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1 Introduction

In many of todays applications high dimensional problems arise. Especially in the field
of computational finance partial differential equations (PDEs) with several dimensions
have to be solved to evaluate the price of financial products. Since the number of grid
points in a tensor based grid growth exponentially with the dimension, the so called
curse of dimensionality shows its effects very quickly. Sparse grids (Zenger (1991)) and
the Combination Technique (Griebel et al. (1992)) have proven their great ability to re-
duce the computational effort. Using a sparse grid representation of a function in d

dimensions, O(h−1
n log(h−1

n )d−1) grid points are employed. Bungartz, Griebel & Rüde
(1994) and Garcke (2008) have shown shown that the approximation accuracy is of order
O(h2n log(h

−1
n )d−1) under certain smoothness requirements. Compared to a tensor based

full grid with O(h−d
n ) grid points and an accuracy of O(h2n) the total number of nodes is

significantly decreased. Thus the sparse grid approach only suffers from the curse of di-
mensionality in a much lower extent. Sparse grids have successfully been used by Griebel
& Hamaekers (2007), Griebel & Thurner (1995), Gaikwad & Toke (2009) to solve PDEs
with several dimensions. In order to construct a solution on the sparse grid, the combi-
nation technique can be used. It is based on linearly combining a sequence of solutions
via interpolation. Since each solution can be computed independently of the others, the
method is embarrassingly parallel. Hence it can be efficiently implemented on a cluster to
accelerate the computation time (Gaikwad & Toke (2009)).

In the literature second order finite difference schemes are employed to solve each of the
resulting subproblems and the solutions are combined to the sparse grid solution via multi-
linear interpolation. As far as we know, there exists only one article by Leentvaar & Oost-
erlee (2006), where fourth order stencils are used. But the question, which interpolation
technique is suitable, remains open. From an intuitive point of view it is clear that linear
interpolation cannot preserve the order of the highly accurate sub-solutions. In this pa-
per we want to present interpolation techniques which do not interfere the error splitting
within the combination technique. Since high dimensional problems shall be solved, we
use a tensor product approach to extend the univariate interpolation to the multivariate
case.

The outline is as follows: in Section 2 and 3 we give a short overview of the combination
technique and motivate the need for high-order interpolation techniques. In Section 4 we
take a closer look at the two dimensional test case. Here we can omit a complex notation
and give the reader an idea of how the approach works. Later in Section 5 the framework
is extended to the n dimensional case. Finally, numerical results are presented in Section
6.

2 Combination Technique in a Nutshell

Here we want to give a short introduction to the combination technique. It is based on
linearly combining a sequence of discrete solutions to a more accurate solution. In order to
achieve a higher accuracy, the error structure of the discrete solutions is exploited in such
a way that low order errors cancel out. This can most easily be demonstrated in a two
dimensional example. Let us consider the Poisson equation on the unit square Ω = (0, 1)2
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uxx(x, y) + uyy(x, y) = f(x, y) on Ω (2.1)

u(x, y) = g(x, y) on ∂Ω,

with its discrete solution uh on the grid Ωh with mesh widths h = (hx, hy) respectively.
The discrete solution is computed via a standard second order finite difference scheme.
Bungartz Bungartz, Griebel, Röschke & Zenger (1994) was the first one, who proved with
help of Fourier series of discrete and semi-discrete solutions that the error of the discrete
solution consists of second order errors from each of the directions and one mixed error

uh(x, y) = u(x, y) + w1(x, y;hx)h
2
x + w2(x, y;hy)h

2
y + w1,2(x, y;hx, hy)h

2
xh

2
y. (2.2)

We see that the errors w1 and w2 either depend on hx or hy. If we compute the difference
between two discrete solutions, which use the same step size in one of the two spatial
dimensions, one error term cancels out. To simplify our notation, we write uh := u(i, j)
where hx = 2−i and hy = 2−j for i, j ∈ N. We obtain

u(2−i, 2−j)− u(2−i, 2−(j−1))

= w2(x, y; 2
−j)2−j − w2(x, y; 2

−(j−1))2−(j−1) + w1,2(x, y; 2
−i, 2−j)2−i2−j

− w1,2(x, y; 2
−i, 2−(j−1))2−i2−(j−1).

We see that the error w1 has vanished. We can further exploit this idea by combining the
sub-solutions according to the following formula, so that all lower order terms cancel out

usn :=
∑

i+j=n+1

u(2−i, 2−j)−
∑

i+j=n

u(2−i, 2−j). (2.3)

This combined solution usn is called sparse grid solution. Figure 1 (A) shows the sparse
grid and (B) the solution of the Poisson problem (2.1) with u(x, y) = exp(x y). According
to Bungartz, Griebel, Röschke & Zenger (1994) the pointwise error is given by

|usn − u| ≤ Kh2n(1 +
5
4 log2(h

−1
n )) = O(h2n log2(h

−1
n )),

where hn = 2−n and w1, w2, w1,2 are bounded by K. This can easily be verified by
straightforward inserting (2.2) into the combination formula (2.3). Please note that an
interpolation is needed to combine the sub solutions.
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Figure 1: Sparse grid and combined solution with u(x, y) = exp(x y)

3 Motivation

We now want to use a fourth order finite difference scheme to compute the discrete solution.
If we assume that the error can be split as

u(x, y)− uh(x, y) = c1(x, y;hx)h
4
x + c2(x, y;hy)h

4
y + c1,2(x, y;hx, hy)h

4
xh

4
y, (3.1)

then we can combine the sub-solutions according to (2.3) and estimate the error of the
sparse grid solution

en := |usn − u| ≤ Kh4n(
5
4 + 17

16 log2(h
−1
n )) = O(h4n log2(h

−1
n )). (3.2)

This error bound holds for all points, which are not subject to the interpolation scheme.
These are the points, which belong to all underlying sub-grids. Since there is only one
interior grid point (0.5,0.5), which fulfills this condition, the use of the convergence result
(3.2) seems to be very limited. In the following we want to check numerically if the
convergence result is also valid for other grid points. As a test example we solve the two
dimensional Poisson equation (2.1)

uxx(x, y) + uyy(x, y) = (x2 + y2) exp(x y) on Ω = (0, 1)2

u(x, y) = exp(x y) on ∂Ω,

with the combination technique and a standard fourth order difference scheme. The sub-
solutions are combined via multi-linear interpolation. This example was also considered
by Leentvaar & Oosterlee (2006). Thinking of the discrete solution usn as a vector, we
compute the error in the maximum-norm, which is appropriate for elliptic problems. The
error is given by

e∞n := ‖usn −Rn
su‖∞,

where Rn
s is a restriction operator restricting the analytical solution to the sparse grid.

In Figure 2 we compare the convergence of the errors en at (x, y) = (0.5, 0.5) and e∞n . The
decline of the pointwise error is close to order four and thus in line with the theoretical
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result (3.2). The error in the maximum-norm exhibits a much lower numerical rate of
convergence. This observation underlines that multi-linear interpolation cannot preserve
the error structure (3.1) of the finite difference solution. Since in most practical applications
a high order on the complete domain is requested, the question arises, which interpolation
technique to use. In the remainder of this paper we want to determine suitable interpolation
techniques.
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10−14

10−11

10−8

10−5

10−2

O(h2n log2(h
−
n 1))

O(h4n log2(h
−1
n ))

pointwise convergence at mid-point

convergence in ‖.‖∞ - norm

Figure 2: Convergence at mid-point and in ‖.‖∞-norm
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4 The 2-d case

In the last section it was demonstrated that the error splitting is interfered if unsuitable
interpolation techniques are used. But what is a suitable interpolation technique? A
suitable technique P preserves the error structure of the discrete solution uh on the whole
domain (x, y) ∈ Ω in such a way that it holds

u(x, y)− (Puh)(x, y) = γ1(x, y;hx)h
p
x + γ2(x, y;hy)h

p
y + γ1,2(x, y;hx, hy)h

p
xh

p
y, (4.1)

where p ∈ N and γ1, γ2, γ1,2 are bounded by some constant K. If (4.1) holds, the pointwise
error in the combined solution holds for all points in Ω. Thus we have convergence of order
O(h4n log2(h

−1
n )) on the whole domain and not only at the mid-point if p = 4. In the

remainder of this section we want to derive such an interpolation technique. Reisinger
(2012) proved in his seminal paper that a splitting of the form (4.1) with p = 2 holds, if
multi-linear interpolations is applied. His proof is twofold: Under the assumption of a linear
interpolation operator P the error can be split into an interpolation error of the analytical
solution and the interpolation of the pointwise error at the grid Ωh. The evaluation of the
analytical solution at the discrete grid is denoted by uΩh

, i.e. we have

u(x, y)−(Puh)(x, y) (4.2)

= u(x, y)− (PuΩh
)(x, y) + (PuΩh

)(x, y)− (Puh)(x, y)

= u(x, y)− (PuΩh
)(x, y) + (P (uΩh

− uh))(x, y).

Hence two errors can be analyzed separately and the final result for u(x, y)− (Puh)(x, y)
follows immediately. We want to follow this approach and start with the derivation of a
tensor product based interpolant and investigate the structure of the interpolation error.

We construct the multidimensional interpolation P as the tensor product of univariate in-
terpolation Px, Py respectively. Px interpolates along the x direction, while Py interpolates
in coordinate direction of y. The univariate interpolant of a function g can be constructed
in the form

Pxg =

n∑

j=1

αj(g)fj

with a given function basis {fj}j=1,...,n with respect to linear functionals {λj}j=1,...,n, which
fulfill

λjPxg = λjg, for j = 1, ..., n.

This general framework allows for a wide class of interpolation techniques such as linear or
spline interpolation. Due to Lemma XVII.1 in de Boor (1978) the interpolant is unique with
α(g) = A−1(λjg), where A is the Gramian matrix A := (λifj)i,j=1,...,n. The interpolation
in y direction can be defined in the same way with the given basis {hj}j=1,...,m and linear
functionals {µj}j=1,...,m, so that the interpolant is given by

Pyg =

m∑

j=1

βj(g)hj ,

where β(g) = B−1(µjg) and B := (µihj)i,j=1,...,m. The tensor interpolation operator
P = Px ⊗ Py has the form

Pg =

n∑

i=1

m∑

j=1

αi(g)βj(g)fihj .
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Thus the error of Px and Py can be expressed in terms of their remainders Rx, Ry,

(PxgΩh
)(x, y) = g(x, y) + hpxRxg(x, y),

(PygΩh
)(x, y) = g(x, y) + hpyRyg(x, y),

where p is the order of the interpolant. The error of P can be given by separate univariate
remainder terms

PgΩh
= Px ⊗ PygΩh

= (I + hpxRx)⊗ (I + hpyRy)g (4.3)

= g + hpxRxg + hpyRyg + hpxh
p
yRx ⊗Ryg.

If the order p = 2 is desired, then linear interpolation is sufficient, while in the case of
p = 4, a cubic spline interpolation is appropriate. If cubic spline interpolation is used and
the function g has four continuous derivatives, then

‖Rxg‖∞ ≤ 5
384‖

∂4g
∂x4 ‖,

‖Ryg‖∞ ≤ 5
384‖

∂4g
∂y4

‖
(4.4)

holds, as proved by Hall (1968).

In the following we consider a function u ∈ C
(k,k)
K (Ω). Here C

(k,k)
K (Ω) denotes the function

space, where all partial derivatives ∂i+j

∂xi∂yj
with i, j = 1, ..., k are continuous and bounded

by K for an integer k. In the sequel we assume k to be large enough so that u is sufficiently
smooth. If an interpolation scheme of order p is used, we get due to (4.3)

(PuΩh
)(x, y) = u(x, y) + hpxc1(x, y;hx) + hpyc2(x, y;hy) + hpxh

p
yc1,2(x, y;hx, hy), (4.5)

for (x, y) ∈ Ω.

To analyze the second source of error in (4.2), it has to be shown that the finite difference
solution has an error of the following form

u(x, y)− uh(x, y) = hpxw1(x, y;hx) + hpyw2(x, y;hy) + hpxh
p
yw1,2(x, y;hx, hy),

for (x, y) ∈ Ωh. While Bungartz, Griebel, Röschke & Zenger (1994) showed that such a
splitting exists for the Laplace euqation in 2-d with second order finite difference schemes,
Reisinger (2012) developed a framework for elliptic equations and linear finite difference
schemes with arbitrary order. His work starts with a proof of consistency of the finite
difference scheme. The order of consistency p of a PDE can be investigated with a straight-
forward Taylor expansion

Lhu(x, y)− fh(x, y) = hpxτ1(x, y;hx) + hpyτ2(x, y;hy) + hpxh
p
yτ1,2(x, y;hx, hy),

for sufficiently smooth u and (x, y) ∈ Ωh. Here Lh denotes the discretization operator.
Under suitable regularity assumptions, we can conclude from Reisinger (2012) that it holds

uΩh
(x, y)− uh(x, y) = hpxw1(x, y;hx) + hpyw2(x, y;hy) + hpxh

p
yw1,2(x, y;hx, hy). (4.6)

Due to (4.6) the interpolation of the pointwise error yields

(
P (uΩh

− uh)
)
(x, y)

= hpx(Pw1(.;hx))(x, y) + hpy(Pw2(.;hy))(x, y) + hpxh
p
y(Pw1,2(.;hx, hy))(x, y).
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Applying equation (4.5), we obtain

(
P (uΩh

− uh)
)
(x, y)

= hpx
(
w1(x, y;hx) + hpxĉ1(x, y;hx) + hpy ĉ2(x, y;hy) + hpxh

p
y ĉ1,2(x, y;hx, hy)

)

+ hpy
(
w2(x, y;hx) + hpxc̃1(x, y;hx) + hpy c̃2(x, y;hy) + hpxh

p
y c̃1,2(x, y;hx, hy)

)

+ hpxh
p
y

(
w1,2(x, y;hx) + hpxc̄1(x, y;hx) + hpy c̄2(x, y;hy) + hpxh

p
y c̄1,2(x, y;hx, hy)

)
.

If we sort the terms according to their order and condense, the error can be rewritten as

(
P (uΩh

− uh)
)
(x, y) (4.7)

= hpxβ1(x, y;hx) + hpyβ2(x, y;hy) + hpxh
p
yβ1,2(x, y;hx, hy),

where

β1(x, y;hx) = w1(x, y;hx) + hpxĉ1(x, y;hx) (4.8)

β2(x, y;hy) = w2(x, y;hy) + hpy c̃2(x, y;hy)

β1,2(x, y;hx, hy) = w1,2(x, y;hx, hy) + ĉ2(x, y;h2) + c̃1(x, y;hx) + hpxĉ1,2(x, y;hx, hy)

+ hpy c̃1,2(x, y;hx, hy) + hpxc̄1(x, y;hx) + hpy c̄2(x, y;hy)

+ hpxh
p
y c̄1,2(x, y;hx, hy),

From equations (4.5) and (4.7) we can finally conclude for all (x, y) ∈ Ω that

u(x, y)− (Puh)(x, y)

= hpx (β1(x, y;hx)− c1(x, y;hx)) + hpy (β2(x, y;hy)− c2(x, y;hy))

+ hpxh
p
y (β1,2(x, y;hx, hy)− c1,2(x, y;hx, hy))

= hpxγ1(x, y;hx) + hpyγ2(x, y;hy) + hpxh
p
yγ1,2(x, y;hx, hy),

with γ1 := β1 − c1, γ2 := β2 − c2, γ1,2 := β1,2 − c1,2.

We now want to apply this framework to the Poisson equation (2.1) to derive a splitting
of the form (4.1) with p = 4. As already mentioned, the cubic spline interpolation ful-
fills the desired order. The solution u has to be sufficiently smooth with bounded mixed
derivatives. Since u needs to fulfill the consistency requirements of the finite difference
solution and as the functions w1, w2, w1,2 in (4.6) are interpolated via spline interpolation,

we assume u ∈ C
(10,10)
K (Ω) and that u and its derivatives vanish at the boundaries of Ω.

In order to show that a (semi-) discrete maximum principle holds for the finite difference
solution, we cite Theorem 2 by Ciarlet (1970):

Theorem 2 by Ciarlet (1970) The discrete finite difference operator satisfies the discrete
maximum principle if the following two matrix conditions are satisfied:

• (I) The finite difference matrix A is monotone,

• (II) the row sums of the matrix A are all nonnegative.

Since the row sum is zero in (4.11) and also in the case of a second order discretization at
the boundary it is clear that condition (II) is fulfilled. The monotonicity of −A directly
follows from Lemma 3.1. in the paper by Bramble & Hubbard (1964), where the fourth order
discretization to the Poisson equation −∆u = f is considered. Rewriting our discretization
to −Au = −f , we can conclude that a (semi-) discrete maximum principle holds if −f ≤ 0
or a (semi-) discrete minimum principle if −f ≥ 0 is fulfilled.
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This enables us to apply Lemma 3.1. (Reisinger (2012)) for our finite difference stencil
(4.11) and to get bounds for the Poisson problem with Dirichlet data and also for its
(semi-) discrete solution

‖u‖∞ ≤ 1
8‖f‖∞

‖u
(k)
h ‖∞ ≤ 1

8‖f‖∞,
(4.9)

where u
(k)
h is the semi-discrete solution in direction k for k = 1, 2. We obtain for (x, y) ∈ Ω

(PuΩh
)(x, y) = u(x, y) + h4xc1(x, y;hx) + h4yc2(x, y;hy) + h4xh

4
yc1,2(x, y;hx, hy), (4.10)

where ‖c1‖∞ ≤ 5
384K, ‖c2‖∞ ≤ 5

384K, ‖c1,2‖∞ ≤ 52

3842
K.

The standard fourth order finite difference scheme reads

Lhu(xi, yj)

=
−u(xi + 2hx, yj) + 16u(xi + hx, yj)− 30u(xi, yj) + 16u(xi − hx, yj)− u(xi − 2hx, yj)

12h2x

+
−u(xi, yj + 2hy) + 16u(xi, yj + hy)− 30u(xi, yj) + 16u(xi, yj − hy)− u(xi, yj − 2hy)

12h2y
.

(4.11)

Via Taylor expansion we obtain for (x, y) ∈ Ωh

Lhu(x, y)− fh(x, y) = h4xτ1(x, y;hx) + h4yτ2(x, y;hy).

The errors are bounded by ‖τ1‖∞ ≤ 1
90K and ‖τ2‖∞ ≤ 1

90K. We can conclude from
Reisinger (2012) that it holds

uΩh
(x, y)− uh(x, y) = h4xw1(x, y;hx) + h4yw2(x, y;hy) + h4xh

4
yw1,2(x, y;hx, hy)

for (x, y) ∈ Ωh. The functions w1, w2 are defined as the solution of the auxiliary problems

L
(x)
h w1(.;hx) = τ1(.;hx)

L
(y)
h w2(.;hy) = τ2(.;hy),

where L
(k)
h is the semi-discretization operator in direction k for k = x, y. The function w1,2

can be derived from

(L
(x)
h − Lh)w1(.;hx) =: h4yσ1;2(.;hx, hy)

(L
(y)
h − Lh)w2(.;hy) =: h4xσ2:1(.;hx, hy)

and solving

Lhw1,2 = σ1;2 + σ2;1.

For more details we refer to Reisinger (2012). The bounds are given by

‖w1‖∞ ≤ 1
8

1
90K

‖w2‖∞ ≤ 1
8

1
90K

‖w1,2‖∞ ≤ 2 1
82

1
902

K.
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Interpolation of the pointwise error of the finite difference solution and summation of both
error terms in (4.2) yields for (x, y) ∈ Ω

u(x, y)− (Puh)(x, y)

= h4x (β1(x, y;hx)− c1(x, y;hx)) + h4y (β2(x, y;hy)− c2(x, y;hy))

+ h4xh
4
y (β1,2(x, y;hx, hy)− c1,2(x, y;hx, hy))

= h4xγ1(x, y;hx) + h4yγ2(x, y;hy) + h4xh
4
yγ1,2(x, y;hx, hy),

with γ1 := β1 − c1, γ2 := β2 − c2, γ1,2 := β1,2 − c1,2. The functions β1, β2, β1,2 are defined
according to (4.8) and bounded by

‖β1‖∞ ≤ 389
276480K

‖β2‖∞ ≤ 389
276480K

‖β1,2‖∞ ≤ 1551721
38220595200K

These bounds can be derived by straightforward computation. We illustrate it for β1 =
w1 + h4xĉ1 = w1 + h4xRxw1. Exploiting (4.4), (4.9) we obtain

‖β1‖∞ ≤ ‖w1‖∞ + ‖Rxw1‖∞

≤
1

8

1

90
K +

5

384
‖
∂4

∂x4
w1‖∞

≤
1

8

1

90
K +

5

384

1

8
‖
∂4

∂x4
τ1‖∞

=
1

8

1

90
K +

5

384

1

8

1

90
‖
∂10

∂x10
u‖∞

≤

(
1

8

1

90
+

5

384

1

8

1

90

)

K =
389

276480
K

Thus we can derive bounds

‖γ1‖∞ ≤
(

389
276480 + 5

384

)
K = 3989

276480K

‖γ2‖∞ ≤ 3989
276480K

‖γ1,2‖∞ ≤
(

1551721
38220595200 + 52

3842

)

K = 8031721
38220595200K

Hence we obtained a suitable interpolation technique of order four.

5 The d - dimensional case

In this section we extend the framework to the general d dimension case. To do so we split
the error

u(x)− (Puh)(x) = u(x)−
(
PuΩh

)
(x)

︸ ︷︷ ︸

I

+
(
P (uΩh

− uh)
)
(x)

︸ ︷︷ ︸

II

. (5.1)

In a first step, we derive an expression for the interpolation error in I, if cubic spline inter-
polation is used in the tensor product approach. This corresponds to the case p = 4. Please
note that the same structure of proofs can be followed to derive a similar error splitting
for higher p. But since schemes with an order higher than four are usually not used in
practice, we are satisfied with p = 4. Next, we take a closer look at the error structure of
our fourth order finite difference solution. Then the knowledge of the interpolation error
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can be applied to the interpolation of the finite difference solution to obtain the structure
in II (Lemma 3). In a final step, we deduce Theorem 1, which gives us an expression of
the error (5.1).

Lemma 1. Let u ∈ C
(4,...,4)
K (Ω) and univariate cubic spline interpolation Pi along the i−th

coordinate direction for i = 1, ..., d with Piu = u + h4iRiu and remainder operator Ri be
given. Then the error of the tensor product interpolation P = P1 ⊗ P2 ⊗ ... ⊗ Pd for all
x ∈ Ω is

(PuΩh
)(x)− u(x) =

d∑

m=1

∑

{j1,...,jm}
⊂{1,...,d}

h4j1 · ... · h
4
jmcj1,...,jm(x;hj1 , ..., hjm),

where ‖cj1,...,jm‖∞ ≤ 5m

384mK for m = 1, ..., d.

Proof.

(PuΩh
)(x) = (P1 ⊗ P2 ⊗ ...⊗ PduΩh

)(x) = (I + h41R1)⊗ (I + h42R2)⊗ ...⊗ (I + h4dRd)u(x)

= u(x) +
d∑

m=1

∑

{j1,...,jm}
⊂{1,...,d}

h4j1 · ... · h
4
jmRj1 ⊗ ...⊗Rjmu(x),

where I is the identity. Defining cj1,...,jm(x;hj1 , ..., hjm) := Rj1 ⊗ ... ⊗ Rjmu(x) we obtain
the desired form. Due to the findings by Hall (1968) it holds

‖Rj1 ⊗ ...⊗Rjmu‖∞ ≤ 5m

384m ‖
∂(4,...,4)

∂x4j1 ...∂x
4
jm

u‖∞ ≤ 5m

384mK.

Lemma 2. Let u ∈ C
(6,...,6)
K (Ω) be the solution to the Poisson equation and let uh denote

its finite difference solution of order four at the grid point xh ∈ Ωh with step sizes h =
(h1, ..., hd). Then the pointwise error is

u(xh)− uh =
d∑

m=1

∑

{j1,...,jm}
⊂{1,...,d}

h4j1 · ... · h
4
jmwj1,...,jm(xh;hj1 , ..., hjm),

where
|wj1,...,jm(xh;hj1 , ..., hjm)| ≤ m! 8−m 90−mK for m = 1, ..., d.

Proof. Consistency of finite difference approximation via Taylor expansion and application
of the framework developed by Reisinger (2012).

Before we investigate the interpolation of the pointwise error, we derive bounds for the
remainder terms Rj1 ⊗ Rj2 ⊗ ... ⊗ Rjmwi1,i2,...,in . Similar to the two dimensional one can
compute bounds for the analytical and (semi-) discrete solution of the Poisson equation
with homogenous Dirichlet data

‖u‖∞ ≤ 1
8‖f‖∞

‖u
(i1,...,im)
h ‖∞ ≤ 1

8‖f‖∞.
(5.2)

10



Restricting ourself to function spaces with vanishing derivatives of sufficiently high order
at the boundary, we can also derive bounds for the derivatives of f , u respectively. We cite
from Reisinger (2012) the auxiliary problem with solution wi1,...,in

L
i1,...,in
h wi1,...,in = τi1,...,in

and the definition of the terms τi1,...,in

τi1,...,in :=
∑

z1,z2,...,zn−1,z
s.t. {z1,z2,...,zn−1}∪{z}

={i1,i2,...,in}

σz1,...,zn−1;z.

Please note that τi1 for i1 = 1, .., d is the truncation error of the finite difference stencil in
coordinate direction i1. The functions σz1,...,zn are obtained via the expansion

(

L
(i1,...,in)
h − Lh

)

wi1,...,in =
∑

k∈{1,..,d}
k 6∈{i1,...,in}

σi1,...,in;k.

The terms σi1,...,in;k can be expressed as the truncation error of the semi-discrete and fully

discrete problem from above and thus ‖σi1,...,in;k‖∞ = 1
90‖

∂6

∂xk
wi1,...,in‖∞ holds.

‖Rj1 ⊗Rj2⊗...⊗Rjmwi1,i2,...,in‖∞ ≤ 5m

384m ‖ ∂4m

∂x4
j1
·...·∂x4

jm

wi1,i2,...,in‖∞

≤ 5m

384m
1
8‖

∂4m

∂x4
j1
·...·∂x4

jm

τi1,i2,...,in‖∞

= 5m

384m
1
8‖

∂4m

∂x4
j1
·...·∂x4

jm

∑

z1,z2,...,zn−1,z
s.t. {z1,z2,...,zn−1}∪{z}

={i1,i2,...,in}

σz1,z2,...,zn−1;z‖∞

= 5m

384m
1
8

1
90‖

∂4m

∂x4
j1
·...·∂x4

jm

∑

z1,z2,...,zn−1,z
s.t. {z1,z2,...,zn−1}∪{z}

={i1,i2,...,in}

∂6

∂x6
z
wz1,z2,...,zn−1‖∞

The sum has n terms and we recursively repeat this procedure n − 1 times until we can
conclude the final result in the last step

≤ 5m

384m
1

8n−1
1

90n−1 ‖
∂4m

∂x4
j1
·...·∂x4

jm

(n− 1)!

n∑

k=1

∂6(n−1)

∂x6
i1
·...·∂x6

il 6=k
·...·∂x6

in

wk‖∞

≤ 5m

384m
1
8n

1
90n−1 ‖

∂4m

∂x4
j1
·...·∂x4

jm

(n− 1)!

n∑

k=1

∂6n

∂x6
i1
·...·∂x6

in

τk‖∞

≤ 5m

384m
1
8n

1
90nn!‖

∂4m+6n

∂x4
j1
·...·∂x4

jm
∂x6

i1
·...·∂x6

in

u‖∞

≤ 5m

384m
1
8n

1
90nn!K. (5.3)

Here we see that u ∈ C
(10,...,10)
K (Ω) has to be satisfied to ensure a bounded error.
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Lemma 3. Let u ∈ C
(10,...,10)
K (Ω) be the solution to the Poisson equation and let uh denote

its finite difference solution of order four on the grid Ωh with step sizes h = (h1, ..., hd).
Using tensor product interpolation P with univariate cubic spline interpolation in each
coordinate direction, then the interpolation of the pointwise error for all x ∈ Ω and the
discrete grid Ωh is

(P (uΩh
− uh))(x) =

d∑

m=1

∑

{j1,...,jm}
⊂{1,...,d}

h4j1 · ... · h
4
jmβj1,...,jm(x;hj1 , ..., hjm),

where

|βj1,...,jm(x;hj1 , ..., hjm)| ≤ K Cm

for m = 1, ..., d and constant Cm ∈ R.

Proof. Interpolation of the pointwise error gives

(
P (uΩh

− uh)
)
(x) =

d∑

m=1

∑

{j1,...,jm}
⊂{1,...,d}

h4j1 · ... · h
4
jm(Pwj1,...,jm(Ωh;hj1 , ..., hjm))(x), (5.4)

where

(
Pwj1,...,jm(Ωh;hj1 , ..., hjm)

)
(x) =wj1,...,jm(x;hj1 , ..., hjm)

+

d∑

n=1

∑

{l1,...,ln}
⊂{1,...,d}

h4l1 · ... · h
4
lnRl1 ⊗ ...⊗Rlnwj1,...,jm(x;hj1 , ..., hjm).

Condensing all terms in (5.4), which have the same leading step sizes, we define

h4l1 · ... · h
4
lk
βl1,...,lk(x;hl1 , ..., hlk) :=
∑

m,n∈N
s.t.m,n≤k
k≤m+n

∑

{i1,...,im}∪{j1,...,jn}
={l1,...,lk}

h4i1 · ... · h
4
imRi1 ⊗ ...⊗Rim h4j1 · ... · h

4
jnwj1,...,jn(x;hj1 , ..., hjn)

+ h4l1 · ... · h
4
lk
wl1,...,lk(x;hl1 , ..., hlk).

We already know that it holds (cf. (5.3))

‖Ri1 ⊗ ...⊗Rimwj1,...,jn‖∞ ≤ 5m

384m n! 8−n90−nK.

The inner sum has
(
k
m

)(
m

n−(k−m)

)
elements and we obtain the estimate

‖βl1,...,lk‖∞ ≤ K
∑

m,n∈N
s.t.m,n≤k
k≤m+n

(
k
m

)(
m

n−(k−m)

)
5m

384m n! 8−n90−n +Kk! 8−k90−k =: K Ck

Table 1 states the constants Cm for the β functions in Lemma 3 for m = 1, ..., 4.
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m 1 2 3 4

Cm 0.0014 4.0599e-5 8.8699e-7 1.7416e-8

Table 1: Bounds in Lemma 3 for different choices of m.

Theorem 1. Let u ∈ C
(10,...,10)
K (Ω) be the solution to the Poisson equation and let uh denote

its finite difference solution of order four on the grid Ωh with step sizes h = (h1, ..., hd).
Using tensor product interpolation P with univariate cubic spline interpolation in each
coordinate direction, then the error between the analytical solution and the interpolation of
the finite difference solution is

u(x)− (Puh)(x) =

d∑

m=1

∑

{j1,...,jm}
⊂{1,...,d}

h4j1 · ... · h
4
jmγj1,...,jm(x;hj1 , ..., hjm),

where ‖γj1,...,jm‖∞ ≤ ( 5m

384m + Cm)K for m = 1, ..., d.

Proof. The error can be rewritten as

u(x)− (Puh)(x) = u(x)−
(
PuΩh

)
(x)

︸ ︷︷ ︸

I

+
(
P (uΩh

− uh)
)
(x)

︸ ︷︷ ︸

II

.

The proof immediately follows from Lemma 1 (I) and Lemma 3 (II) and by definition of
γj1,...,jm := βj1,...,jm − cj1,...,jm .
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6 Numerical Experiments

We apply the high order combination technique to the Poisson equation to illustrate the
theoretical considerations of the previous sections. The Poisson equation is given by

∆u = f on Ω = (0, 1)d

u = g on ∂Ω,

and will be solved for several choices of g. In order to discretize the derivatives we use a
standard fourth order scheme in each dimension i = 1, ..., d

∂2uj

∂x2i
=

1

12h2i
(−uj+2 + 16uj+1 − 30uj + 16uj−1 − uj−2) +O(h4i ),

for each node uj . At points close to the boundary this five point stencil causes problems
since grid points from outside the domain are involved. A standard approach is to use
second order stencil of the form

∂2uj

∂x2i
=

1

h2i
(uj+1 − 2uj + uj−1) +O(h2i )

near the boundary. Thus lowering the order of consistency from four to two. We also want
to test a different approach and apply polynomial extrapolation. Therefore we consider
the grid in one dimension as a sequence of n+ 1 points x0, x1, ..., xn and the unknowns at
the corresponding grid points as u0, u1, ..., un. Then we can construct a polynomial P+,
which interpolates the first m+ 1 data points (x0, u0), (x1, u1), ..., (xm, um) via

P+(x) =

m∑

i=0

uili(x)

with Lagrange basis functions

li(x) =

m∏

j=0
j 6=i

x−xj

xi−xj
.

The polynomial P−, which interpolates the last m + 1 points (xn, un), (xn−1, un−1), ...,
(xn−m, un−m) can be constructed in an analogue manner. The value of a ghost point
(−h, u−1), (1 + h, un+1) can be computed by extrapolation of P+, P− respectively

u−1 = P+(x−1) = P+(−h)

un+1 = P−(xn+1) = P−(1 + h).

Table 2 shows the coefficients of the involved unknowns ui for different choices of m. To
quote an example: we want to compute u−1 with the help of a cubic polynomial. The first
line in the table (m = 3) states u−1 = 4u0 − 6u1 + 4u2 − 4u3. Hence we can replace the
ghost point by a linear combination of unknowns. Please note that in the case of m = 3,
the resulting finite difference stencil coincides with the second order stencil.

In the combination technique the PDE is solved on a sequence of anisotropic grids. If the
number of grid points in one of the dimensions is lower than the number of needed grid
nodes of the extrapolation technique, it cannot be applied.
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m u0/n u1/n−1 u2/n−2 u3/n−3 u4/n−4 u5/n−5 u6/n−6

3 4 -6 4 -4
4 5 -10 10 -5 1
5 6 -15 20 -15 6 -1
6 7 -21 35 -35 21 -7 1

Table 2: Coefficients in the polynomial extrapolation

m 1 2 3 4 5 6

# grid points 2 3 4 5 6 7

minimal level 0 1 2 2 3 3

Table 3: Extrapolation and needed level

Table 3 states the possible extrapolation technique for different levels. In the case of m = 2,
three grid points are needed to uniquely define and to extrapolate a quadratic polynomial.
Hence a level of one is sufficient, since the grid then consists of three points. Since we are
interested in the error on the whole grid we define the error of our numerical approximation
with help of the maximum-norm

e∞n := ‖uns −Rn
su‖∞,

where Rn
s restricts the analytical solution to the sparse grid at level n.

6.1 Experiment 1

As a first test example we consider a smooth function u ∈ C∞(Ω). Furthermore we want
to neglect any perturbations, which are introduced by the discretization near the boundary
of the domain. Thus we choose a solution that vanishes at the boundary

u(x) =
d∏

i=1

sin(πxi).

Please note that here also all mixed even derivatives vanish for x ∈ ∂Ω. The function f is
then given by f(x) = −dπ2u(x).

In Figure 3 we compare the errors of the combined solution for different choices of m and
d = 2. If the number of grid points needed for extrapolation exceeds the available number
of grid points in one of the coordinate directions, we choose a maximal m according to
Table 3 in this direction. Figure 4 shows the convergence in the case of m = 6 in two,
three and four spatial dimensions. Both plots reveal that the extrapolation technique has
no strong influence on the order of convergence for this test problem. Since the solution
and its mixed even derivatives vanish at the boundary this observation is not surprising.

6.2 Experiment 2

As the second test case, we want to evaluate the influence of the extrapolation techniques.
We have already seen in the first example that the order of convergence of the sparse grid
solution is not deteriorated if the solution and its mixed even derivatives vanish at the
boundary. In order to show what happens for non vanishing solutions and derivatives we

15



10−4 10−3 10−2 10−1 100

10−11

10−9

10−7

10−5

10−3

O(h4n log2(h
−1
n ))

h-n

e∞ n

m=4
Regression m=4
m=5
Regression m=5
m=6
Regression m=6

Figure 3: Convergence for different choices of m and d = 2 (Exp.1).
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Figure 4: Convergence for m = 6 and d = 2, 3, 4 (Exp.1).
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consider a function, which was used by Reisinger (2012):

u(x) = exp

(

−1
2

d∑

i=1

(xi − pi)
2

)

,

where p1 = 0.2208, p2 = 0.2907, p3 = 0.2805 and p4 = 0.2703. Hence we have f(x) =
∑d

i=1

[
(pi − xi)

2 − 1
]
u(x).

In Figure 5 the effect of extrapolation with polynomials of order four, five and six is
compared. The higher order leads to a better rate of convergence. However the theoretical
order cannot be reached. This observation can be explained by the usage of second order
finite difference stencils if the level is equal to one in a coordinate direction and since we
cannot apply high order extrapolation in the case of one level being equal to two. Therefore
we neglect these grids in our combination technique, which leads to the following slightly
modified version

un,ks =

d−1∑

q=0

(−1)q
(
d− 1

q

)
∑

|l|1=n+(d−1)−q
min{li,i=1,..,d}>k

ul(x).

The case k = 0 coincides with the standard combination technique, which can be found in
the literature, e.g. Bungartz & Griebel (2004),Griebel et al. (1992). Since for this technique
also the lower order terms cancel out, one can derive the same order of pointwise conver-
gence, expect for the leading coefficients, than for the standard combination technique.

10−4 10−3 10−2 10−1 100

10−11

10−9

10−7

10−5

10−3

O(h4n log2(h
−1
n ))

h-n

e∞ n

m=4
Regression m=4
m=5
Regression m=5
m=6
Regression m=6

Figure 5: Convergence for different choices of m and d = 2 (Exp.2).

Figure 6 shows the improvement of the rate of convergence if coarse grids are dropped. In
the case of k = 1 a fourth order extrapolation polynomial can be used at the boundaries
on all sub-grids, whereas for k = 2 we can apply sixth order extrapolation on all grids.

In Figure 7 the error in the maximum-norm for m = 6, k = 2 for the two, three and
four dimensional Poisson problem is plotted. The rate of convergence is in line with the
theoretical considerations of the previous sections.
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Figure 6: Convergence for m = 4, 5, 6 and d = 2.
(A): All grids with level one removed.
(B): All grids with level smaller or equal to two removed (Exp.2).
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Figure 7: Convergence for sparse grid solution (m = 6, min{li} > 2) in the two, three and four
dimensional case (Exp.2).
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7 Conclusion

In this paper we have introduced a tensor product based interpolation technique for the
combination technique. The high order case with fourth order finite difference stencils
and cubic spline interpolation has been investigated in detail for the Poisson problem.
Therefore we derived the splitting structure of the interpolation of the pointwise error of
the finite difference solution. It turned out that the high order of the discrete solution
can be preserved if tensor product interpolation of the same order is used to combine the
solutions within the combination technique.

In the case of sufficiently smooth solutions, which vanish at the boundary, the numerical
experiments directly validated our theoretical results. For solutions with non homogeneous
Dirichlet data the experiments revealed some deterioration coming from coarse grids, where
no high order solutions can be be computed. These problems could be cured with the help
of high order extrapolation at the boundary to some extent or by neglecting those coarse
grids in the combination technique.

In a next step we want to extend this framework to parabolic equations from computational
finance. Here a lot of high dimensional problems arise: such as basket options, fx options
or carbon emission allowances (Hendricks & Ehrhardt (2014)). We want to investigate in
how far the often non smooth payoff deteriorates the numerical order of convergence if high
order schemes are applied.
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