
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM)

Preprint BUW-IMACM 14/27

Long Teng, Matthias Ehrhardt, Michael Günther

Option Pricing with dynamically correlated Stochastic Interest Rate

September 26, 2014

http://www.math.uni-wuppertal.de



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt Acta Math. Univ. Comenianae

Vol. (submitted to AMUC), pp. 1–9

1

OPTION PRICING WITH DYNAMICALLY CORRELATED STOCHASTIC

INTEREST RATE

LONG TENG, MATTHIAS EHRHARDT and MICHAEL GÜNTHER

Abstract. In this work we review several option pricing models with stochastic interest rate and
extend this model by incorporating local time dependent correlation between the underlying and

the interest rate. We compare the difference between using a constant and a dynamic correlation

by analyzing some numerical benchmarks. Furthermore, we conduct an experiment on fitting the
pricing model to the market price. Our analysis shows that the option pricing within the Black-

Scholes framework can not really be improved by incorporating stochastic interest rate even when

using a nonlinear correlation.

1. Introduction

The Black-Scholes model [2] defining the fair price of European-style options is one of the most
famous models. However, due to the assumption that the stock log-return follows a geometric
Brownian motion (with constant volatility), the widening gap between model and market data
could exist almost all the time. For this reason, the Black-Scholes model have been generalized to
allow stochastic volatility, see e.g. [5] and [6], the pricing performance has been thus improved.

The other strong assumption of constant interest rate is also not realistic. The first work on
incorporating a stochastic interest rate into the Black-Scholes model is provided by Merton [8].
Afterwards, a couple of work on option pricing under stochastic interest rate was published, e.g.
[1], [3], [4] and [9]. However, some empirical findings showed that stochastic interest rates may
be not important for the pricing and hedging of short term options, see e.g. [4] and [7]. Besides,
the paper [3] concluded that allowing interest rates to be stochastic does not necessarily improve
pricing performance any further, even for long-term options, once the model has accounted for
stochastically varying volatility.

We have seen that the correlation between interest rates process and underlying process in
the works mentioned above has been assumed to be constant. Unfortunately, this assumption
is also dubious due to the fact that financial quantities are correlated always in a nonlinear
way, even may be correlated stochastically, see [10], [11] and [12]. Besides, it has been inferred
in [12] and [13] that the Heston model and the model of Quanto-option pricing can be better
fitted to the market data using dynamic (only time-dependent) correlation than using constant
correlation. Thus, it is interesting to ask whether stochastic interest rates could be important
for the hedging and pricing of options if the correlation between interest rates and underlying
asset is not considered as a constant.

Motivated by this question, in this work, we review and extend some option pricing models
with stochastic interest rate by allowing nonconstant correlation. Firstly, we compare the op-
tion pricing between using constant and nonconstant correlation by analyzing some numerical
results. Secondly, we conduct an experiment on fitting the pricing models to the market data, in

Received . . . .

2000 Mathematics Subject Classification. Primary 91G20, 91G30, 91G80, 35Q91.
Key words and phrases. Option pricing, Stochastic Interest rate, Dynamic correlation.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt 2 LONG TENG, MATTHIAS EHRHARDT and MICHAEL GÜNTHER

order to check, whether stochastic interest rates are important for option pricing while allowing
nonconstant correlation.

The paper is organized as follows. In the next section, we review and extend two different
pricing models with stochastic interest rate and dynamic correlation. Section 3 is devoted to
investigate the difference of model calibration between using constant and dynamic correlation.
Finally, Section 4 concludes this work.

2. Option Pricing with dynamically correlated Stochastic Interest Rate

In this Section, we consider two pricing models with stochastic interest rate. First, we review
and extend the Merton model [8] of pricing European option where bond price dynamics is
allowed. Besides, we study the option pricing model with stochastic interest rate given by
Vasicek stochastic differential equation in [9] and [7].

2.1. The Merton model

We use the following stochastic differential equation (SDE) to describe stock price St and bond
price dynamics Pt, respectively as

dSt
St

= µSdt+ σSdW
1
t(1)

dPt
Pt

= µP dt+ σP ρtdW
1
t + σP

√
1− ρ2

tdW
2
t(2)

with the instantaneous expected return µS , µP , the instantaneous variance σ2
S , σ

2
P and the two

independent Brownian motions W 1
t ,W

2
t . We denote the European option price function by

H(S, P, τ ;K) for using the constant correlation ρt = ρ between the return on the stock and
on the bond and by V (S, P, ρτ , τ ;K) for using the corresponding dynamic correlation ρt, where
K is the strike price. Merton [8] has shown that H(S, P, τ ;K) must satisfy

(3)
1

2
σ2
SS

2 ∂
2H

∂S2
+ ρσSσPSP

∂2H

∂S∂P
+

1

2
σ2
PP

2 ∂
2H

∂P 2
− ∂H

∂τ
= 0

subject to the boundary conditions

(4)

{
H(0, P, τ ;K) = 0
H(S, 1, 0;K) = max(0, S −K),

which is a second-order, linear partial differential equation (PDE) of parabolic type. Since ρt is
a function only dependent on time (without stochasticity), it is thus straightforward that

(5)
1

2
σ2
SS

2 ∂
2V

∂S2
+ ρtσSσPSP

∂2V

∂S∂P
+

1

2
σ2
PP

2 ∂
2V

∂P 2
− ∂V

∂τ
= 0,

subject to the boundary conditions

(6)

{
V (0, P, ρτ , τ ;K) = 0
V (S, 1, ρ0, 0;K) = max(0, S −K).

Following the methodologies [8], we define the x = S
KPτ

which can be described with the aid of
Itô lemma as

(7)
dx

x
= [µS − µP + σ2

P − ρtσPσS ]dt+ σSdW
1
t − σP ρtdW 1

t − σP
√

1− ρ2
tdW

2
t ,

from which we obtain the instantaneous variance of the return on x given by

(8) σ2
t := σ2

P + σ2
S − 2ρtσPσS .
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Furthermore, we define v = V
KP and substitute x and v in (5) to get

(9)
1

2
σ2
t x

2 ∂
2v

∂x2
− ∂v

∂τ
= 0.

Finally, we consider a new time variable T :=
∫ τ

0
σ2
t dt and define y(x, T ) := v(x, τ) which can be

substituted into (9) to obtain the famous heat equation:

(10)
1

2
x2 ∂

2y

∂x2
− ∂y

∂τ
= 0,

subject to the boundary conditions, y(0, T ) = 0 and y(x, 0) = max(0, x − 1). We know the fact
that the heat equation (10) can be solved analytically, the solution of V (S, P, ρτ , τ ;K) can thus
be found as:

(11) V (S, P, ρτ , τ ;K) = SΦ(d1)−KPΦ(d2)

with

d1 :=
ln S

K − lnP + 1
2

∫ τ
0
σ2
sds√∫ τ

0
σ2
sds

, d2 := d1 −

√∫ τ

0

σ2
sds

and where σt is defined in (8) and Φ(x) denote the standard normal cumulative distribution
function. So far, in oder to compute the European call option price we need to know the formula
of Pτ and a reasonable local correlation function ρt.

Following the methodologies [8] we assume that the short rate rt follows a Gauss-Wiener
process 1

(12) drt = µrdt+ σrρtdW
1
t + σr

√
1− ρ2

tdW
2
t .

Applying Itô lemma with P (τ ; r) we obtain

(13) dP =
∂P

∂τ
dτ +

∂P

∂r
drt +

1

2

∂2P

∂r2
(drt)

2.

Substituting (12) into (13) leads to

(14) dP =

(
−∂P
∂τ

+ µr
∂P

∂r
+
σ2
r

2

∂2P

∂r2

)
dt+ σrρt

∂P

∂r
dW 1

t + σr

√
1− ρ2

t

∂P

∂r
dW 2

t .

By comparing the coefficients in (14) and (2) we get

(15) −∂P
∂τ

+ µr
∂P

∂r
+
σ2
r

2

∂2P

∂r2
= PµP and σr

∂P

∂r
= PσP

which gives

(16) σP = −τσr
and

(17) P (τ ; r) = exp(−rτ − µr
2
τ2 +

σ2
r

6
τ3).

For ρt we employ the local correlation function proposed in [12], see also [13],

(18) ρt := E [tanh(Xt)]

for the dynamic correlation function, where Xt is any mean-reverting process with positive and
negative values. For a fixed parameter of Xt, the correlation function ρt depends only on t.

1The limitation: the probability of negative interest rates is positive.
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Furthermore, it is obvious that ρt takes values only in (−1, 1) for all t and converges for t→∞.
By choosing Xt in (18) to be the Ornstein-Uhlenbeck process [14]

(19) dXt = κ(µ−Xt)dt+ σdWt, t ≥ 0,

the closed-form expression for ρt has been derived as

(20) ρt = 1−
exp(−A− B

2 )

2

∫ ∞
−∞

1

cosh(πu2 )
· exp(iu(A+B) + u2B

2
)du

with

A = exp(−κt) tanh−1(ρ0) + µ(1− exp(−κt))(21)

B = −σ
2

2κ
(1− exp(−2κt)),(22)

where κ ≥ 0, σ ≥ 0, µ ∈ R and ρ0 ∈ (−1, 1).
Substituting (16), (17) and (20) into (11), we obtain the European Call-option price with

dynamically correlated stochastic interest rate which is given by

(23) V (S, P, ρτ , τ ;K) = SΦ(d1)−KPΦ(d2)

d1 :=
ln S

K − lnP + 1
2

∫ τ
0
σ2
sds√∫ τ

0
σ2
sds

, d2 := d1 −

√∫ τ

0

σ2
sds

and

(24) σ2
t = τ2σ2

r + σ2
S + 2ρtτσrσS ,

where P and ρt are defined in (17) and (20), respectively. The price of European Put-options
are directly available using Put-Call parity.

2.2. Option pricing with Vasicek Interest rate-The Rabinovitch model

Rabinovitch [9] investigated the pricing of European option with Vasicek stochastic interest
rates and derived the formula in a closed form. The comparison of pricing formulas of Euro-
pean Call-option with different stochastic interest rate processes can be found in [7]. In this
section, we consider the pricing of European Call-options with Vasicek stochastic interest rate
and incorporate dynamic correlation.

Again, we need the following SDEs for the stock price and bond price dynamics

dSt
St

= µSdt+ σSdW
1
t(25)

drt = κr(µ
r − rt)dt+ σrρtdW

1
t + σr

√
1− ρ2

tdW
2
t(26)

where W 1
t and W 2

t are independent. The pricing formula of European Call-option according to
(25) and (26) but with a constant correlation has been already given in [9], see also [7].

Furthermore, if we compare the pricing formula of the Merton model between using constant
and dynamic correlation in Section 2.1, we see that incorporating dynamic correlation does not
change the original pricing formula (with constant correlation) to a large extent, the new pricing
formula with dynamic correlation has just the formel which can be obtained directly by fitting
in the dynamic correlation function instead of constant correlation with the original formula.

We can observe that incorporating a dynamic correlation function into the pricing formula
with the Vasicek stochastic interest rate provided in [9] and [7] also in this case. In order to
adopt the approach in [7] to directly get the pricing formula with dynamic correlation, we need
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to rewrite (25) and (26) with respect to the Brownian Motions under a risk-neutral probability
measure Q as

dSt
St

= (µS − σSλS)︸ ︷︷ ︸
:=µS

dt+ σSdW̃
1
t(27)

drt = κr[(µ
r − σr

√
1− ρ2

tλ
r
t

κr
)︸ ︷︷ ︸

:=µr

−rt]dt+ σrρtdW̃
1
t + σr

√
1− ρ2

tdW̃
2
t ,(28)

where λS and λrt are the market price of risk. Whilst we assume that the market price of risk λrt

to be a constant, this is to say we set µr − σr
√

1−ρ2tλ
r
t

κr
= µr. The pricing formula with constant

correlation in [7] can be thus straightforwardly adopted to find the pricing formula using dynamic
correlation. Therefore, we omit the exact derivation and give the pricing formula using dynamic
correlation as follows:

(29) V (S, P, ρτ , τ ;K) = SΦ(d1)−KPΦ(d2)

with

d1 :=
Στ11 + Στ12 − Cτ√

Dτ

, d2 := d1 −
√
Dτ

where

Cτ :=
Στ11

2
−Bτ + ln

K

S
, Dτ := Στ11 + 2Στ12 + Στ22, Στ11 := σ2

Sτ,

Στ22 :=
σ2
r

κ2
r

[
τ − 3 + e−κrτ (e−κrτ − 4)

2κr

]
, Στ12 :=

σrσS
κr

∫ τ

ρs(1− e(s−τ)κr )ds

and

(30) Bτ :=
1

κr

[
κrµrτ − (r − µr)(e−κrτ − 1)

]
, Pτ := e

1
2 Στ22−Bτ ,

ρt has been defined in (20).

2.3. Numerical Results

In this section, we compare the option prices between using constant and dynamic correlation
in the both models above by analyzing numerical results in this section. We assume that S =
80, K = 100, σS = 0.2, constant correlation: ρc = 0.2, parameters of dynamic correlation function: ρ0 =
0.2, κρ = 2, µρ = 0.5, σρ = 0.2, constant interest rate for the Black-Scholes model: rc =
0.05, stochastic rate
for the Merton model: r0 = 0.05, µr = 0.001, σr = 0.1 and for the Rabinovitch
model: r0 = 0.05, κr = 2, µr = 0.001, σr = 0.1. We compute the prices of the European
Call-option using the Black-Scholes model, using the Merton model and the Rabinovitch model
with constant and dynamic correlation for the different maturities T = [0.5, 1, 1.5, 2, 2.5, 3], and
display them in Figure 1. We can easily see the difference between the Black-Scholes model
and the model using stochastic interest rate. However, as mentioned in the introduction, some
empirical findings showed us that stochastic interest rates (with constant correlation) may not
be important for the pricing. From Figure 1 we can also observe, the prices in the both mod-
els have been changed because of incorporating nonconstant correlation. Thus, one could ask
whether stochastic interest rates with nonconstant correlation can contribute to the performance
improvement of the Black-Scholes model. For this question, we run a calibration test in the next
section.
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(a) The Merton model

0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

Time to maturity

C
a
ll−

O
p
ti
o
n
 p

ri
c
e

 

 

BS model

Rabinovitch model

Rabinovitch model using dynamic correlation

(b) The Rabinovitch model

Figure 1. Comparison of pricing European Call-option using different models.

3. Calibration to the market data

Both works [12] and [13] showed that using dynamic correlation can improve the model calibra-
tion. In the following, we examine both the Merton model and the Rabinovitch model whether
incorporating stochastic interest rate do contribute to the performance improvement of pring
due to allowing dynamic correlation.

We have seen that the bond price formula is on hand in both models, see (17) for the Merton
model and (30) for the Rabinovitch model. Thus, one can directly estimate the parameters of
the short rate model using the market yield curve Yτ with the aid of the relation

(31) Yτ = −1

τ
lnPτ .

We consider the overnight rate on July 30, 2013, r0 = 0.26%, and use the treasury yield curve2

of this day to obtain the estimates: µr = 0.005, σr = 0.017 (Merton short rate) and κr =
0.111, µr = 0.052, σr = 0.001 (Vasicek short rate).

The parameters, which we do still need to estimate, are σS , ρc (for the case of using constant
correlation) or correlation function parameters (for using dynamic correlation). For this purpose,
we pick the market option prices on the S&P 500 on July 30, 2013 with the spot price S = 169.1,
for the maturities T = [30, 90, 180, 360] days and the strikes K/S = [0.9, 1, 1.1]. Then, we fit the
model prices VMod(Ti,Kj) to the market prices VMkt(Ti,Kj) by minimizing the relative mean
error sum of squares (RMSE) given by

(32)
1

N

∑
i,j

ωi,j
(VMkt(Ti,Kj)− VMod(Ti,Kj))

2

VMkt(Ti,Kj)

where ωi,j is an optional weight andN is number of prices. While minimizing we need to add some
constraints on the parameters: the implied volatility σS must be positive, the constant correlation
ρc must belong to the intervall (−1, 1). We know that the correlation function (20) stems from
the expectation of the transformed Ornstein-Uhlenbeck process by tanh . As mentioned before
the parameters of the correlation function must statisfy the following conditions

(33) κ > 0, µ ∈ R, σ > 0, ρ0 ∈ (−1, 1).

So we set the upper limit for κ to be 20 and the interval for µ to be [−6, 6].

2available on http://www.treasury.gov
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For this optimization problem we used the standard method of nonlinear optimization and
report our results in Table 1 for using constant correlation and in Tabel 2 for using dynamic
correlation. First, we look at Table 1 and find that the constant correlation ρc in both models

Model σS ρc RMSE
The Merton model 0.12 0.99 0.115
The Rabinovitch model 0.12 0.99 0.141

Table 1. Parameter estimation for using constant correlation.

Model σS ρ0 κ µ σ RMSE
The Merton model 0.12 −0.99 18.14 6 5× 10−4 0.114
The Rabinovitch model 0.12 −0.99 20 6 2× 10−3 0.141

Table 2. Parameter estimation for using dynamic correlation.

tends to attain the boundary 1. However, we all know that the correlation between interest rate
and stock process should not tend towards to the boundary 1. This is to say that both models
with constant correlation can not be calibrated well. One could thus think the cause could be
the assumption of constant correlation. However, from Table (2) we see although the dynamic
correlation has changed from the initial value −0.99 to the boundary 1 with the time, there is
no improvement of RMSE compared to the RMSE in Tabel 1, and the both RMSEs are quite
large by the way.

Furthermore, we can observe that κ is attaining its upper limit 20 and the value of σ is quite
small, this means that the dynamic correlation will rapidly attend to the boundary 1. To confirm
this, we compare the model prices using constant and dynamic correlation to the market prices
in Figure 2 for the Merton model and in Figure 3 for the Rabinovitch model. As expected, in
both models there is almost no difference between prices using constant and dynamic correlation,
especially, for the longer maturity.

Thus, we can also conclude that allowing dynamic correlation in this example does not improve
the calibration as in [12] and [13]. Incorporating a stochastic volatility could probably solve this
calibration problem. This means also that our experiment results do not only coincide with the
statement that only incorporating stochastic interest rate does not improve pricing performance;
furthermore, they show that the calibration is not getting better for allowing dynamic correlation
between stochastic interest rate and stock process.

4. Conclusion

In this work, we reviewed two European option pricing models with stochastic interest rate: the
Merton model (interest rate given by Gauss-Wiener process) and the Rabinovitch model (interest
rate given by Vasicek process). We extend both models by incorporating local time dependent
correlation between the underlying process and the stochastic interest rate. We presented the
numerical results to show the difference between using a constant and a dynamic correlation.
Furthermore, we conducted an experiment on fitting the model to the market price. As a
result, the option pricing within the Black-Scholes framework can not really be improved by
incorporating stochastic interest rate even when using nonlinear correlation.
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Figure 2. Comparison of the market and model prices in the Merton model.
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Figure 3. Comparison of the market and model prices in the Rabinovitch model.
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