in a straightforward manner using a fully populated
matrix. Its MPI based version distributes individual
rows of the fully populated matrix and processes them
in parallel. Exact details are presented in [1].
Polopt3: Developed by ABB as successor to polopt0
and also parallelized using MPI. It implements the
Fast Multipole Method (FMM) based on the work
published in [4].
BETLdielectric: Based on the BETL [2] framework
initiated at ABB. It is currently being developed and
maintained by ETH Zürich. Adaptive Cross Approx-
imation (ACA) is used to avoid storing a fully pop-
ulated matrix. A parallel implementation of ACA [6]
which is based on shared memory only has been used
for our investigations.
gobem: Developed at the Department for Numerical
Mathematics of TU Graz and, like polopt3, imple-
menting a Fast Multipole Method. It primarily focuses
on the accuracy of the solution rather than on high
performance [3] and uses a combination of both MPI
and shared memory for parallelization.

2.1 Runtime Performance

Fig. 2 shows the runtime in minutes the individual
solvers took to simulate the GIS component on a sin-
gle node with up to 32 Intel Westmere CPU cores.
The number of cores for the fastest parallel runtimes
are given in parentheses, respectively.

When using up to 32 cores, the straightforward
parallelization of polopt0 results in a speedup of more
than 25, BETLdielectric and gobem achieve a factor
of about 11. Polopt3 achieves its best runtime us-
ing 8 cores and barely halves its sequential runtime.
Above 8 cores, polopt3 starts to slow down again.
This demonstrates the advantage of the straightfor-
ward parallelization of the polopt0 solver.

2.2 Memory Requirements

Fig. 3 shows the memory consumption of the individ-
ual solvers during simulation of the GIS component.
The fully populated matrix constructed and stored in
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polopt0 results in the highest memory consumption
of all four solvers. Both BETLdielectric as well as
gobem significantly reduce the amount of memory
required for the simulation, while polopt3’s memory
consumption is about a third less than polopt0’s.
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Fig. 3. Memory Requirements for GIS Component

3 Matrix Compression

Due to the fully populated matrix used in polopt0,
memory consumption is O(n2) with n being the num-
ber of unknowns in the model. Therefore, reducing
the amount of memory required for simulation is crit-
ical to be able to simulate increasingly complex mod-
els.

However, while the other solvers reduce the mem-
ory requirements, their parallel speedup is not com-
petitive to polopt0. Moreover, BETLdielectric and gobem
can currently not be used on a large number of cluster
nodes due to their parallelization structure.

As of now, polopt3, BETLdielectric, and gobem
are not suitable for the simulation of models that are
noticeably larger than the exemplary model in Fig. 1
as this would require using a high number of cluster
nodes and/or improved speedup.

We can significantly reduce memory consump-
tion through a localized data compression technique
whilst maintaining the parallelization scheme of polopt0

as explained in [1]. It is possible to store the individual
matrix rows in a compressed format and only decom-
press them on-the-fly when necessary. Compression is
done by combining consecutive values within a spec-
ified range and only store a single average value.

In case of the exemplary GIS component, this re-
duces overall memory consumption to about 60 GiB,
which is comparable to polopt3 but maintains the ben-
eficial properties of the original parallelization, espe-
cially with respect to speedup and uniform distribu-
tion of memory across cluster nodes.

The runtime overhead of compression and de-
compression is not significant (less than 5% in our
example). More detailed characteristics of memory
consumption, performance and influence on accuracy
will be presented in the extended version of this paper.

4 Conclusion

The new generation of BEM solvers shows significant
improvement in memory consumption and partially in
runtime performance. However, their parallel perfor-
mance does not yet allow to efficiently use them on
massively parallel computer architectures and solve
very large industrial models. Further research in this
area is required. Currently, matrix compression based
on the algebraic approach presented in section 3 can
mitigate the current memory limitations for industrial
applications.
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Summary. Starting from explicit Runge-Kutta (RK) meth-
ods, we propose high order explicit local time-stepping
(LTS) methods for the simulation of electromagnetic wave
phenomena. By using smaller time steps precisely where
smaller elements in the mesh are located, these LTS meth-
ods overcome the bottleneck in explicit time integration
caused by local mesh refinement, without sacrificing the ex-
plicitness, accuracy or efficiency of the original RK method.

1 Introduction

The evolution of a time-dependent electromagnetic
field E(x, t), H(x, t) propagating through a linear iso-
tropic medium is governed by Maxwell equations:

εEt = ∇×H−σE+ j, (1)
µHt = ∇×E. (2)

Here µ(x), ε(x) and σ(x) are positive, bounded, scalar
functions of position denoting the relative magnetic
permeability, the relative electric permittivity and the
conductivity of the medium, respectively, while the
source term j corresponds to the applied current den-
sity. We discretize (1)-(2) in space by using standard
edge finite elements (FE) with mass lumping or a
discontinuous Galerkin (DG) FE discretization, while
leaving time continuous. Either discretization leads to
a system of ordinary differential equations

y′(t) = By(t)+F(t), (3)

where the matrix B involves the inverse, M−1, of the
mass matrix M. Since M is essentially diagonal, its
inverse is explicitly known, and so is B.

Standard explicit numerical methods for the time
integration of (3) include explicit Runge-Kutta (RK)
and also Adams-Bashforth (AB) methods, whose time-
step, ∆ t, is dictated by the smallest elements in the
mesh. When mesh refinement is restricted to a small
region, using the small time-step ∆ t on the entire
computational domain is generally too high a price to
pay. In [1, 3, 4], multi-step based LTS methods were
proposed, which alleviate the geometry induced sta-
bility restriction by using smaller time-steps, but only
where the smallest elements in the mesh are located.

2 Runge-Kutta based LTS

Here we present explicit LTS methods of arbitrar-
ily high accuracy based either on explicit classical or
low-storage RK schemes [2]. In contrast to AB meth-
ods, RK methods are one-step methods; hence, they
do not require a starting procedure and easily accom-
modate adaptivity in time.

Starting from (3), we first split the vectors y and
F as

y(t) = (I−P)y(t)+Py(t) = y[c](t)+y[f](t), (4)

F(t) = (I−P)F(t)+PF(t) = F[c](t)+F[f](t). (5)

Here the entries of the diagonal matrix P, equal to
zero or one, identify the unknowns associated with
the locally refined regions, y[f].

Hence the exact solution of (3) is given by

y(tn +ξ ∆ t) = y(tn)+
∫ tn+ξ ∆ t

tn
By[c](t)+F[c](t)dt

+
∫ tn+ξ ∆ t

tn
By[f](t)+F[f](t)dt . (6)

To derive an LTS method that overcomes the strin-
gent stability conditions dictated by the smallest el-
ements in the mesh, we shall treat the fine elements
differently from the remaining coarser elements. In
doing so, we approximate the first integral in (6) by
a sufficiently accurate quadrature formula, where the
(unknown) values of y[c] at the quadrature points are
approximated by Taylor expansion. Differentiation of
the resulting expression then leads to a modified dif-
ferential equation, which is solved numerically from
tn to tn +∆ t by using a RK method with local time-
step ∆τ = ∆ t/p; here, p denotes the coarse to fine
aspect ratio. The resulting LTS-RK scheme has the
same high rate of convergence as the original corre-
sponding RK method.

To illustrate the usefulness of LTS-RK methods
we present numerical results in one and two dimen-
sions. We first consider the one-dimensional model
problem (1) and (2) with constant material properties
µ = ε = 1 and σ = 0.1 on the interval Ω = [0,6]. The
initial conditions and source term yield the exact so-
lutions

E(x, t) = −cos(t)sin(πx), (7)
H(x, t) = −π cos(t)cos(πx). (8)
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Fig. 1. One-dimensional example: computational domain
Ω = [0,6] with refined region Ω f = [2,4].

Fig. 2. LTS-RK4(p) error vs. h = hcoarse for nodal DG P3-
elements with p = 1, 3, 7, 13.

Next we divide Ω into three equal parts. The left
and the right intervals, [0,2] and [4,6], respectively,
are discretized with an equidistant mesh of size hcoarse,
whereas on the interval [2,4] the mesh size is chosen
as hfine = hcoarse/p. Hence, the two outer intervals cor-
respond to the coarse region and the inner interval to
the refined region, see Fig. 1.

We discretize (1)-(2) in space using nodal DG
P3-elements on a sequence of increasingly finer mesh-
es. For every time-step ∆ t, we shall take p ≥ 2 local
steps of size ∆τ =∆ t/p in the refined region, with the
fourth-order time-stepping scheme LTS-RK4(p). As
we systematically reduce the global mesh size hcoarse,
while simultaneously reducing ∆ t, we monitor in Fig.
2 the L2 space-time error in the numerical solution
‖E(·,T )− Eh,∆ t(·,T )‖L2(Ω) at the final time T = 1.
Regardless of the rate of local refinement p, we ob-
tain optimal global convergence of order 4.

In Fig. 4, a vertical Gaussian pulse initiates two
plane waves (with Gaussian amplitude) propagating
in opposite directions. As the right-moving wave pro-
ceeds, it impinges upon the obstacle; then, a fraction
of the wave penetrates the gap and generates a circu-
lar wave, which further interacts with the propagating
wave field. Since the typical mesh size inside the re-
fined region is about p = 7 times smaller than in the
surrounding coarser region, the LTS-RK method takes
p = 7 local steps of size ∆τ = ∆ t/p inside the refined
region, shown in Fig. 3.

Fig. 3. Zoom on refined part of the mesh.

Fig. 4. A Gaussian plane wave impinging upon a narrow
gap at time t = 0.7.
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Summary. Electrosimulative systems are used to improve
bone regeneration after fractures and during certain bone
diseases. To accelerate the bone regeneration after surgery
electrostimulation is implemented in a Total Hip Replace-
ment (THR). In this study a new multi-electrode setting for
the computational model of an electrostimulative hip stem
is compared to an optimized single-electrode setting. The
goal is to investigate the benefit of several electrodes pro-
viding sufficient stimulation fields without decreasing the
mechanical stability of the hip stem.

1 Introduction

The activating effect of electromagnetic fields on the
growth of bone cells is known since 1974 [1]. Numer-
ous stimulation techniques have been investigated,
which use high- and low-frequency electromagnetic
fields to enhance the regeneration of necrotic and frac-
tured bones [2]. At the University of Rostock, a low-
frequency electrostimulative hip revision system is
being developed to improve the mechanical stability
as well as the durability of the implant in the bone.
The system consists of two parts: the acetabular part,
which is placed in the pelvic bone and the femoral
part, which is placed in the thigh bone.

In former studies, design optimization of an elec-
trostimulative acetabular cup has been done using nu-
merical simulation [3] [4]. Promising results in first
validation tests have also shown potential to transfer
electrostimulation to the hip stem. Here the basic idea
is to modify a conventional uncemented straight hip
stem (Ti6Al4V) by milling a notch into both, the an-
terior and posterior, sides. The notch is filled with a
biocompatible insulator (e.g. ZrO2) and a thin stimu-
lating wire (Ti6Al4V) as first electrode. The hip stem
itself acts as second electrode. Thus, an electric field
is provided, which stimulates the growth of bone tis-
sue and thereby strengthen the osseous anchorage.

According to the method of Kraus, the electric
field lies within 5 and 70 V/m at a frequency of 20
Hz [5]. Emanating from the first electrode the electric
field on the electrically conducting hip stem decreases
rapidly with increasing distance. The insulator cannot
be arbitrarily enlarged, since bone tissue does not con-
nect well to the insulator and the mechanical stability
of the hip stem should not be neglected. Hence, the di-
mensions of the insulator and the first electrode have

to be optimized. In the present work, the electric field
distribution of a multi-electrode setting is investigated
and compared to an optimized single-electrode set-
ting.

2 Methods

For the simulation, the CAD model of a small (size
2), straight hip stem was modified. The first model
for the single-electrode setting included a notch with
insulator and a stimulative wire, while the second
model for the multi-electrode setting was designed
with two stimulative wires parallel positioned (Fig.
1). These models were inserted into the CAD model
of a porcine femur, which has been reconstructed
from CT scans. To stimulate electric fields distribu-
tion, the Finite Integration Technnique program CST
EM Studio R© is used. The electrical properties of the
biological tissues were taken form literature [6]. Due
to the substantially higher conductivity of the elec-
trodes compared to the biological tissue, it is approx-
imated by a perfect electric conductor (PEC) to min-
imize the computational effort. For the same reason,
the insulator is approximated by an ideal electric in-
sulator (Vacuum).

Furthermore, the stationary current solver of CST
EM Studio R© is used to solve Laplace’s equation.
Prior tests showed that the error of this solver is be-
low 0.5 % compared to a quasistatic solution at a
frequency of 20 Hz, while the computation time is
reduced substantially. A hexahedral mesh has been
chosen to benefit from CST EM Studio R©’s Enhanced
Fast Perfect Boundary Approximation. It is refined
in close proximity to the stimulation electrodes as
well as the implant-bone interface. The mesh was im-
proved by an additional adaptive mesh refinement,
which was used during the first simulations. The final
mesh for the multi-electrode setting and the single-
electrode setting consisted of 10.47 and 9.55 million
hexahedral mesh cells, respectively.

Using a single-electrode setting, the implant itself
acts as electrode (0 V) while in the multi-electrode
setting it is assigned with a floating potential. The
electric fields on the implant-bone interface strongly
depend on the potential and the dimensions of in-
sulator and electrodes as well as the distance be-
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Fig. 1. Isosurface of the electric field at 5 V/m for the elec-
trostimulative hip stem with a multi-electrode setting.

tween the two electrodes of the multi-electrode set-
ting. The first optimization was performed with a
single-electrode setting using the internal optimizer
of CST EM Studio R©. The optimization goals were
to keep the electric field at previously defined points
of interests above 5 V/m and below 70 V/m while
keeping the width of the insulator as small as pos-
sible. During the optimization process of the single-
electrode setting, the stimulation distance between the
isosurface at 70 V/m, which includes the overstim-
ulated area, and the isosurface at 5 V/m, which in-
cludes the stimulated area, was used to compare dif-
ferent configurations.

3 Results and Discussion

The final result of the single-electrode setting includes
a wire and an insulator, which exhibits a width of 1.45
mm and 1.40 mm, respectively. The stimulation po-
tential has been set to 0.17 V, which lead to a stim-
ulation distance of 4.83 mm. Compared to the initial
configuration with a potential of 0.2 V and a width
of 1 mm for both, the insulator and the electrode, this
is an improvement of 25 % while the general over-
stimulation has been reduced substantially. In con-
trast to this setting, the multi-electrode setting pro-
duces a more planar electric field. This can be seen
in Fig. 1, where the isosurface of the electric field at
5 V/m is shown. However comparing the measure-
ment points above the implant-bone interface it be-
comes obvious, that even without optimization nearly
the same area is as well stimulated as with the opti-
mized single electrode. Though the stimulation field
of the multi-electrode setting does not radiate into the
bone as deep as the electric field of one big electrode
which is assigned with a potential nearly twice as high
as one electrode of the multi-electrode setting, over-
stimulation has been further reduced.

For this proof of concept each stimulation elec-
trode as well as the insulator has a width of 1 mm.
The distance between both electrodes is 5 mm and

the stimulation potential is at 0.1 V and -0.1 V, re-
spectively. Compared to the single-electrode setting
the overall size of the insulator has been increased to 4
mm instead of 2.8 mm. Because this is the area where
bone tissue does not attach to the hip stem, the multi-
electrode setup cannot be recommended without fur-
ther optimization. Nevertheless especially for bigger
revision hip stems this will be necessary to cover the
whole anterior and posterior sides of the implant with
a sufficient electric field.

Another issue is the mechanical stability. The small
hip stem passed a numerical static strength analysis
for fatigue failure with a notch of 3 mm width. The
optimized single-electrode setting requires a notch
with a width of 4.25 mm, while the multi-electrode
arrangement even requires two notches. All settings
have to be approved by further fatigue analysis. If the
improved implant fails, the optimization has to be re-
peated with an increased weight at the optimization
goal to reduce the size of the insulator. For this reason
the next step is to optimize the multi-electrode setting
using a multidimensional approach to find a Pareto-
amount of configurations as it has been done in [4]. In
this way it would be possible to directly select optimal
electrode configurations by focusing on the width of
the insulator.
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Summary. The influence of an inclined rotor mounting of
a synchronous machine on the electromotive force is stud-
ied. The 3D structure of the rotor is divided into 2D slices.
The positions of the bearings are stochastic parameters and
determine the position of the centre of the rotor in each
slice. The stochastic moments of the electromotive force are
efficiently determined by evaluating a spline interpolation
of these quantities by using 2D finite element simulations.

1 Introduction

During the production of permanent magnet synchro-
nous machines (PMSMs), manufacturing tolerance
may lead to a (not necessarily equal) eccentric mount-
ing of both bearings. This causes a static, inclined
eccentricity of the rotor shaft (Fig. 1). A straightfor-
ward simulation would involve a stochastic 3D model,
which would be prohibitly expensive for this appli-
cation. Even a so-called quasi-2D model [1] consid-
ering a number of slices distributed along the axis,
each with a rotor position depending on the uncertain
mounting of both bearings and the axial position of
the slice, would be computationally inefficient. The
main idea of this paper is to precompute machine per-
formance parameters as a function of an uncertain ro-
tor position and upscale the stochastic results in order
to come to a prediction of the machine’s performance
for an eccentric, possibly inclined rotor mounting.

x

z

computaional 
xy-plane

stator

airgap

bearing rotor

inclination angle

Fig. 1. Inclination due to imperfections of bearings

The considered PMSM has six poles and sur-
face mounted magnets [2]. A 2D finite-element (FE)
model is built such that a topologically identical mesh

is maintained for each stochastic rotor position. The
FE solution for the magnetic vector position is post-
processed for the electromotive force (EMF) induced
in the stator windings and the total harmonic distor-
tion (THD).

2 Uncertain, Inclined Rotor Model

The uncertainty handled here are the positions of the
two bearings supporting the rotor. The eccentricity of
each bearing is expressed in polar coordinates with re-
spect to the coordinate system attached to the nominal
position of the rotor, i.e. the centre of the stator. The
radii R1,R2 and the azimuths θ1,θ2, with the techni-
cal assumption that R(ω),θ(ω)∈ L2(Θ ,Σ ,P), are in-
dependent random variables on the probability space
(Θ ,Σ ,P). Engineering expertise suggests that R has a
gaussian distribution and θ a uniform distribution,

R1,R2 ∼N (0,σ2) and θ1,θ2 ∼U (0,
π

3
), (1)

where the standard deviation σ = 0.067mm has been
chosen such that 3σ corresponds to 0.2mm. During
the post-processing the symmetry of the model is ex-
ploited to reduce the random space.

3 Description

PMSMs are sufficiently described by the magneto-
static formulation of the Maxwell’s equations. This
means that eddy and displacement currents can be
omitted. One obtains the elliptical PDE

∇× (ν(ω)∇×A(ω)) = Jsrc−∇×Hpm, (2)

with Dirichlet boundary conditions and where ω de-
notes the dependency on the stochastic parameters. A
is the magnetic vector potential, ν the reluctivity of
the material, Jsrc is the source current density and Hpm
is the coercitivity of the permanent magnets.

Discretizing with edge shape functions and us-
ing the Galerkin approach one retrieves the system of
equations of the form Kν(ω)u(ω) = jsrc + jpm where
the respective terms follow from discretizing the cor-
responding terms of (2), e.g. [3, 4]. Here, u(ω) repre-
sents the discrete degrees of freedom of A.
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To determine the induced voltage the loading meth-
od is used [5]. In this method the d- and q-components
of the magnetic flux are calculated by performing a
Fourier analysis of A on a contour located in the air-
gap.

4 Uncertainty Quantification

A 17×13 tensor grid of the [R,θ ] space is constructed
to enable a spline-interpolation over the full domain
(the black points in Fig. 2). This means that a 2D sim-
ulation is only performed on each grid node. By using
a Monte Carlo approach the positions of the two bear-
ings are determined (respectively the green and the
red point in Fig. 2). The inclined rotor axis is com-
puted to integrate the EMF along that axis. Along
a path over the interpolated surface (blue points in
Fig. 2), the EMF is calculated by integrating the cor-
responding path. In total 1000 paths are generated by
the inbuilt tools of MATLAB R© and analysed in this
way.

0
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Fig. 2. The black points show the grid used for the inter-
polation. The blue points is the path along which the EMF
is evaluated. The green point depicts the starting point (po-
sition of the frontal bearing) and the red point depicts the
endpoint (position of the bearing at the back).

The same principle is applied to determine the
THD of the inclined rotor. By obtaining the harmonic
spectrum of the model for each gridpoint, the THD
can be calculated in each point by

THD(ω) =
∑

∞
p=2 |Ep(ω)|2

|E1(ω)|2
, (3)

where p represents the order and Ep the EMFs.

5 Results

The computed expectation values for the EMF and
THD are respectively 47,439V and 3,884 ·10−3 %.
The standard deviations are respectively 0,006V and
5 ·10−6 %.

The expectation values are in good agreement
with previous Monte Carlo results in which the influ-
ence of a common eccentric rotor position for every
slice is studied [6]. The standard deviations for both
quantities are however smaller. The former model cor-
responds to more pessimistic scenarios. These are
rather unlikely in the model discussed in this paper,
due to the gaussian distribution of the mounting of
the bearings.

6 Conclusion and Prospects

By using standard numerical techniques (spline in-
terpolation and Monte Carlo simulations) the influ-
ence of an inclined rotor position on the electromotive
force and the total harmonic distortion is studied. The
3D model is reduced to a set of 2D models by divid-
ing the rotor in a set slices on which the calculations
are then performed.

Future work will contain a comparison to real 3D
calculations and dynamic eccentricity. Also the influ-
ence on the force and torque exerted on the rotor will
be studied.
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Summary. The aim of this paper is to incorporate the
stochastic collocation method (SCM) into a topology op-
timization for a permanent magnet (PM) synchronous ma-
chine with material uncertainties. The variations of the non-
/linear material characteristics are modeled by the Polyno-
mial Chaos Expansion (PCE) method. During the iterative
optimization process, the shapes of rotor poles, represented
by zero-level sets, are simultaneously optimized by redis-
tributing the iron and magnet material over the design do-
main. The gradient directions of the multi-objective func-
tion with constraints, composed of the mean and the stan-
dard deviation, is evaluated by utilizing the continuous sen-
sitivity equation approach and the SCM. The stochastic col-
location method with the PCE combined with the level set
method yields designs by using already existing determin-
istic solvers. Finally, a two-dimensional numerical result
demonstrates that the proposed method is robust and effec-
tive.

1 Introduction
Nowadays, permanent-magnet (PM) machines have
become more popular due to their attractive features
such as a high performance, efficiency, and power
density. Therefore, they have found a broad use in in-
dustrial applications such as robotics, computer pe-
ripherals, industrial drivers or automotive industry.
However, the torque ripple that comes mainly from
the motor design, results in mechanical vibrations,
acoustic noise and problems with the speed control
in drive systems [1]. Thus, such an undesired cogging
torque (CT) needs to be minimized.

In this paper, we focus on designing a PM ma-
chine, as the machine topology itself is a major con-
tributor to the electromagnetic torque fluctuation. Be-
cause the result of the design procedure is strongly af-
fected by the unknown material characteristics [2], the
uncertainties in modeling the soft ferromagnetic ma-
terial are taken into account. In some applications [3],
especially the relative permeability of the magnetic
material itself should be accounted to model more ac-
curately the magnetic flux density of permanent mag-
nets. This parameter is also in our model assumed as
uncertain.

The novel aspect of the proposed method is the
incorporation of stochastic modeling into the topol-
ogy optimization method for the low cogging torque
(CT) design of an electric controlled permanent mag-

net excited synchronous machine (ECPSM), shown in
Fig. 1.

Fig. 1. Cross-section of ECPSM with the surface-mounted
PM rotor and stator structure exhibiting the three-phase
windings with the fixed excitation control auxiliary coil [1].

2 Stochastic forward problem
Let υυυ : Ω → Π ⊆ Rq denotes the random reluctiv-
ity υυυ (ξ ) = (υ1(ξ ), ...,υq(ξ )) defined on some prob-
abilistic space (Ω ,F ,P), where υi are independent.
The direct problem is governed by the stochastic PDF
on Ω ⊂ R2 with the periodic BC:

∇ ·
(

υυυ(x, |∇A|2 ,ξ )∇A−υυυPM(ξ )Br

)
= J.

Here, A and Br denote the vector potential and the
remanent flux density of the PM, while J is the forced
current density. We express A in the truncated PCE

as A(t,υυυ) =
K
∑

i=0
vi (t)ϕi (υυυ) with the unknown a priori

coefficients vi and the polynomial basis (ϕk)k∈N. In
order to calculate vi the SCM is used [4], where the
solution of the deterministic problem is computed at
each quadrature grid point υυυk, k = 0, . . . , K. Then, the
PCE of A are computed by using a multi-dimensional
quadrature rule with corresponding weights wk:

vi(t) := 〈A(t, υυυ) , ϕi(υυυ)〉 ≈
K
∑

k=0
wkA

(
t, υυυk

)
, ϕi(υυυ

k).

Then, the first moments are given as:

E [A(t, υυυ)] = v0(t), Var [A(t, υυυ)] =
K
∑

k=1
|vk(t)|2.

3 Robust topology optimization
The problem of the low CT design of the ECPSM is
solved using the modified level set method with total
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variation regularization (TV) [1,5]. Let φφφ (x) signifies
the signed distance functions, which describes the in-
terfaces Γj ( j =1,2) between different regions. 1Then,
the following cost functional is minimized:

F (υυυ(φφφ ,ξξξ )) =
∫
Ω

h(∇A(υυυ(φφφ ,ξξξ )))dx+
∫
Ω

|∇υυυ(φφφ ,ξξξ )|dx,

(1)
which is subjected to the constraint

G(υυυ(φφφ ,ξξξ )) =
∫
Ω

g(A(υυυ(φφφ ,ξξξ )))dx. (2)

Here, the first term of (1) represents the CT, while
the second one refers to the TV regularization. The
function G(υυυ(φφφ ,ξξξ )) describes the back electromotive
force (the back-EMF). To calculate the total derivative
of (1) and (2), at least two dual systems should be
defined:

∇ ·
(

υυυ(x, |∇A|2 ,ξ )∇A−υυυPM(ξ )Br

)
=ϒ

∗
F/G (A) ,

where ϒ ∗F (A) and ϒ ∗G (A) denote the associated linear
operators [6]. Using the expectation and variance, the
stochastic optimization problem defined by (1) and
(2) can be approximated by:

min
υυυ

: E [F(υυυ)]+κ1
√

Var [F(υυυ)]

s.t. : K
(
υυυk
)

Ak = fk, k = 0, ...,K,

E [G(υυυ)]+κ2
√

Var [G(υυυ)]< τ,
υmax j ≤ υ j ≤ υmin j, j = 1,2,

(3)

where κ1, κ2 and τ are prescribed parameters and K
denotes stiffness matrix.

4 Preliminary results
The initial configuration of the ECPS machine is de-
picted in Fig 2. The quantities that are taken subject

Fig. 2. Initial topology of the ECPSM.

to variations are the reluctivity of the iron pole and
the PM pole both with the variation 10%. Also the
permeability of the air-gap is assumed to be uncertain
(10%). The random parameters are modeled by uni-
form distributions. For stochastic modeling the PCE
with Legendre basis and the Stroud 5 formula in the
SCM are used. The optimized rotor poles are shown
in Fig. 3. For the optimal configuration the CT is cal-
culated over a half of the period to assess the stator
teeth interaction with the rotor poles, shown in Fig. 4.

1 υ j (x,ξ ) = H (φ(x))υ j,1 (ξ )+ [1−H (φ(x))(ξ )]υ j,2

Fig. 3. Optimal topology of the ECPSM.

The applied methodology allows to reduce effi-
ciently the CT about 60%, and improve the back-EMF
waveform. This paper also highlights the unique de-
sign challenges of the proposed methodology.

Fig. 4. The mean and the standard deviation of the CT be-
fore and after optimization.
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Summary. A recently proposed eigensolver for nonlinear
eigenvalue problems is tested. The formulation arises from
electromagnetic cavities which are externally coupled to
hollow waveguides. The solver is capable to find all eigen-
modes within a certain region of the complex spectrum.

1 Introduction

Within the area of computational electrodynamics,
nonlinear eigenvalue problems may occur with sev-
eral setups: Resonators containing dispersive (i.e. fre-
quency dependent) materials [1], lossy periodic struc-
tures [2] and setups with transparent boundary con-
ditions [3, 4]. One common way to deal with non-
linear eigenvalue problems of large-sparse matrix di-
mensions is the linearization near an educated guess
of the target eigenvalue [4]. Alternatively, Jacobi-
Davidson algorithms can be applied to the polynomial
eigenproblem, where again a linearization is used to
solve the low-dimensional projected eigenvalue prob-
lem [1, 5].

An integral eigenvalue solver for the nonlinear
eigenvalue problem was recently proposed which is
capable to compute a few eigenvalues from sparse
matrices with large dimension [6]. Making use of the
theorem of Keldysh the proposed algorithm allows for
the computation of all eigenvalues which lie inside a
predefined contour in the complex plane. The advan-
tage is that no linearization is necessary, and the com-
pleteness of the set of eigenvalues in certain region of
the complex plane can be guaranteed.

2 Eigenvalue Formulation with
Waveguide Ports

The discrete Maxwell’s eigenvalue problem is set up
in the framework of the finite integration technique
(FIT). The Maxwell grid equations can be written in
frequency domain for possibly dispersive materials,
neglecting currents, as

C_e =−iωMµ(ω)
_
h, CT _

h = iωMε(ω)_e, (1)

where C∈RN×N is the topological curl-operator con-
sisting of entries with {−1;0;1}. For the basics and
notation of FIT see [7].

The eigenvalue formulation which allows for mod-
eling of outgoing waves through waveguide ports can
be derived as

(−ω
2Mε + iωBP(ω)BT +CT Mµ−1C)_e = 0. (2)

The expression BP(ω)BT models the coupling to ex-
ternal waveguides: The column matrix B contains the
modal field pattern in the waveguides’ cross-section
at the boundary of the computational domain, and the
diagonal matrix P contains normalization coefficients
for the generalized impedances [3, 8]. There is one
column in B and one entry in P for each mode (index
m) in each of the ports. Exemplarily, for TE modes
the entries of P read

pm,m(ω) =
√

ω2−ω2
c,m

/
ω

√
1− (ωc,m/ω0,m)2

(3)
where ωc,m is the cutoff frequency and ω0,m is the ref-
erence frequency. While the neglection of waveguide
ports in (2) would lead to a linear eigenvalue problem,
the consideration of those ports renders the eigenvalue
problem nonlinear. A similar formulation is reported
for an FE approach in [9].

The nonlinear eigenvalue solver proposed in [6] is
implemented in Matlab straight forwardly. The most
important parameter besides the size and location of
the closed contour Γ in the complex plane is the sam-
pling by N parts of the contour for the numerical in-
tegration. For each of these N parts a linear system
of full dimension has to be solved for a number of d
right hand side vectors, where d is the dimension of
a test subspace. This defines the major computational
effort of the algorithm.

3 Numerical Example

The numerical test example is a simple rectangular
waveguide with a dielectric inset, dividing the lon-
gitudinal direction in three parts. It supports trapped
modes with radiation through the port apertures. The
discretized problem by means of the finite integration
technique leads to 31840 unknowns. The dimensions
as well as the parameters of the waveguide port and
the computational mesh can be found in Table 1.
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Table 1. Data of the test example.

Waveguide 1st Mode Computational Mesh

22.86×10.16 mm2 TE 21×10×64 lines
length 100 mm fc = 6.5 GHz 2× symmetry
8.5 mm slab, εr = 12 2 ports

4 Results

Figure 1 shows the user-chosen closed contour Γ

around some mid-point (x) and computed eigenval-
ues (*). Trapped eigenmodes can be identified in the
complex ω-plane by a very low imaginary part corre-
sponding to a very high quality factor. For the highest
resolution Γ was sampled by N = 170 points in or-
der to integrate by means of the trapezoidal rule [6].
Five eigenvalues appear within Γ and Fig. 2 shows
that the residual norm is below 10−10 for N = 170.
Moreover, for low sampling resolutions of Γ some

5.5 6 6.5 7
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x 10
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ℜ {ω}

ℑ
{ω

}

N=170

Fig. 1. Closed contour Γ around mid point (×,red) in the
complex plane. Five eigenvalues (*) can be calculated when
Γ is integrated with 170 samples.

additional eigenvalues may appear, which are not in-
side Γ (seven eigenvalues for sampling rates N = 40
to N = 110). Of course, these can easily be dropped
by a simple a posteriori check. For very coarse sam-
plings the residuals increase by some orders of magni-
tudes. The drawback of the finer resolution of Γ is an
increased computation time as the diagram in Fig. 3
suggests.

5 Conclusions

The results from first numerical experiments with the
integral nonlinear eigenvalue solver look promising:
All expected eigenvalues can be computed, however
the computational effort is high. Further improve-
ments could be achieved by various modifications of
the basic algorithm such as preconditioning or a smart
control of residual errors.
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Fig. 2. Residual norm of the computed eigenvalues with in-
creasing resolution of the integration path Γ .
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Fig. 3. Computation times for different N.
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8. O. Farle, M. Lösch, and R. Dyczij-Edlinger. Efficient
fast frequency sweep without nonphysical resonances.
Electromagnetics, 30(1-2):51–68, 2010.

9. W. Ackermann and T. Weiland. High precision cavity
simulations. In Proceedings of the 11th International
Computational Accelerator Physics Conference, pages
43 – 47, 2012.

86



SCEE 2014 – Wuppertal, Germany Thursday, July 24, Poster 87

On several Green’s function methods for fast Poisson solver in free space
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Summary. We summarize four closely related numerical
methods for Poisson’s equation in free space: Green’s func-
tion method, integrated Green’s function method, reduced
integrated Green’s function method, and cutting integrated
Green’s function method. A new and finial routine called
cutting reduced Green’s function method is carried out re-
cently as well. These methods can be used for different prac-
tical problems to accelerate the calculation. Numerical test
results are also given to compare.

1 Introduction

Poisson’s equation is broadly used in many areas,
such as electrostatics, mechanical engineering and
theoretical physics - for instance in beam dynam-
ics simulations in particle accelerators. The Poisson’s
equation in free space plays a very important role in
the calculation of space charge effects. The common
way to solve this equation is to use the convolution
of the density of charged particles and Green’s func-
tion in free space, known as Green’s function method.
However, the numerical calculation may suffer from
errors in some cases such as a very long cigar-shape or
short pancake-shape bunch. Integrated Green’s func-
tion is especially invented for such issue, that deals
with analytical integration rather than a numerical in-
tegration. However, the computation is involved and
time-consuming so that parallel computers are needed
for efficiency.

We present some appropriate methods as accu-
rate as the IGF method yet costing less CPU time for
different practical problems. In general, the reduced
integrated Green’s function (RIGF) method, which
is suitable in all problems calculating by IGF - for
instance the near-bunch field calculation. While the
cutting (integrated) Green’s function (CIGF) method,
which benefits far-bunch field calculation efficiently.
A further new method, cutting reduced integrated
Green’s function (CRIGF) method can accelerate the
calculations even more. This routine can also be used
in other Poisson solver code to improve efficiency.

2 Green’s function type methods

Regard Poisson’s equation:

−∆ϕ(x,y,z) =
ρ(x,y,z)
ε0

, in Ω ⊂ R3, (1)

with the Laplace operator ∆, the electric potential ϕ,
the charge density ρ, the permittivity in vacuum ε0
and the considered domain Ω.

The solution in free space [2] reads as:

ϕ(x,y,z) =
1

4πε0
·$

ρ(x′,y′,z′)G(x, x′,y,y′,z,z′)dx′dy′dz′, (2)

with Green’s function

G(x, x′,y,y′,z,z′) =
1√

(x− x′)2 + (y− y′)2 + (z− z′)2
.

(3)
The different Green’s function methods discretize

the integral Eq.(2) in different ways.

2.1 Green’s function (GF) method

GF integral: With the well-known midpoint rule for
the numerical integral in Eq.(2), the discretized GF
formula [1] is given by

ϕ(xi,y j,zk) ≈
hxhyhz

4πε0
·

Nx∑
i′=1

Ny∑
j′=1

Nz∑
k′=1

ρ(xi′ ,y j′ ,zk′ )G(xi, xi′ ,y j,y j′ ,zk,zk′ ).(4)

However, this often used Green’s function method
is not accurate enough in some cases [2]. Therefore
new numerical integrals are studied as:

ϕ(xi,y j,zk) ≈
1

4πε0
·

Nx∑
i′=1

Ny∑
j′=1

Nz∑
k′=1

ρ(xi′ ,y j′ ,zk′ )G̃(xi, xi′ ,y j,y j′ ,zk,zk′ ),(5)

where the G̃(xi, xi′ ,y j,y j′ ,zk,zk′ ) will be introduced in
the following subsections.

2.2 Integrated Green’s function (IGF) method

IGF integral: With the summation of integrals for
Green’s function over each grid cell [xi−

hx
2 , xi +

hx
2 ]×

[y j−
hy
2 ,y j +

hy
2 ]×[zk−

hz
2 ,zk +

hz
2 ], the IGF integral for-

mula is calculated from the Green’s function in Eq.(3)
like :
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G̃I(xi, xi′ ,y j,y j′ ,zk,zk′ ) =

∫ xi′+hx/2

xi′−hx/2

∫ y j′+hy/2

y j′−hy/2∫ zk′+hz/2

zk′−hz/2
G(xi, x′,y j,y′,zk,z′)dx′dy′dz′. (6)

This integral can be calculated from the primitive
function (antiderivative) of Eq.(3) derived by MA-
THEMATICA, its formal expression can be found
in [3].

However, the calculation of the IGF integral is
very involved and time consuming. Therefore the other
type Green’s function integrals are introduced for dif-
ferent purposes.

2.3 Reduced integrated Green’s function (RIGF)
method

If the required field domain just covers the charged
bunch, the RIGF integral [4] is recommended for high
efficiency.

RIGF integral:

G̃R(xi,y j,zk) ={
G̃I(xi,y j,zk), (1,1,1) ≤ (i, j,k) ≤ (Rx,Ry,Rz);
hxhyhzG(xi,y j,zk), otherwise;

where (Rx,Ry,Rz) should be determined firstly.
A very long cigar-shape uniform ellipsoidal beam

is taken as the test example. The result shown as Ta-
ble(1), where, the η̂ϕ and η̂E stand for the relative er-

Table 1. Comparison of IGF and RIGF

N η̂ϕ η̂E IGF Time
32 0.0239 0.0500 2.7158 s
64 0.0032 0.0212 18.0722 s

128 0.0012 0.0140 77.7485 s

η̂ϕ η̂E RIGF Time
0.0242 0.0501 0.3525 s
0.0031 0.0212 2.2570 s
0.0013 0.0140 15.6330 s

rors of potential and norm of the corresponding elec-
tric field, respectively. In principle, the RIGF integral
is a mixed GF and IGF integrals.

2.4 Cutting integrated Green’s function (CIGF)
method

If the required field domain is much larger than the
charged bunch, the CIGF integral [5] is recommended
for high efficiency.

CIGF integral:

G̃C(xi,y j,zk) ={
G̃I(xi,y j,zk), (1,1,1) ≤ (i, j,k) ≤ (Cx,Cy,Cz);
0, otherwise;

where (Cx,Cy,Cz) is determined by the domain-bunch
ratio. The large area with zero charge density guaran-
tees the CIGF exactitude.

Table 2. Comparison between IGF and CIGF

N η̂ϕ η̂E IGF Time CIGF Time
32 0.0587 0.0619 1.5175 s 0.6233 s
64 0.0130 0.0334 10.1015 s 3.6115 s

128 0.0045 0.0290 78.5222 s 27.6219 s

An ideal uniform ellipsoidal beam is taken as the
test example. The results are shown in Table(2). In
principle, the CIGF integral is equal to IGF integrals,
when the field domain is much larger than the charged
domain.

3 Cutting reduced integrated Green’s
function (CRIGF) method

Furthermore, the combination of RIGF and CIGF as
the CRIGF should be more efficient than pure CIGF
for the same problem.

G̃CR(xi,y j,zk) =
G̃I(xi,y j,zk), (1,1,1) ≤ (i, j,k) ≤ (Rx,Ry,Rz);
hxhyhzG(xi,y j,zk), (Rx,Ry,Rz) ≤ (i, j,k) ≤ (Cx,Cy,Cz);
0, otherwise;

where (Cx,Cy,Cz) and (Rx,Ry,Rz) are chosen as above.
For the same example as CIGF method, the results

are shown in Table(3).

Table 3. Comparison of CIGF and RCIGF

N η̂ϕ η̂E CIGF Time
32 0.0587 0.0619 0.6233 s
64 0.0130 0.0334 3.6115 s

128 0.0045 0.0290 27.6219 s

η̂ϕ η̂E CRIGF Time
0.0587 0.0619 0.2231 s
0.0130 0.0334 0.6857 s
0.0044 0.0292 5.8347 s

In all, the CRIGF method can be chosen as a rou-
tine for any Poisson solver code for various practical
problems coming from different disciplines.
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Summary. This work addresses bifurcation phenomena in
nonlinear circuits. Our analysis is focused on quadratic turn-
ing points, which, in certain circumstances, yield saddle-
node bifurcations. Algebraic conditions guaranteeing the
existence of this kind of points are well-known in the con-
text of explicit ODEs [3, 7, 8]. We firstly adequate these
conditions to semiexplicit DAEs, which naturally accom-
modate nonlinear circuit models. Afterwards, we analyze
these reformulated conditions in terms of the circuit topol-
ogy and the devices’ characteristics.

1 Introduction

Bifurcation theory plays a key role in the qualita-
tive analysis of dynamical systems. In nonlinear cir-
cuit theory, bifurcations of equilibria describe quali-
tative changes in the local phase portrait near an op-
erating point, and are important from both an ana-
lytical and a numerical point of view. In this work
we address a systematic characterization of local bi-
furcations in circuit-theoretic terms; specifically, we
analyze quadratic turning points, eventually yielding
saddle-node bifurcations under additional conditions.
Our goal is to arrive at a description of the alge-
braic conditions characterizing these turning points in
terms of the underlying circuit digraph and the de-
vices’ characteristics.

2 Quadratic turning points

Consider the system of differential equations

x′ = f (x,µ) (1)

with x ∈ Rn, f sufficiently smooth and depending
on a parameter µ ∈ R. Provided that f (x∗,µ∗) = 0,
(x∗,µ∗) is called a quadratic turning point of (1) if
the conditions 1-3 below are satisfied [3]. We denote
by v (resp. w) a non-vanishing right (resp. left) eigen-
vector of the matrix of partial derivatives Dx f (x∗,µ∗).

1. rk Dx f (x∗,µ∗) = n−1;

2. wDµ f (x∗,µ∗) 6= 0;

3. wDxx f (x∗,µ∗)(v,v) 6= 0.

With terminological abuse, we will often use the ex-
pression “turning point” to mean a “quadratic turning
point”.

If, additionally,

4 the algebraic multiplicity of the null eigenvalue
of Dx f (x∗,µ∗) is one; and

5 the remaining eigenvalues of Dx f (x∗,µ∗) have
non-zero real parts,

then (x∗,µ∗) is called a saddle-node bifurcation point,
because the system undergoes a saddle-node bifurca-
tion as µ crosses µ∗ [4, 5, 7, 8].

Our purpose in this work is to provide a circuit-
theoretic analysis guaranteeing that conditions 1-3
above are satisfied. Condition 1 means that Dx f (x∗,µ∗)
has a zero eigenvalue with geometric multiplicity one.
Condition 2 can be equivalently written as

Dµ f (x∗,µ∗) /∈ im Dx f (x∗,µ∗)

and also as

rk D f (x∗,µ∗) = n, (2)

where D f is the full matrix of partial derivatives of
f , that is, D f = (Dx f Dµ f ). Equation (2) implies
that f (x,µ) = 0 describes a curve of equilibria locally
around (x∗,µ∗); it is not difficult to check that this
curve is tangent to the hyperplane µ = µ∗. Finally,
condition 3 can be recast as

Dxx f (x∗,µ∗)(v,v) /∈ im Dx f (x∗,µ∗) (3)

and in turn this expresses a transversality condition
(in the hyperplane µ = µ∗) between the so-called sin-
gular manifold, defined by detDx f (x,µ∗) = 0, and the
space kerDx f (x,µ∗).
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3 Semiexplicit DAEs and circuit models

Characterizing in circuit-theoretic terms conditions 1-
3 above is a two-fold purpose. First, one has to re-
formulate such conditions in terms of a differential-
algebraic equation (DAE), which is the feasible form
available in practice for a nonlinear circuit model.
Second, the conditions must be reformulated in terms
of the underlying digraph and the devices’ character-
istics.

The natural form of a circuit model is a semiex-
plicit DAE, namely

x′ = g(x,y,µ) (4)
0 = h(x,y,µ) (5)

with x ∈ Rn, y ∈ Rm, µ ∈ Rl ; g and h are sufficiently
smooth. We will only consider systems with a scalar
parameter (l = 1). It will be assumed that (x∗,y∗,µ∗)
is an equilibrium point, and the first requirement we
will impose on this system is the nonsingularity of
Dyh(x∗,y∗,µ∗). This (index-one) condition [2] makes
it easier to reformulate the turning point conditions in
DAE terms.

Our analysis will be based on the use of branch-
oriented circuit models [6], defined by

C(vc)v′c = ic (6)

L(il)i
′
l = vl (7)

0 = Bcvc +Blvl +Bgvg +Brvr +Buvu +B jv j (8)

0 = Acic +Al il +Agig +Arir +Auiu +A ji j (9)

0 = ig− γ(vg) (10)

0 = vr−η(ir), (11)

where we denote the branch voltages by v, the cur-
rents by i, and use the subscripts c, l, g, r, u and j
to reference capacitors, inductors, voltage-controlled
resistors, current-controlled resistors, voltage sources
and current sources, respectively. The attention is re-
stricted to autonomous problems and therefore vu and
i j are assumed to take on constant values defined by
DC sources.

Kirchhoff laws, corresponding to equations (8)
and (9), are expressed in terms of the incidence matrix
A and a reduced loop matrix B of the underlying di-
graph (cf. e.g. [1]). Each column in matrices A and B
is linked with a branch in the circuit. The rank of cer-
tain submatrices of A and B depends on the presence
or absence of certain topological structures (loops and
cutsets) in the indexed branches; therefore, the impo-
sition of the algebraic conditions discussed in Section
2 entails certain configurations of the circuit devices.
The attention in a first step will be focused on prob-
lems in which a given nonlinear resistor (e.g. a diode)
enters a locally-active region (for instance because of
a tunneling effect), assuming that the remaining de-
vices are strictly locally passive. This setting makes it
possible to characterize conditions 1-3 of Section 2 in
circuit-theoretic terms.

The results are of potential interest in numerical
continuation techniques directed to nonlinear circuit

dynamics. They should also pave the way for a fu-
ture analysis of other bifurcation phenomena, involv-
ing not only saddle-node points but also for instance
Hopf or Takens-Bogdanov bifurcations.
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Summary. We present a two-dimensional boundary inte-
gral formulation coupled with a second-order time evolu-
tion scheme to model Hodgin-Huxley nerve impulse time
propagation.

1 Introduction

Stimulation of nerve fibers through external electrodes
is widely used in several clinical procedures, hence
the interest in modeling such phenomena. Boundary
integral–based formulations such as the one proposed
by Leon et al. [1] couple the Hodgkin–Huxley (H–
H) model [2] to a membrane potential assumed to be
constant. Ying et al. [3] propose a FEM formulation in
which a non-zero thickness nerve is considered with
external stimuli set as constant electric fields. The
proposed FEM is decoupled from the time evolution
equations allowing to solve both sub–problems inde-
pendently. This reduces stability and requires small
time steps with huge computational requirements for
a single axon. Nonetheless, the authors show that time
response around the surface of the axon changes, thus
discarding Leon et al’s hypothesis.

We aim at reducing computational effort for sys-
tems by using the so-called Multiple Traces Formu-
lation (MTF) [4], coupled to the H–H model through
a second order accuracy time stepping method allow
us to obtain an excellent overall performance with a
much reduced number of unknowns.

2 Single axon formulation

Consider a trasverse cut of an axon, denoted by Ωi,
with cellular membrane Γ and extracellular space
Ωe := R2 \ Ω̄i, with conductivities σi and σe, respec-
tively. The membrane is modeled as a zero-thickness
interface. Set φe as an electrical potential defined in
the extracellular space such that ∆φe = 0 over Ωe. The
potential φe plays the role of the extracellular excita-
tion. Define ui and ue over Ωi and Ωe such that

ui := u in Ωi, (1)
ue := u−φe in Ωe and (2)
|ue| ∼ ||x||−1 as ||x|| → ∞ (3)

The volume problem is to seek ui and ue satisfying

∆uα = 0 in Ωα , α ∈ {i,e} (4)
ui−ue = v+φe on Γ (5)

ni · (σi∇ui)+ne · (σe∇ue) =

−ne · (σe∇φe) onΓ (6)

wherein ni and ne denote inner and outer normals to
Γ . Transmembrane current i =−ni ·(σi∇ui) and volt-
age v evolve in time following H–H equations. Let
iion(vm,q) be the ionic current flowing across Γ , cm
the membrane capacitance per unit area, and q a vec-
tor of state variables. Then, the H–H system can be
written as

cm
∂v
∂ t

= i− iion(v,q) on Γ and t > 0, (7)

∂q
∂ t

= M (v,q) on Γ and t > 0. (8)

v(0) = v0 on Γ (9)
q(0) = q0 onΓ (10)

The overall problem is to find v over Γ and as a func-
tion of the time variable t satisfying equations (4)–(6)
and (7)–(10).

2.1 Multiple Traces Formulation

For a given v, (4)–(6) can be rewritten in terms of
Boundary Integral Operators (BIOs) over Γ . Func-
tions uα , α ∈ {e, i}, satisfy the interior Calderón pro-
jector identities(

uα

∂α uα

)
=

( 1
2 I−Kα Vα

Dα
1
2 I+K′α

)(
uα

∂α uα

)
on Γ ,

where ∂α uα = nα ·∇uα . Set Πα := (uα |Γ ,∂α uα)
>,

Λ := (v,0)>, and

Aα :=
(
−Kα Vα

Dα K′α

)
, Xσ :=

(
Id 0
0 −σe

σi
Id

)
.

Following the MTF, (4)–(6) can be rewritten as

(
Ae − 1

2X
−1
σ

− 1
2Xσ Ai

)(
Πe
Πi

)
=

1
2

(
−(Φ +Λ)
Xσ (Φ +Λ)

)
(11)
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2.2 Time stepping method

For Nt ∈ N, let Π t = {tn}Nt

n=0 be a uniform partition
of [0,T ] such that tn = nτ , where τ = T/Nt . Also, we
define tn+1/2 = tn + τ/2. For a given time–dependent

quantity φ , define φn = φ(tn) and φ̂ n+1/2 = 3φn−φn−1

2 .
Following Ganesh & Mustapha [5], the time-discrete
representation of (11) and (7)–(10) is Ae − 1

2X
−1
σ (1/4,0)>

− 1
2Xσ Ai (−1/4,0)>

(0,0) (0,σi)
cm
τ

 Πe
Πi

vn+1

=

 − 1
2 (Φ + 1

2Λ n)
1
2Xσ (Φ + 1

2Λ n))
cm
τ

vn− iion(v̂
n+1/2, q̂n+1/2)


for n = 1 . . .Nt −1, (12)

where Λ n = (vn,0)>, along with

qn+1 = q1 + τM (v̂n+1/2, q̂n+1/2).

for n = 1 . . .Nt −1. (13)

Inputs values for v0 and q0, given by the initial con-
ditions, and for v1 and q1 that must be computed, for
example, using a predictor–corrector method [5].

The presented time stepping method has a rate
of convergence τ2. Since low order discretization of
the integral equations leads to O(h2)-convergence (h:
mesh size) for smooth solutions, it can be showed that
the fully discrete problem has a rate of convergence
equal to h2 + τ2. Choosing h ∝ τ it is possible to re-
cover a rate of convergence equal to two for the fully
discrete problem [5].

3 Results

We ran simulations assuming a two dimensional cir-
cular axon and the external excitation equal to φe =
−E · x, where E is an constant electric field pointing
to +x, as defined in Figure 1 and x is vector position
measured form the axon’s center. Table 1 shows con-
vergence results for a linear behavior assumption of
the membrane, i.e. iion ∝ v [6], using norms

||φ ||2 =
(∫ T

0
||φ(t)||L2(Γ )dt

)1/2

||φ ||∞ = supt∈[0,T ] ||φ(t)||L2(Γ )

and for equal numbers of spatial dofs and time steps.
Figure 2 shows the results for the positions defined in
Figure 1 for the full H–H system.

Acknowledgement. This work was funded by VRI Interdis-
ciplina 11/2011 by Pontificia Universidad Católica de Chile
and FONDECYT Iniciación 11121166.

Table 1. Error order of convergence values for iion ∝ v.

N ||u−Un||2 e.o.c ||u−Un||∞ e.o.c

10 1.49×10−2 – 4.72×10−1 –
50 5.79×10−4 -2.01 1.90×10−2 -1.99
100 1.44×10−4 -2.00 4.76×10−3 -2.00
500 5.84×10−6 -1.99 1.93×10−4 -1.98

Fig. 1. Transmembrane potential calculation points.
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Fig. 2. Results for full H–H at points according to Fig. 1
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Summary. Solving discrete poisson problems, as they can
be found in the finite element analysis of electrostatic prob-
lems, can be accelerated by the usage of GPUs. To over-
come the limitations in memory and speed, multi-GPU im-
plementations are needed. In this paper a multi-GPU code
is presented that is based on the CUSP library and espe-
cially its algebraic multigrid preconditioner. The computa-
tional efficiency is underlined by an application example.

1 Introduction

Accuracy requirements and thus problem sizes of fi-
nite element simulations in computational electro-
magnetics, e.g. for the insulator as shown in Fig. 1,
have been increasing over the years. Recently, the
computer architecture has began to change too: sin-
gle threaded codes do not benefit from the increasing
computational power as before. Thus the usage of par-
allel codes and in particular graphics processor units
(GPUs) have become an important field of research.
The CUSP library [2] provides state-of-the-art linear
algebra operations and solvers for GPUs, e.g. the con-
jugate Gradients Method (CG) with Algebraic Multi-
grid (AMG) Preconditioner using smoothed aggrega-
tion [1, 3].

However some features are missing. For example,
even though global memory increases with each GPU
generation, it remains a critical limitation and vari-
ous approaches for memory reductions have been dis-
cussed [4]. One possibility to accelerate calculation
speed as well as reducing memory demand is a mixed
precision approach. When using a single precision
preconditioner in a double precision outer CG loop,
this does typically not significantly influence the num-
ber of iterations [5]. However, due to reduction, data
can be transferred faster and this leads also to an in-
creased calculation speed. An implementation based
on CUSP has been presented recently in [6].

Using multiple GPUs is another promising ap-
proach for increasing the available memory and cal-
culation speed at the same time. However, there is a
trade-off between acceleration and memory consump-
tion: at best acceleration and memory scale linearly
with the number of used GPUs. However, communi-
cation overhead reduces the gain in practice. This can
be overcome when data redundancy is accepted, i.e,
complete vectors for the sparse matrix-vector multi-
plication (SpMV) are exchanged.

Fig. 1. Mesh-grid of the numerical example and parallel
data exchange between multiple GPUs

2 Multiple GPUs in CUSP

To ensure future compatibility with the ongoing de-
velopment of CUSP, the multi-GPU environment has
been realized as an independent add-on. It contains
classes that hold the distributed vectors, matrices and
the AMG-preconditioner. Additional routines manage
communications and the parallel BLAS operations on
the GPUs.

The matrix class holds pointers to the matrix parts
that are distributed row by row across the GPUs, see
Fig. 2. This ensures a fast distribution without com-
plex partitioning algorithms and a good load balanc-
ing across all GPUs. The vector class holds a copy
of the whole vector and a view for the corresponding
rows resulting from a given matrix class.

Vectors can be copied to all GPUs (copy-1n),
gathered from all GPUs (gather-n1), scattered across
the GPUs (scatter-1n) and combined on all GPUs
from parts that are distributed across all GPUs (gather-
nn). By using the streams called instruction pipelines
in CUDA, data exchange between all GPUs takes
place simultaneously, utilizing the PCIe’s 6 GB/s up-
and download for every GPU at a time as shown
in Fig. 1. Especially the time-consuming process of
copying a vector to all GPUs (copy-1n) and gather-
ing a distributed vector (gather-nn) can be realized
almost independently from the number of GPUs used.
The AMG class stores the distributed matrices and
vectors of all levels. It supports basic operations to
distribute the CUSP AMG preconditioner across the
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Fig. 2. Distribution of a matrix across multiple GPUs

GPUs and solve the preconditioner on multiple GPUs.
These operations enable the execution of a CG solver
with AMG preconditioner on multiple GPUs from a
single host.

3 Numerical Example

As real-world example the finite element simulation
of the high voltage isolator from [7] is presented,
Fig. 1. The discrete model has 1.5e6 degrees of free-
dom (DoF) with a linear system matrix consisting of
21e6 nonzero entries. The problem is solved up to
a relative residual of 1e-12. All calculations are per-
formed on the same compute server running CentOS
6.5: the host is equipped with an Intel Xeon E5-2670,
128 GB RAM. Four NVIDA Tesla K20Xm GPU ac-
celerators are attached to the host. To ensure data con-
sistency the error-correcting code (ECC) is enabled.
This reduces the effective bandwidth of all GPUs by
20% from 250 GB/s to 200 GB/s each. The code is
compiled using OpenMP for host parallelization and
architecture model 3.5 on the device. We use CUDA
5.0, Thrust 1.8.0 and CUSP 0.4.

Fig. 3 shows the computational time for basic
operations executed on one to four GPUs, respec-
tively. Table 1 shows the memory requirements of
the system matrix for the linear system including the
matrix and two vectors. For comparison the prob-
lem was solved in [4] using several libraries: on the
host PetSc with AMG preconditioner (20.178 s), Trili-
nos ML (17.291 s), CUSP’s host (16.642 s) and GPU
implementation (4.754 s) are benchmarked. The host
computations had access to all cores via OpenMP or
MPI. Nonetheless, CUSP on a single GPU outper-
forms all host implementations. The operations of the
new multi-GPU code are again about 3 times faster,
see Fig. 3. However, the overall solver performance is
reduced by communication processes.

4 Conclusion

It has been shown that multiple GPUs allow to solve
larger problems and to reduce calculation time. As

Table 1. Memory usage per GPU for the linear system of
1.5e6 DoF

1 GPU 2 GPU 4 GPUs

Matrix 256 MB 131 MB 66 MB
LinSys 278 MB 154 MB 88 MB

0 2 4 6 8 10 12

copy−1n

gather−nn

SpMV

axpby

calculation time in ms →

 

 
1 GPU
2 GPUs
4 GPUs

Fig. 3. Computational time for basic operations

there is a large gap between the PCIe and the GPUs
intern bandwidth effective communication routines
were developed. Communication was hidden behind
other calculation. Speedups up to a factor of 3× could
be obtained when using four GPUs. The memory con-
sumption has been reduced to a factor of 0.5 for a
sparse matrix vector operation. In the full paper, these
results will be presented in context with the AMG-CG
implementation.
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6. C. Richter, S. Schöps, and M. Clemens, GPU-
Accelerated Mixed Precision Algebraic Multigrid Pre-
conditioners for Discrete Elliptic Field Problems,” Ninth
International Conference on the Computation in Elec-
tromagnetics (CEM 2014).

7. H. Ye, M. Clemens, and J. Seifert, “Electro-quasistatic
field simulation for the layout optimization of outdoor
insulation using microvaristor material,” (IEEE Trans.
Magn.), vol. 49, no. 5, pp. 1709 – 1712, 5 2013.

94



SCEE 2014 – Wuppertal, Germany Thursday, July 24, Poster 95

Multirate GARK schemes for multiphysics problems
Andreas Bartel1, Michael Günther1, Christoph Hachtel1, and Adrian Sandu2

1 Bergische Universität Wuppertal, Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM), Gaußstraße 20, D-42119 Wuppertal, Germany
[bartel,guenther,hachtel]@math.uni-wuppertal.de

2 Virginia Polytechnic Institute and State University, Computational Science Laboratory, Department of Computer
Science, 2202 Kraft Drive, Blacksburg, VA 22060, USA asandu@cs.vt.edu

Summary. Multirate GARK schemes define a multirate
extension of GARK schemes, generalized additive Runge-
Kutta schemes. These allow for exploiting mul- tirate be-
haviour in both the right-hand sides and in the components
in a rather general setting, and are thus especially useful for
coupled problems in a multiphysics setting.

We apply MGARK schemes to a benchmark example
from thermal-electrical coupling, characteried by a slow
and fast part with a stiff and non-stiff characteristic, resp.
We test two MGARK schemes: an IMEX method, which
makes fully use of the different dynamics and stability prop-
erties of the coupled system; and a fully implicit schemes,
which inherits the stability properties from both underlying
schemes without any coupling constraint.

1 Multirate GARK schemes

We consider a two-way partitioned system

y′ = f (y) = f {s}(y)+ f {f}, y(t0) = y0 , (1)

with one slow component {s}, and one active (fast)
component {f}. Note that this setting contains compo-
nent-wise splitting

y =
(

ys
yf

)
, f s =

(
fs
0

)
, f f =

(
0
ff

)
as a special case.

The slow component is solved with a large step
H, and the fast one with small steps h = H/M. We
will consider the multirate generalization of GARK
schemes [3] with M micro steps h = H/M, as given
in the following

Definition 1 (Multirate GARK method [4]). One
macro-step of a generalized additive multirate Runge-
Kutta method with M equal micro-steps reads

Y {s}i = yn +H
s{s}

∑
j=1

a{s,s}i, j f {s}
(

Y {s}j

)
+

+h
M

∑
λ=1

s{f}

∑
j=1

a{s,f,λ}i, j f {f}
(

Y {f,λ}j

)
,

Y {f,λ}i = yn +h
λ−1

∑
l=1

s{f}

∑
j=1

b{f}j f {f}
(

Y {f,l}j

)
+

+H
s{s}

∑
j=1

a{f,s,λ}i, j f {s}
(

Y {s}j

)
+

+h
s{f}

∑
j=1

a{f,f}i, j f {f}
(

Y {f,λ}j

)
,

λ = 1, . . . ,M,

yn+1 = yn +h
M

∑
λ=1

s{f}

∑
i=1

b{f}i f {f}
(

Y {f,λ}i

)
+

+H
s{s}

∑
j=1

b{s}i f {s}
(

Y {s}i

)
.

The base schemes are Runge-Kutta methods,
(A{f,f},b{f}) for the slow component and
(A{s,s},b{s}) for the fast component. The coefficients
A{s,f,λ}, A{f,s,λ} realize the coupling between the two
components.

1.1 Order conditions

The MGARK scheme can be written as a GARK
scheme [3] over the macro-step H with the fast stage
vectors Y {f} := [Y {f,1} T , . . . ,Y {f,M} T ]T . The corre-
sponding Butcher tableau reads

1
M A{f,f} 0 · · · 0 A{f,s,1}

1
M 1b{f} T 1

M A{f,f} · · · 0 A{f,s,2}

...
. . .

...
1
M 1b{f} T 1

M 1b{f} T . . . 1
M A{f,f} A{f,s,M}

1
M A{s,f,1} 1

M A{s,f,2} · · · 1
M A{s,f,M} A{s,s}

1
M b{f} T 1

M b{f} T . . . 1
M b{f} T b{s} T

Therefore the order conditions for MGARK sche-
mes can be derived from the corresponding ones for
GARK schemes. Up to order two the order conditions
given in Table 1 have to be fulfilled.

1.2 Stability

We consider systems (1) where each of the compo-
nent functions is dispersive (with constants ν{s} <
0, ν{f} < 0):〈

f {s}(y)− f {s}(z) , y− z
〉
≤ ν

{s} ‖y− z‖2 ,〈
f {f}(y)− f {f}(z) , y− z

〉
≤ ν

{f} ‖y− z‖2 ,

95



96 Thursday, July 24, Poster SCEE 2014 – Wuppertal, Germany

p order condition

1 b{s} T 11 = 1

b{f} T 11 = 1

2 b{s} T A{s,s}11 = 1
2

b{s} T
(

∑
M
λ=1 A{s,f,λ}

)
11 = M

2

b{f} T A{f,f}11 = 1
2

b{f} T
(

∑
M
λ=1 A{f,s,λ}11

)
= M

2

Table 1. Order conditions for MGARK schemes.

with respect to the same scalar product 〈·, ·〉. As for
two solutions y(t) and ỹ(t) of (1), each starting from
a different initial condition, the norm of the solution
difference ∆y(t) = ỹ(t)− y(t) is non-increasing, we
demand a similar property from the numerical ap-
proximationos: the MGARK scheme is said to be
nonlinearly stable, if the inequality

‖yn+1− ỹn+1‖ ≤ ‖yn− ỹn‖

holds for any two numerical approximations yn+1 and
ỹn+1 obtained by applying the scheme to the ODE (1)
with dispersive functions and with initial values yn
and ỹn.

As a consequence of stablity theory for GARK
schemes, an MGARK scheme applied to a compo-
nent-wise partitioned right-hand side is nonlinearily
stable, if both base schemes are algebraically stable.

1.3 Two simple MGARK schemes for multipysics
application

In general, one is interested in a rough approximation
of coupled multiphysics problems, which reflect the
impact of the couplings of both systems. Hence we
restrict to MGARK schemes of order 2:

• MGARK-IMEX-2: The implicit-explicit version
solves the fast, stiff part with an implicit base
scheme, and the slow, non-stiff part with an ex-
plicit one. The coefficients are given by

b{s} =
( 1

2
1
2

)
, A{s,s} =

(
0 0
1 0

)
,

A{s,f,1} =
(

0
M

)
,

A{s,f,λ} =
(

0
0

)
∀λ = 2, . . . ,M,

b{f} = 1, A{f,f} =
1
2
,

A{f,s,λ} =
( 1

2 0
)
∀λ = 1, . . . ,M.

Note that only the fast part is algebraically stable,
but neither the slow part and the joint system.

• MGARK-IMIM-2: To get an overall stable sche-
me, both parts are solved by an implicit base
scheme. The coefficients are given by

b{s} =
(

0 1
)
, A{s,s} =

(
0 0
0 1

2

)
,

A{s,f,1} =
(

0
M
2

)
,

A{s,f,λ} =
(

0
0

)
∀λ = 2, . . . ,M,

b{f} = 1, A{f,f} =
1
2
,

A{f,s,λ} =
( 1

2 0
)
∀λ = 1, . . . ,M.

As both base schemes are algebraically stable, the
MGARK method inherits this property for a compo-
nent-wise partitioning.

2 Benchmark example

We will test both MGARK implementations for the
electrical-thermal multiphysics system introduced
in [1] with the specifications discussed in [2]. The
thermal component defines the slow (and non-stiff)
part, the electrical component the fast (and stiff) part
of the system.
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Different views on model order reduction for the electronics industry
Joost Rommes

Mentor Graphics

Summary. Model order reduction has become a key ingre-
dient for the simulation of electric circuits and semiconduc-
tor structures. The benefits are often clear, but it is not al-
ways clear how one can apply model order reduction in the
most effective way: to understand this, one has to carefully
define when a model can be called reduced. In this presen-
tation we will discuss various applications of model order
reduction in the electronics industry. With practical exam-
ples, we will show that not only different methods, and dif-
ferent definitions of reduced, may be needed for different
applications, but also that for one application one may have
to combine various methods.
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Summary. We propose an a posteriori output error bound
for reduced order models of micro- and nano-electrical(-
mechanical) systems. The error bound enables automatic
generation of the reduced models computed by paramet-
ric model reduction methods based on approximation (in-
terpolation) of the transfer function, e.g. Krylov subspace
based methods. Although established for parametrized sys-
tems, the error bound is also well-grounded for linear time
invariant (LTI) systems without parameters, since it consid-
ers the non-parametric LTI systems as a special case.

1 Introduction

Parametric model order reduction (PMOR) is an ad-
vanced model order reduction (MOR) technique for
reduced order modelling of parametrized systems, e.g.
micro- and nano-electrical(-mechanical) systems with
geometrical, physical variations; and also coupled ele-
ctro-thermal problems, where the coupling terms are
treated as parameters. A linear parametrized system
can be written as,

E(µ̃) dx
dt = A(µ̃)x+Bu(t),

y(t, µ̃) = Cx,
(1)

where, x ∈ Rn is the vector of unknowns, u(t) ∈ Rm1

is the input signal and y(t, µ̃) ∈ Rm2 is the output re-
sponse. E ∈ Rn×n,A ∈ Rn×n,B ∈ Rn×m1 ,C ∈ Rm2×n

are the system matrices. µ̃ ∈ Rp is a vector of param-
eters. The number of degrees of freedom n is usually
very large. Through PMOR, a reduced order model is
obtained as

Ê(µ̃) dz
dt = Â(µ̃)z+ B̂u(t),

ŷ(t, µ̃) = Ĉz,
(2)

where Ê = W T EV , Â = W T AV , B̂ = W T B, Ĉ = CV ,
and z ∈ Rr, with r� n. PMOR methods aim to pre-
serve the parameters as symbolic quantities in the re-
duced models, such that a single reduced model is ac-
curate for all possible variations of the parameters.

In recent years, some PMOR methods, e.g. the
Krylov subspace based PMOR methods [3], the inter-
polation based PMOR methods [1], and the reduced
basis methods [2, 4] have been developed. PMOR
methods based on Krylov subspaces are highly effi-
cient in computing reduced order models due to the
effective use of well-known techniques from Numer-
ical Linear Algebra, and are pursued in circuit and

MEMS simulation. Among these methods, only for
the reduced basis method a posteriori error bounds
are known. These enable automatic generation of a
reliable reduced parametrized model.

We propose an a posteriori output error bound
for reduced order models of linear parametrized sys-
tems. The error bound is a bound for the difference
between the transfer functions of the original sys-
tem and the reduced model, and is applicable to any
PMOR methods based on approximation (interpola-
tion) of the transfer function. The main theoretical
contributions are firstly, the error bound is indepen-
dent of the discretization method (finite difference,
finite element, finite volume) applied to the original
PDEs. Secondly, the error bound can be directly used
in the discretized vector space, without going back to
the PDEs, and especially to the bilinear form (weak
formulation) associated with the finite element dis-
cretization, which must be known a priori for de-
riving/using the error bound for the reduced basis
method [2]. This is typically useful when only dis-
cretized systems of ODEs/DAEs are available, for ex-
ample the system of DAEs established based on mod-
ified nodal analysis in circuit simulation.

Technically, the proposed output error bound pro-
vides a way of automatically generating reliable re-
duced models computed by the Krylov subspace based
PMOR methods, which is desired in design automa-
tion for circuits and MEMS. Although Krylov sub-
space based MOR methods have been integrated into
some simulation tools [5], the reduced model cannot
be guaranteed to satisfy the required accuracy due to
the lack of a robust error bound. We are making the
design automation reliable by proposing an a posteri-
ori output error bound valid for both parametric linear
systems and non-parametric LTI systems.

2 Error Bound for Linear Parametrized
Systems

In order to derive the error bound for the transfer func-
tion Ĥ(µ) of the reduced model (2), we need the pri-
mal system and the dual system defined in the fre-
quency domain. The primal system is defined as

G(µ)x(µ) = B,
y(µ) = Cx(µ). (3)
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It can be obtained by applying the Laplace transform
to the original system, and taking the input u(t) as
the impulse input. For the system in (1), G(µ) =
sE(µ̃)−A(µ̃). The newly defined vector µ includes
both the Laplace variable s and µ̃ . The output y(µ)
is exactly the transfer function H(µ) of the original
system in (1). For non-parametric systems, µ = s, and
G(µ) = G(s) = sE−A. The dual system is defined as

G∗(µ)xdu(µ) = −CT ,
ydu(µ) = BT xdu(µ).

(4)

Here, G∗(µ) is the conjugate transpose of G(µ). We
also need the residuals caused by the reduced mod-
els for the primal and the dual systems. The reduced
model of the primal system is obtained by the pair W ,
V used in (2).

W T G(µ)V z(µ) = W T B,
ŷ(µ) = CV z(µ), (5)

where x̂(µ) = V z(µ) approximates x(µ). It can be
easily seen that Ĥ(µ) = ŷ(µ). The reduced model of
the dual system is

(W du)T G∗(µ)V duzdu(µ) = −(W du)TCT ,
ŷdu(µ) = BTV duzdu(µ),

(6)

where x̂du(µ) = V duzdu(µ) is the approximation of
xdu(µ). The two residuals are rpr(µ) = B−G(µ)x̂(µ)
and rdu(µ) =−CT −G∗(µ)x̂du(µ).

Defining two new variables e(µ)= (x̂du(µ))∗rpr(µ)
and ỹ(µ) = ŷ(µ)− e(µ) and assuming that G(µ) sat-
isfies

inf
w∈Cn

w6=0

sup
v∈Cn

v6=0

w∗G(µ)v
||w||2||v||2

= β (µ)> 0,
(7)

we have the following theorem.

Theorem 1. For a SISO linear parametrized system
in (1), if G(µ) satisfies (7), then |y(µ)− ỹ(µ)| ≤
∆̃p(µ), ∆̃p(µ) := ||rdu(µ)||2||rpr(µ)||2

β (µ) . As a result,

|H(µ)− Ĥ(µ)|= |y(µ)− ŷ(µ)| ≤ ∆p(µ),

where ∆p(µ) := ∆̃p(µ)+ |e(µ)|.

Remark. Extension to multiple-input multiple-output
(MIMO) system is straight forward.

Remark. By simple derivation, it can be seen that
β (µ) is the smallest singular value of G(µ), so that
the error bound ∆p(µ) is computable. By combing
the greedy algorithm proposed for the reduced basis
method [4] with the Krylov subspace based PMOR
algorithm in [3], one can use the error bound to adap-
tively select the parameters, so as to automatically
construct the reduced model. We call the combined
algorithm PMMGreedy. Due to space limitation, the
algorithm is not presented, but is detailed in [6].

3 Results

We use a second order parametrized system for a
MEMS model: Gyroscope 1 as an example. There are
4 parameters in the systems.

After 36 iterations of PMMGreedy, a reduced model
with size r = 201 is obtained, satisfying the absolute
error tolerance tol = 10−7. In the table, ∆p(µ

f inal) is
the value of the error bound ∆p(µ) at the parameter
µ f inal selected by the algorithm at the final iteration
step, which is the error bound for the reduced model.
The true error εtrue of the reduced model is very close
to but below ∆(µ f inal), showing that the error bound
is both rigorous and sharp. To simulate the reduced
model over 2500 samples of µ , only 29 seconds are
spent, while one needs over three hours to simulate
the original system.

Table 1. The reduced model obtained by PMMGreedy

ROM size ∆p(µ
f inal) εtrue iterations run time

210 7.1×10−8 1.4×10−9 36 29s
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Summary. Using modified nodal analysis to model elec-
trical networks, these models lead to a differential algebraic
equation if the network involves a resistor elements and
these networks are always very large. Reduction of index-
2 electrical networks using the conventional MOR methods
is always difficult especially with index greater one. The
IMOR method was proposed to overcome this problem but
it is computationally expensive since it involves matrix in-
versions. We present the implicit-IMOR (IIMOR) method
which is computationally cheaper than the IMOR method.

1 Introduction

Modeling of electrical networks using Modified nodal
analysis leads to control problem of the form

Ex′(t) = Ax(t)+Bu(t), x(0) = x0, (1a)

y(t) = CTx(t), (1b)

where E,A ∈ Rn,n, B ∈ Rn,m and C ∈ Rn,`. x(t) ∈ Rn

is the state vector, u(t) ∈ Rm is the input vector and
y(t) ∈ R` is the desired output vector. If E is nonsin-
gular, (1a) is a system of ordinary differential equa-
tions (ODEs), otherwise it is a system of differential
algebraic equations (DAEs). If an electrical network
involves a combination of resistors and other electri-
cal elements, we always obtain a DAE. If we assume
(1a) is a DAE then x0 must be a consistent initial con-
dition and the polynomial det(λE−A) must not van-
ish identically for some λ ∈ C. In practice dimension
of the DAE n is far larger than the number of input and
outputs m and `, respectively and it can be computa-
tionally expensive due to much storage requirement.
This is an attractive feature for model order reduction
(MOR). Thus (1) can be replaced by a much smaller
reduced-order model given by

Erx′r(t) = Arx(t)+Bru(t), xr(0) = xr0 , (2a)

yr(t) = CT
r xr(t), (2b)

where Er,Ar ∈ Rr,r, Br ∈ Rr,m and Cr ∈ Rn,`. xr(t) ∈
Rr is the reduced state vector , yr(t) ∈ R` is the ap-
proximated desired output vector and r� n is the or-
der of the reduced model. Most of the conventional
MOR methods, they always assume that x0 = 0 which
leads to transfer function H(s) = CT (sE−A)−1B af-
ter taking the Laplace transform of (1). The transfer

function of the reduced-order model (2) is also given
by Hr(s) = CT

r (sEr −Ar)
−1Br. Then the acceptable

reduced-order model must have a small approxima-
tion error of ‖H−Hr‖ and ‖y−yr‖ in a suitable norm.
For the case of electrical networks, the reduced-order
models must also preserve passivity and stability. The
reduced-order model (2) can be obtained via projec-
tion. If we use the Galerkin projection, we need to
first construct a n× r matrix V so that VT V = I, then
we can approximate x(t) by Vxr(t). As a result, we
obtain the reduced-order model (2) with the system
matrices Er = VT EV, Ar = VT AV, Br = VT B and
Cr = VT C. The projection matrix V determines the
subspace of interest and can be computed in many
different ways. In circuit community, the most com-
mon used method to compute V is the Aenoldi pro-
cess which is as known as the PRIMA method [2] be-
cause of its passivity preservation property. However
in [1], they showed that conventional MOR methods
which use that assumption that that x0 = 0 tend to lead
to inaccurate reduced-order models or reduced-order
models which are very difficult to solve when applied
to DAEs especially with index greater than one. This
motivated [1], to introduced the index-aware MOR
(IMOR) method which involves first decoupling the
DAE into differential and algebraic parts using spe-
cial bases and projectors. Then reduce the differen-
tial and algebraic parts separately, for the differen-
tial part, they used the conventional MOR methods
while they had to develop new reduction methods for
the algebraic part. This approach strongly lies on the
März decoupling procedure proposed in [3] since it
is numerically feasible. The IMOR method leads to
simple and accurate reduced-order models even for
electrical networks [4]. However the IMOR method
can be computationally expensive, thus impractical
for large-scale problems since its decoupling proce-
dure involves matrix inversion. In [5], they proposed
the implicit version of the IMOR method which do
not involve matrix inversion, which they call Implicit-
IMOR (IIMOR) method. The IIMOR method is com-
putationally cheaper than IMOR method. However
the IMOR method is more accurate than the IIMOR
method, thus one has to trade off between accuracy
and complexity. In this paper, we apply the IIMOR

101



102 Friday, July 25, 08:30–13:00 SCEE 2014 – Wuppertal, Germany

method on index-2 electrical networks. In Sec. 2, we
briefly discuss the IIMOR method.

2 Implicit-IMOR method

If we assume that the finite spectrum the matrix pencil
(E,A) has at least one finite eigenvalue then system
(1) can decoupled in to the form [5]:

Epξ
′
p = Apξp +Bpu (3a)

−Lξ
′
q = Aqξp−Lqξq +Bqu, (3b)

y = CT
pξp +CT

q ξq, (3c)

where Ep ∈ Rnp,np is nonsingular, Ap ∈ Rnp,np , Bp ∈
Rnp,m, Aq ∈ Rnq,np , Bq ∈ Rnq,m, Cp ∈ Rnp,` and Cq ∈
Rnq,`. L ∈ Rnq,nq is a nilpotent matrix of index µ and
Lq ∈ Rnq,nq is a non-singular lower block-triangular
matrix, for µ > 1. We note that also µ is a tractability
index of the DAE and n = np +nq is the dimension of
the DAE (1). In order to derive the IIMOR reduced-
order model, w first strictly separate (3) into differen-
tial and algebraic subsystems [5]. We then, reduce the
differential and algebraic parts separately. The con-
ventional MOR method such as PRIMA method, is
used to reduce the differential part as follows. Choose
an expansion point s0 ∈ C\σ(Ep,Ap) and then con-
struct an order-r Krylov subspace generated by Mp
and Rp given by: Vp := Kr(Mp,Rp) =
span{Rp,MpRp, . . . ,Mr−1

p Rp}, r≤ np, where Mp :=
(s0Ep − Ap)

−1Ep, Rp := (s0Ep − Ap)
−1Bp. Then,

Vp ∈ Rnp,r denotes the orthonormal basis matrix of
subspace Vp, so that VT

p Vp = I. The reduced-order
subsystem is obtained by using the approximation
ξp = Vpξ̂p, leading to a reduced-order subsystem
with system matrices Êp =VT

p EpVp, Âp =VT
p ApVp ∈

Rr×r, B̂p = VT
p Bp ∈ Rr×m and Ĉp = VT

p Cp ∈ Rr×p.
ξ̂p ∈Rr is the reduced-order differential variable. Thus
the dimension of the differential part is reduced to
r� np.

Using the fact that the reduction of the differen-
tial part confines ξp to the subspace Vp, spanned by
Vp, then it can be proved that ξq lies in the subspace
Vq given by ξq ∈ Vq = Kµ(L−1

q L,L−1
q Rq), where

Rq =
(
AqVp Bq

)
∈ Rnq,r+m. We denote by Vq an or-

thonormal basis of Vq, so that VT
q Vq = I, and we write

ξq = Vqξ̂q. Then, the reduced-order algebraic subsys-
tem has the system matrices given by L̂q = VT

q LqVq,
L̂ = VT

q LVq, Âq = VT
q AqVp, B̂q = VT

q Bq and Ĉq =

VT
qCq. We note that the IIMOR method inherits all the

properties of the IMOR method, thus it also preserves
the goal of model order reduction.

3 Numerical results

In this section, we consider a MNA model that orig-
inates from [6], it is an index-2 system of dimension

n = 10913 with m = ` = 9 inputs and outputs. We
are able to decoupled this system into np = 10790
and nq = 123, differential and algebraic equations,
respectively. We used both the IMOR and IIMOR
methods for comparison. In both methods we used
the PRIMA method to reduced the differential part.
The IMOR method lead to reduced-order model with
900 differential and 35 algebraic equations, while the
IIMOR method lead to a reduced-order model with
900 differential and 99 algebraic equations. We can
observe that the IIMOR reduced-order model is much
larger. The IIMOR and IMOR method took 443 and
9662 seconds, respectively. Thus, the IIMOR method
is computationally cheaper than the IMOR method.
Both methods approximate the magnitude and phase
of transfer function as shown in Fig. 1.
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Fig. 1. Magnitude and phase of the transfer functions.
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Summary. We present an efficient model order reduction
method for 3D Maxwell equations based on moment match-
ing. This method repeatedly applies a rational Arnoldi-type
method but bypasses solving several shifted systems by
reusing the orthonormal basis from a previous call. When
solving a sequence of shifted systems we only factorize one
selected system while the remaining sequence of systems is
solved by a QMR method with subspace recycling.

1 Introduction

Model order reduction (MOR) [2] has become of
great importance whenever the efficient simulation of
a dynamical system is infeasible due to the dimension
of the underlying model problem (as is the case for
Maxwell equations), see [2]. In computational elec-
tromagnetics the discretization of Maxwell’s equa-
tions of first order yields a dynamical system of type

Mε Ė = −Mσ E +CH +BEu,
Mµ Ḣ = −CT E +BHu,

y = GEE +GHH,
(1)

with spd mass matrices M∗, a discretized curl operator
C, and the input-output behavior is described by B∗,
G∗. The objective of MOR is to compute a reduced
order model such that the input-output behavior of
the original model problem will be preserved within a
given accuracy. To do so, we compute an orthonormal
subspace V = diag(VE ,VH) such that VE ,VH ∈ Rn,r

with r� n. Then system (1) is reduced by applying
the Galerkin projection Π =VV T.

2 Recycling Moment Matching Methods

For MOR methods we will focus on moment match-
ing methods to compute the subspace V for the reduced-
order model, i.e., for a given sequence of shifts S =
{s1, . . . ,sl} ⊂ R we will match the leading moments
of the transfer function H (iω)=G (iωM −A )−1 B
at selected expansion points ω ∈S , where

M =

(
Mε 0
0 Mµ

)
, A =

(
Mσ C
−CT 0

)
and G = (GE , GH), B =

(
BE
BH

)
. We will therefore

employ an Arnoldi-type method called adaptive-order
rational Arnoldi (AORA) [5] which allows to adap-
tively select the expansion point s ∈S according to

locally minimize the error of the output moments.
This yields an orthonormal matrix V such that

spanV = K j1(s1)+ · · ·+K jl (sl), (2)

where each K ji(si) is a Krylov subspace,

K j(s) = span{Bs,AsBs, . . . ,A
j−1

s Bs},

As = (sM −A )−1M , Bs = (sM −A )−1B.

After each call of the rational Arnoldi method we use
a greedy-type approach for determining an additional
expansion point sl+1 to improve the accuracy of the
reduced order model [3]. Then the rational Arnoldi
method is restarted with S ∪{sl+1} until eventually
our estimate predicts a sufficiently accurate reduced-
order model.

When calling the rational Arnoldi method repeat-
edly, we have to solve sequences of shifted systems

(ispM −A )x = b(q) (3)

with varying shifts sp and varying right hand sides
b(q) in order to rebuild and to adapt the sum of Krylov
subspaces (2). We can dramatically reduce the num-
ber of system solves by re-using the orthonormal basis
V from a previous call. This is done using a restricted
shift selection strategy. Instead of freely selecting the
shift s∈S ∪{sl+1} we can either select the new shift
sl+1 or an old shift from S , but in order of appear-
ance from the last call. This in turn requires to solve a
system of type (3) only when the new additional shift
sl+1 is chosen. Besides, the rational Arnoldi process
only requires the Gram-Schmidt reorthogonalization
leading to a significantly accelerated method which
we will refer to as modified AORA method.

3 Solving Sequences of Shifted Systems

The (repeated) use of the rational Arnoldi method
requires solving sequences of shifted systems (3).
Moreover, switching the sign of the second block
row, the system matrix iωM −A becomes complex-
symmetric and is highly indefinite since it can be re-
garded as a first-order time-harmonic Maxwell opera-
tor. This makes it hard to use preconditioned iterative
solvers. Here we propose to compute one single LU
decomposition of is∗M −A using a representative
shift s∗. The shift s∗ is chosen as geometric mean of
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the boundaries of the interval from which the shifts
s1,22, . . . are selected. This in turn enables us to use
a preconditioned Krylov subspace method for solving
(3) whenever s 6= s∗. Since the preconditioner and the
matrix are both complex-symmetric, we use the sim-
plified QMR method (SQMR) [4] to exploit symme-
try. As there several systems to solve, we supplement
the SQMR method with subspace recycling following
the rBiCG method from [1]. When solving Ax = b,
in addition to the normal Krylov subspace acceler-
ation, we add a search space U (and its dual space
Ũ). The initial solution x0 is replaced by x1 = x0 +Uz
such that its associated residual r1 = b− Ax1 is or-
thogonal with respect to C̃ = ATŨ . After that the
Krylov method essentially uses the projected matrix
(I−C(C̃TC)−1C̃T )A rather than A. The search space
U is typically constructed using approximate eigen-
vectors associated with eigenvalues of small modulus
and is obtained as a by-product of the Krylov sub-
space method. The simplified QMR method allows
for skipping the dual search space Ũ .

4 Numerical Results

We will demonstrate the effectiveness of our approach
for a PCB circuit of dimension N = 226′458 in the
frequency range f ∈ [7.5,10.0] GHz, discretized with
Finite Integration Technique [6].

We analyze the accuracy of the original AORA
method compared with the modified AORA method
by computing the relative error

εrel(ω) =

∣∣H (iω)−H̃ (iω)
∣∣

|H (iω)|

between the transfer functions H , H̃ of the original
model and the reduced-order model. From Fig. 1 we
see that both reduced models are of similar accuracy.
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Fig. 1. εrel(ω) for both rational Arnoldi methods.

Examining the savings using recycling, Fig. 2 demon-
strates that recycling the Arnoldi basis from a previ-
ous call significantly accelerates the overall method.

Finally, Fig. 3 clearly illustrates the reduced um-
ber of iteration steps using subspace recycling in the
SQMR method, particularly when the shift s signifi-
cantly differs from s∗.
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Fig. 2. Computation time AORA versus (modified) AORA.
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Summary. In models of electric circuits, uncertainties with
respect to physical parameters are quantified by the intro-
duction of random variables. We construct a large dynami-
cal system based on an arbitrary sampling technique, where
subsystems are coupled by the definition of the outputs only.
Consequently, model order reduction can be applied effi-
ciently to the stochastic formulation. We investigate the per-
formance of the reduction and present numerical results.

1 Stochastic modelling

We consider the linear dynamical system

E(p)ẋ(t,p) = A(p)x(t,p)+B(p)u(t)
y(t,p) = Cx(t,p)

(1)

with the state variables x ∈ Rn, the output variables
y∈Rq and matrices A,E ∈Rn×n, B∈Rn×k, C∈Rq×n.
The matrices A,B,E include the physical parameters
p ∈Π ⊆ Rp. Thus both the states and the outputs de-
pend on time as well as the parameters. The dimen-
sion n can be small or large in the following.

We assume that the selected parameters exhibit
uncertainties. For example, imperfections of an indus-
trial production cause variations of the parameters due
to miniaturisation. To quantify the uncertainties, the
parameters are replaced by independent random vari-
ables. Let ρ : Π → R be their joint density function.
We obtain an associated Hilbert space L2(Π ,ρ) for
functions depending on the random parameters. Now
the aim is to determine statistics of the outputs like
the expected value and the variance, for example, or
more sophisticated quantities.

To compute probabilistic integrals approximately,
a sampling technique or a quadrature formula yields
nodes {p1, . . . ,ps} ⊂ Π and weights w1, . . . ,ws ∈ R.
Consequently, the dynamical systems

E(p j)ẋ(t,p j) = A(p j)x(t,p j)+B(p j)u(t) (2)

have to be resolved for j = 1, . . . ,s.
Let an orthonormal basis {Φ1(p), . . . ,Φm(p)} be

given for a subspace in L2(Π ,ρ). Typically, orthogo-
nal polynomials are chosen following the concept of
the polynomial chaos, see [5]. An expansion of the
outputs with respect to the basis reads as

vi(t) :=
∫

Π

y(t,p)Φi(p)ρ(p) dp

.
=

s

∑
j=1

w jΦi(p j)Cx(t,p j)
(3)

for i = 1, . . . ,m, where the integration is done compo-
nent-wise. Our aim is to compute the coefficients vi,
since they produce an approximation of the original
outputs y in L2(Π ,ρ). Moreover, the expected value
and the variance are reproduced approximately.

Let x̂(t) := (x(t,p1), . . . ,x(t,ps)) ∈ Rns. We con-
sider the outputs ŷ(t) := (v1(t), . . . ,vm(t))∈Rqm. Us-
ing (2) for j = 1, . . . ,s and (3) for i = 1, . . . ,m, we
define the larger system

Ê ˙̂x(t) = Âx̂(t)+ B̂u(t)
ŷ(t) = Ĉx̂(t).

(4)

The system (4) consists of s separate subsystems (2),
which are coupled only by the definition of the out-
puts. Hence the matrices Â, Ê ∈Rns×ns exhibit a block
diagonal structure. It holds that B̂ ∈ Rns×k. The for-
mulas (3) yields the matrix Ĉ ∈ Rqm×ns.

In contrast, the stochastic Galerkin approach gen-
erates a large system of the form (4) with dimen-
sion nm, which is fully coupled, cf. [3, 4]. Moreover,
the Galerkin system sometimes looses the stability, al-
though all systems (1) are stable. Obviously, the sys-
tem (4) inherits the stability of the systems (1).

2 Model order reduction

Methods of model order reduction (MOR) can be ap-
plied efficiently, if the numbers of both inputs and out-
puts are relatively small in comparison to the dimen-
sion of the state space, i.e., q,k� n in (1). Typically,
a sampling method or a quadrature scheme involves
a large number s of nodes. The number of input sig-
nals in the coupled system (4) and in the original sys-
tem (1) coincide. The number of output signals in (4)
depends on the number m of used basis functions. A
relatively small subspace of L2(Π ,ρ) may yield a suf-
ficiently accurate approximation and thus we suppose
m≤ s. Consequently, the assumption qm� ns is rea-
sonable and a high potential for reduction appears in
the case of the system (4). This assumption is also sat-
isfied for systems (1) of a small dimension n provided
that m� s.

We reduce the stochastic model (4) using MOR
methods for linear dynamical systems like moment
matching techniques or balanced truncation, for ex-
ample, see [1, 2]. Once a reduced order model is con-
structed, a transient simulation directly yields an ap-
proximation of the coefficient functions (3) and thus
we obtain the desired random process y(t,p).
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This strategy can be seen as an alternative to para-
metric MOR. In a parametric MOR, the system (1)
is reduced in a first step, while preserving the depen-
dence on all p ∈Π . In a second step, the probabilistic
integrations are applied to the reduced system.

In the previous work [4], MOR has been applied
successfully to the coupled system of the stochastic
Galerkin approach. However, a large computational
effort is required for the reduction, since the moment
matching technique asks for an LU-decomposition of
a huge matrix without a band structure.

3 Simulation of a test example

We apply the band pass filter depicted in Fig. 1, which
represents a circuit with single input and single out-
put. A mathematical modelling yields a system of the
form (1) with dimension n = 6 and q = k = 1. All ca-
pacitances, inductances and resistances are chosen as
random variables, where independent uniform distri-
butions with 20% variation around the mean values
are used. Thus p = 11 random parameters appear. As
quadrature scheme, we apply the Stroud formula of
order 5 involving s = 243 nodes.

u
in

u
o
u
t

Fig. 1. Circuit of a band pass filter.

For the output of the stochastic model, we select
an orthonormal basis using all multivariate Legendre
polynomials up to degree two. Thus m = 78 basis
functions are involved. Now the system (4) exhibits
the dimension ns = 1458 of the state space and the
number of outputs becomes qm = 78. To illustrate the
dynamics of the system (4), Fig. 2 shows the eigenval-
ues of the matrix Â. In particular, the system is stable.

Based on the controllability Gramian and the ob-
servability Gramian, we determine the Hankel singu-
lar values of the system (4). Fig. 3 illustrates the 100
largest singular values. We recognise that less than
90 singular values are above the machine precision.
Hence the order 1458 of the system (4) can be re-
duced efficiently by the technique of balanced trun-
cation, because the reduced system can have a dimen-
sion much less than 100. Moreover, the Hankel sin-
gular values imply an error estimate for the transfer
functions as well as the transient simulations, which
allows for a control of the reduction error, see [1].
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Summary. The reduced basis method (RBM) is a model
order reduction technique for parametrized partial differen-
tial equations (PDEs) which enables fast and reliable eval-
uation of the transfer behavior in many-query and real-time
settings. We use the RBM to generate a low order model
of an electromagnetic system governed by time-harmonic
Maxwell’s equations. The reduced order model then makes
it feasible to analyze the uncertainty by a Monte Carlo simu-
lation. Stochastic collocation is employed as a second tech-
nique to estimate the statistics.

1 Introduction

As the simulation of integrated circuits requires a sig-
nificant amount of computational power, the simula-
tion of large-scale models benefits greatly from using
model order reduction (MOR) techniques. The origi-
nal system size is typically reduced to a dimension of
less than 100, which allows to examine the frequency
response of parametrized systems using the reduced
model.

Of particular interest are small random variations
in geometry, which are given by random variables of
given distribution. Inaccuracies in the production pro-
cess can lead to variations in the geometry, which in-
fluence the overall behavior of the model. The influ-
ence of the geometric variations on quantities of in-
terest is measured in the form of expectation and vari-
ance of output functionals. This is summarized under
the term Uncertainty Quantification (UQ).

As a sample application we consider a coplanar
waveguide, which is governed by Maxwell’s equa-
tions. The parametric model reduction technique we
use is the reduced basis method (RBM). The RBM
generates low order models to parametrized partial
differential equations (PDEs) and the approximation
tolerance is certified with rigorous error estimators.

2 Reduced Basis Model Order Reduction
for Maxwell’s Equations

The coplanar waveguide (see [2]) is bounded by a
shielded box with perfect electric conducting (PEC)
boundary. The system is excited by discrete ports used
to model input and output currents/voltages.

We are interested in parameter studies of the input-
output behavior of electromagnetic models. There-

fore, we need to compute the electromagnetic field in-
duced by the applied current. We simulate Maxwell’s
equations in the second order time-harmonic formu-
lation

∇×µ
−1

∇×E + jωσE−ω
2
εE =− jωJ,

subject to zero boundary conditions

E×n = 0 on ΓPEC,

which is solved for the discretized electric field E.
The equation is discretized with Nédélec finite ele-
ments (see [1]) over the entire shielded box as the
computational domain. The parameter vector is de-
noted by ν ∈D ⊂Rp, such that E(ν) is the parameter-
dependent electric field solution.

MOR allows to significantly reduce the computa-
tional time required for parameter studies. It substi-
tutes the large-scale model by a model of low order,
which approximates the transfer behavior. The aim
of the RBM is to determine a low order space XN
of dimension N, which approximates the parametric
manifold Mν = {E(ν)|ν ∈ D} well. Assuming suf-
ficient smoothness of Mν , a space XN can be deter-
mined, such that projecting the variational form onto
XN gives good approximations EN(ν) to E(ν). The
space XN is spanned by snapshots of the field solu-
tions for a discrete set of parameter realizations. The
snapshot locations are chosen in a greedy process us-
ing a rigorous error estimator. The error estimators
∆N(ν), which give rigorous bounds on the approxi-
mation error in the H(curl) norm:

‖E(ν)−EN(ν)‖H(curl) ≤ ∆N(ν),

are used to certify the accuracy of the reduced order
model. See [2] for more details.

As in UQ, we are interested in the expected value,
standard deviation or k-σ values of particular quan-
tities of interest. As these quantities of interest are
given by functionals l(E) of the field solution, the ac-
curacy of the reduced order model w.r.t. l(E) can be
further enhanced by using a primal-dual error estima-
tion framework. Here, the adjoint system equation is
solved as well and the output error estimator ∆ o

N(ν) is
given by

∆
o
N(ν) =

‖rpr(·;ν)‖X ′‖rdu(·;ν)‖X ′

βN(ν)
,
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where rpr is the primal, rdu the dual residuum and
βN an estimator for the inf-sup stability constant. The
dual space of the full order finite element space is de-
noted by X ′, see [2] for more details.

3 Uncertainty Quantification

Let (Ω ,F ,P) denote a probability space. Given is
a square integrable random variable Y : Ω → R with
probability density function f and a function g : Γ →
Rd , corresponding to a mapping of realizations of a
random variable to the output of the electromagnetic
system.

Stochastic collocation computes statistical quanti-
ties like the mean by a quadrature rule

E(g(Y )) =
∫

Γ

g(x) f (x)dx≈
n

∑
i=1

g(ξi)wi,

where the realizations ξi are the sample points, n de-
notes the sample size and the weights wi are deter-
mined using the probability density function f . See
[3] for more details.

In statistical analysis the expectation and variance
of quantities of interest like the response surface w.r.t.
uncertain parameters is computed.

Monte Carlo simulations use equally weighted
samples, which have been generated using the un-
derlying distribution. A drawback of the Monte Carlo
simulation is its slow convergence rate of 1/

√
n. Ad-

ditionally, the stochastic collocation is employed.
We use stochastic collocation in sparse grids of

the Stroud- or Hermite-type. Anisotropic sparse grids
can give additional computational advantages over
isotropic grids, see [5]. To further enhance the com-
putation speed of statistical quantities, stochastic col-
location is combined with reduced basis model order
reduction. This allows to quantify models of a much
larger complexity.

4 Modeling Stochastically Varying
Domains

For all ω ∈ Ω , let D(ω) denote the random domain
with boundary ∂D(ω). We employ a mapping to a de-
terministic domain D such that we can assemble the
system matrices for the domain D and use affine trans-
formations to map to a particular realization D(ω).
In [6] the affine transformations are shown for a deter-
ministic parameter. For our analysis, we quantize the
geometry into subsections and allow stochastic varia-
tions on each subsection. The affine transformation is
then applied to each subsection.

5 Numerical Experiments

Using the RBM on parametric systems with determin-
istic parameters shows exponential convergence rates,

see Fig. 1. Similarly to [4], we aim to extend this to
stochastic parameters using the primal-dual error esti-
mation framework but we focus on the particular ap-
plication to Maxwell’s equations. The talk will cover
numerical results when applying the RBM in com-
bination with Monte Carlo simulation and stochastic
collocation.
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Fig. 1. Convergence of the RBM on the coplanar waveg-
uide with two parameters. The full model contains 52’134
degrees of freedom.
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Summary. Reduced order models obtained by model or-
der reduction methods must be accurate over the whole fre-
quency range of interest. Multipoint reduction algorithms
allow to generate accurate reduced models. In this paper,
we propose the use of reflective exploration technique for
obtaining the expansion points adaptively for the reduction
algorithm. At each expansion point the corresponding pro-
jection matrix is computed. Then, the projection matrices
are merged and truncated based on their singular values to
obtain a compact reduced order model.

1 Introduction

Electromagnetic (EM) methods are used for the anal-
ysis of complex high-speed systems and usually gen-
erate very large systems of equations. Therefore, model
order reduction (MOR) techniques are crucial to re-
duce the complexity of large scale models and the
computational cost of the simulations, while retain-
ing the important physical features of the original sys-
tem [1–3]. Multipoint MOR methods have been de-
veloped over the years [1,4,5], which allows to gener-
ate accurate reduced models over the whole frequency
range of interest. In this paper, the expansion points
are selected adaptively using a reflective exploration
technique. It is a selective sampling algorithm, where
the model is improved incrementally using the best
possible data at each iteration, allowing it to propose
candidate exploration points [6]. An error-based ex-
ploration is performed to find the expansion points.
After obtaining the expansion points, the correspond-
ing projection matrices are computed using any of the
Krylov based MOR techniques. The projection matri-
ces are then merged and truncated based on their sin-
gular values to obtain a compact reduced order model.
Then the reduced order models are obtained by con-
gruence transformation using the truncated projection
matrix. The technique is validated using a multicon-
ductor transmission line example.

2 Projection Matrix

For this paper, the PRIMA algorithm [3] has been
used for obtaining the projection matrices at the ex-
pansion points.

For n expansion points we obtain the correspond-
ing projection matrices Vqi for i = 1,2, . . . ,n, then the
common projection matrix is defined as:

Vcomm = [Vq1 Vq2 . . . Vqn ]. (1)

The common projection matrix is not truncated
using its singular values during the iterative procedure
of the adaptive reflective exploration. It is truncated
after all the expansion points have been adaptively
chosen using reflective exploration.

3 Reflective Exploration

The reflective exploration requires a reflective func-
tion to select the expansion points. The reflective
function used for the proposed algorithm is the root
mean square (RMS) (2) error between the obtained
best models:

Err(I)est =

√√√√∑
Ks
k=1 ∑

Pin
i=1 ∑

Pout
j=1
|HI,(i j)(sk)−HI−1,(i j)(sk)|2

|HI,(i j)(sk)|2

PinPout Ks
(2)

where, Ks, Pin and Pout are the number of frequency
samples considered on a dense grid, input and out-
put ports of the system, respectively. The exploration
consists of an adaptive modeling loop and an adaptive
sampling loop.

1. Adaptive Modeling Loop: The algorithm starts
with two expansion points selected at [ωmin,ωmax]
of the frequency range of interest. The reduced
order q at these points is equal to the number of
ports of the system. Then with a common projec-
tion matrix as explained in Section 2, the reduced
model is obtained. Then in the next iteration again
the projection matrix is computed for a reduced
order equal to two times the port of the system. If
the RMS error between the two best models (i.e.,
the model obtained in the Ith and the (I − 1)th

iteartion) exceeds a certain threshold, then the re-
duced order q is again increased by the number of
ports for the respective expansion points.

2. Adaptive Sampling Loop: When the difference in
RMS error between the Ith and (I− 1)th, is less
than 10%, a new expansion point is selected. For
selecting the new expansion point the error per
frequency is computed by taking the norm L1, of
the frequency response of the best model (HI) and
the original model (Hact ):

Errsk = norm(Hact,(i j)(sk)−HI,(i j)(sk));
k = 1, . . . ,Ks, (3)
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Fig. 1. Flowchart 1: Reflective Exploration.

Fig. 2. Flowchart 2:Truncation of the projection matrix.

and the frequency at which Errsk is maximum is con-
sidered as the new expansion point.

This process is iteratively repeated until the RMS
error between the original frequency response and the
reduced model is 0.001. Figure 1 shows the reflective
exploration algorithm.

4 Model compacting

After obtaining the best reduced order model from
the iterative procedure, it might be possible to fur-
ther compact the model with the information obtained
from the singular values Σ of Vcomm (1). Figure 2
shows the flowchart for the truncation of the singular
values. The projection matrix Qcomm with congruence
transformation gives the reduced state-space matrices
of order qcomm.

5 Numerical Results

A multiconductor transmission line described by an
original state-space of order 1202 and 4 ports is con-
sidered. As described in Section 3, 4 expansion points
are chosen adaptively. Table 1 gives the dimension of
the reduced models. The reduced model after trunca-
tion has an RMS error of 4.128e− 4 when evaluted
over a dense grid of Ks = 200 frequency samples as
shown in Figure 3.

Fig. 3. Magnitude of Y11.

Table 1. Dimension of the Original and Reduced Model.

Models Dimension

Original 1202
Model after reflective exploration 64
Model after compacting 42
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Summary. The presented Multirate-MOR scheme exploits
the structure of a coupled circuit-thermal system to increase
the efficiency of the numerical simulation. The simultane-
ous use of different step sizes allows the algorithm to adapt
to differing dynamical behaviour of the components. We
combine this with a model order reduction to obtain smaller
subsystems. We will give first numerical results and discuss
aspects to be considered in this context.

1 Introduction

We consider an electrical circuit which includes ther-
mal effects. That is, heat is dissipated by certain de-
vices and electrical parameters are temperature de-
pendent. By regularisation of the circuit and semi-
discretisation of the thermal part we can achieve a
coupled system of ODEs. Here we have to deal with
a very different dynamical behaviour of the compo-
nents of the system: electrical components are chang-
ing very fast while components that describe the ther-
mal behaviour change rather slowly. Demanding a
high accuracy of the thermal behaviour a fine discreti-
sation of space is needed and we get a large part sys-
tem with slow dynamic behaviour. To exploit this spe-
cial structure, we will apply a model order reduction
to the thermal part and solve the remaining system of
ODEs with a multirate integration scheme.

2 Mathematical Tools

Before modeling the electric-thermal system we in-
troduce the mathematical methods applied in this work.

Mixed-Multirate. Given a system of ODEs
with initial values for the unknown y, we partition the
system with respect to the dynamic behaviour of the
components. For simplicity of notation we assume to
identify two part systems with different dynamical be-
haviour (active: A, and inactive/slow: L):

ẏA = fA (yA,yL) yA(t0) = yA,0 (1)
ẏL = fL (yA, yL) yL(t0) = yL,0. (2)

In fact, this can generalised to more than two subsys-
tems. The red terms indicate the respective coupling.
Now, multirate methods integrate the slow compo-
nents with large step sizes H and the active com-
ponents with a much smaller one h while h � H.

The crucial part is how to realise the coupling be-
tween the active and the slow part. We are follow-
ing the idea of [1]: The mixed-multirate compound-
step method. Here the coupling is realized by com-
puting the macro-step and the first micro-step coupled
manner. For the remaining micro-steps one can either
interpolate the slow part or use a dense-output for-
mula. What makes mixed-multirate schemes so inter-
esting is that we can use different integrators for the
compound-step and the remaining micro-steps. The
underlying ODE integration schemes are given by a
linear implicit 2(3)-ROW-method for the compound-
step and a 3(4)-ROW-scheme for the remaining micro-
steps. So we can handle at least moderately stiff ODEs.
A set of coefficients can be found in [1].

MOR with Balanced Truncation. If we deal
with a high dimensional slow part a model order re-
duction (MOR) will help to improve efficiency of the
time integration. We limit ourselves to linear MOR
so starting point is a linear dynamical system. In the
multirate context of (2) this reads

ẏL = AyL +ByA, yL(t0) = yL,0,

yL = CyL, dim(yL) = n (C = Id).

In a MOR method, rectangular biorthogonal projec-
tion matrices Vr, Wr are computed, such that the di-
mension r of reduced system matrices WT

r AVr, WT
r B,

CVr is significantly smaller than the dimension of the
original system (r� n). While the output of the re-
duced system yr,L shall approximate the original out-
put as good as possible. The idea of balanced trunca-
tion is now to keep all important states and truncate
all states which need a large amount of energy to be
reached and to be observed. Truncating states that are
difficult to reach and to observe become equivalent
if the system is balanced. One gets such a balanced
system by solving Lyapunov-Equations and construct
a suitable transformation matrix. Balanced truncation
offers good and reliable error-bounds (cf. [2]) but can
be computationally expensive for very large systems.

3 Modeling and Simulation

We apply the multirate-MOR approach the electric
circuit shown in Fig. 1 with thermal dependent and
thermal active devices. The example was taken from
[3] with some modifications.
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u2 u3

RL

u4

idi

A R(T )

v(t)

C1 C2

Fig. 1. Circuit Diagram.

Modeling. The resistor R(T ) in our example
circuit (Fig. 1) is modeled as thermal dependent and
thermal active device. On the one hand the resis-
tance is dependent to the temperature and on the other
hand the resistor gets heated by the current running
through. The diode is modeled as temperature depen-
dent passive element. The circuit is provided by a si-
nusoidal voltage source for some small time interval.
An ODE description of the circuit’s voltages can be
achieved by nodal analysis using Kirchhoff’s law of
current for nodes three and four; Joule’s law gives the
dissipated power at the resistor. In total that reads:

C1u̇3 =(u2−u3)/R(T )− idi(u3−u4,Tdi) (3)
C2u̇4 =idi(u3−u4,Tdi)−u4/RL (4)

ė =(u2−u1)iR = (u2−u3)
2/R(T ). (5)

The thermal behaviour of the resistor is modeled by
a 1D-heat equation with terms for heat conduction,
heating due to electric current (Joule’s law) and New-
ton Cooling. To get an ODE description we discretise
the spatial variable in the PDE by method of lines and
use a finite volume approach. For the inner cells in an
equidistant grid we end up with

M′W,iṪi =
Λ

h2 (Ti+1−2Ti+Ti−1)+P′W,i−γS′W,i(Ti−Tenv).

The boundary cells are similar. The coupling electric
to thermal is realised in (5). The other way round we
take the solution of the thermal T part and compute
the total resistance R(T). We interpret the temperature
of the last cell to be the diode’s temperature.

Simulation and Results. To apply the presented
multirate-MOR scheme we set the equations of the
system of ODEs stemming from the electric behaviour
to be the active part and the semi-discretised heat
equation to be the slow part. This is a quite natural
choice. The description of the thermal behaviour is a
priori not linear. To be able to apply a linear MOR
method we linearise the thermal part first. To apply a
balanced truncation MOR the system has to be com-
plete observable and reachable (cf. [2]) unfortunately
the thermal part is not complete reachable. Here we
follow an idea of [2] and consider only the reachable
subsystem. We also applied a modal order reduction
to compare the MOR schemes. In Fig. 2 the relative
error to the full system is shown. As expected we get
better results by using the balanced truncation.
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10 7

10 6

10 5

10 4

10 3

10 2

Time [s]

re
la

tiv
e 

er
ro

r [
]

 

 
balanced truncation
modal reduction

Fig. 2. Relative Error of the Diode’s Temperature with dif-
ferent MOR Techniques.

4 Outlook

The applied MOR reduction in a pre-processing step
before solving the system with a multirate integrator
can only be useful if on the one hand the error due to
the MOR is small and on the other hand the compu-
tation time decreases significantly. For the first aspect
we have to look how sensitive the whole system is
with respect to errors in the slow to active interface.
For the other aspect we have to consider among others
the dimension of the interface. We will present first
ideas how to approach to these problems.
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