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Abstract. This paper considers the numerical solution of the fully-
nonlinear Black-Scholes problem, modelling the replication of contingent
claims in illiquid markets. First, we present well-posedness discussion on
the differential problem. Further, an unconditionally stable explicit finite
difference scheme is proposed as consistency, positivity and convergence
are studied. Numerical experiments validate our theoretical results.

1 Introduction

The derivation of the Black-Scholes (BS) option pricing model by Fisher Black
and Myron Scholes is a starting point in modern computational finance. It is,
however, based on several stylized unrealistic assumptions that oversimplify the
market dynamics. Local and stochastic volatility BS models also neglect impor-
tant characteristics such as transactions costs, feedback effects from the trad-
ing activity or market liquidity. These market features are implemented in the
modified volatility BS problems given by a fully-nonlinear backward degenerate
parabolic equation with the corresponding terminal condition [10,14,28]:
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∂S2
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∂S
− rV = 0, S > 0, t ∈ [0, T )

V (S, T ) = f(S), S > 0,

(1)

where S denotes the price of underlying asset, t stands for time, T - for maturity,
V (S, t) is the option price, σ̂ is the (modified) volatility function, r - the risk
free interest rate and f(S) is the payoff function.

There are many results on the numerical solution of the linear BS problem
and its generalizations [26,28]. However, few results can be found in the literature
on the numerical solution of nonlinear BS equations of type (1). In Company
et al. [6,7] the authors propose an explicit finite difference scheme that requires
a restrictive stability condition on the time and spatial mesh sizes. Ankudinova



and Ehrhardt [3] use a Crank-Nicolson method, combined with a high-order
compact difference scheme, to construct a numerical scheme for the linearized
BS equation using frozen values of the nonlinear volatility. Implicit numerical
schemes for nonlinear option pricing problems with uncertain volatility have
been analyzed in [18,22,29]. For more details on nonlinear BS problems and
their numerical solution we refer the interested reader to the book [10].

This paper focuses on nonlinear models, pricing the replication of a European
contingent claim in a market with imperfect liquidity as market liquidity is
currently an issue of high concern in financial risk management. Most of the
option pricing models assume that an option trader can not affect the underlying
asset price in trading the underlying to replicate the option payoff which is
reasonable only in a perfect liquid market. The market liquidity of assets affects
their prices and expected returns as investors require higher return on assets
with lower market liquidity as compensation for the higher cost of trading these
assets. According to Frey and Polte [14] these models can be classified into
two groups, illiquid market models with purely temporary price impact and
with a permanent price impact on the underlying price dynamics for all market
participants. In the later case hedging on the equilibrium price of the stock results
in additional supply or demand. This effect is usually referred as first-order effect
in the literature [15] if the hedging is based on the linear BS equation.

Here, we will deal with the model of Frey and Patie [13] including a liquidity
parameter depending on the asset, that tries to cover liquidity drops, i.e. the
market liquidity falls if the stock price decreases, cf. [15]. Secondly, we will con-
sider the illiquid market model of Liu and Yong [23] that regularizes the partial
differential equation close to maturity. More details on illiquid market models
are found in the recent book [11].

1.1 The Frey and Patie setting

We now present the approach of Frey and Patie [13] in modelling the hedge cost
when replicating the option payoff in illiquid markets. It is assumed that stock
price dynamics follows the stochastic differential equation (SDE)

dSt = σSt− dWt + ρλ(St−)St− dα
+
t ,

whereWt is a standard Brownian motion, σ is the constant volatility, St− denotes
the left limit limS→t,S<t St− of the stock price St−, αt denotes the number of
shares in the portfolio at time t and limα+

t →t,S<t αS . The parameter ρ 6= 0 is

a characteristic of the market independent of the payoff of the option; it is a
measure for the feedback-effect of a large trader. The liquidity profile of the
market is described by the continuous and positive function λ(S) and chosen in
a way to obtain the desired payoff. The values of ρ and λ(S) must be calibrated
from the observed option prices.
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Hedging a terminal value claim with maturity T and payoff f(S) results in
a BS partial differential equation (PDE) for the hedge cost V (S, t)

∂V

∂t
+

σ2S2

2
(

1− ρλ(S)S ∂2V
∂S2

)2

∂2V

∂S2
= 0, (S, t) ∈ ΩT := Ω × (0, T ],

V (S, T ) = f(S), S ∈ Ω := (0,+∞),

(2)

where the Gamma greek ∂2V
∂S2 (S, t) satisfies the assumption A4 of [13]

1− ρλ(S)S
∂2V

∂S2
(S, t) ≥ δ0 > 0, (S, t) ∈ ΩT . (3)

In view of the nonlinear PDE (2) this is a necessary condition for the well-
posedness, cf. Section 1.2. In a financial interpretation A4 assumes that the
variation of the large trader’s trading strategy ϕ(St, t) is small compared to the
market, cf. [14]:

1− ρλ(St)St
∂ϕ

∂S
(St, t) ≥ 0 a.s. (4)

Later one can argue that the delta hedging ϕ = ∂V
∂S is a reasonable trading

strategy were the hedger is completely aware of the market feedback effect and
changes his strategy accordingly, cf. [15]. This full feedback case leads to the fully
nonlinear PDEs considered here.

The payoff function f(S) is assumed to be a continuous piece-wise linear
function and in the case of replicating a vanilla European option we have

V (S, T ) =

{

max(S − E, 0), in the case of a call option

max(E − S, 0), in the case of a put option
(5)

where E denotes the strike price.

1.2 Well-posedness of the differential problem

The well-posedness analysis of fully-nonlinear degenerate parabolic problems is
complicated in comparison with linear, semi- and quasi-linear problems. In the
classical solution concept the uniqueness is often established by the comparison
principle, following from some maximum principle where the nonlinear opera-
tor satisfies some kind of monotonicity property, in particular ellipticity [12].
However, due to the full nonlinearity, the existence a priori estimates has to be
carried out in C2,α(0 < α < 1) Hölder spaces, cf., e.g. [23]. If the data and the
boundary do not satisfy certain regularity and structure conditions classical so-
lutions do not exist and these issues are further amplified by the fact that fully-
nonlinear problems, in general, do not admit weak formulation in (weighted)
Sobolev spaces.

The viscosity solution theory, introduced by P.-L. Lions several decades
ago, provides a general framework for investigating the well-posedness of fully-
nonlinear problems. It is of particular importance to financial applications as the
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viscosity solution is the financially-relevant solution [4,14,29]. We stress that the
ellipticity property of the nonlinear operator and the comparison principle are
critical for both the classical and generalized (viscosity) solution concept, see
the Appendix. Moreover, by the comparison principle we have that the solution
of the initial-boundary value problems, corresponding to (2) and (36) is positive
(short for non-negative) if f(S) is positive which is an important property of
the differential solution (the hedge cost) in the financial setting.

We now recall the results of Agliardi et al. [2] on the local comparison princi-
ple (the authors also discuss its extension to the global comparison principle by
constructing appropriate barrier functions) for nonlinear degenerate backward
parabolic PDEs

ut + x2G(x, t, p, q) = 0, (x, t) ∈ ΠT := (0, b)× (0, T ) (6)

where p ≡ ∂u
∂x , q ≡ ∂2u

∂x2 and G ∈ C2(ΠT × R
2). The parabolic part of the

boundary is denoted by ΓT = I ∪ II ∪ III, where I = {x = 0, 0 < t < T},
II = {0 < x < b, t = T}, III = {x = b, 0 < t < T}, 0 = xmin ≤ xmax = b.

Suppose that u is a classical solution of (6) in ΠT and

Gq ≡
∂G

∂q
(x, t, ψ

′

(x), ψ
′′

(x)) > 0 for 0 ≤ x ≤ b, ′ ≡ d/dx (7)

where u |II = u(x, T ) = ψ(x) ∈ C2
p [0, b] and

∂u
∂x = ψ

′

(x), ∂2u
∂x2 = ψ

′′

(x) for
t = T . We have that under the condition (7) and also G(x, t, 0, 0) = 0 there
exists a positive constant δ > 0 such that maxΠT,T−δ

u = maxΓT,T−δ
u, where

ΠT,T−δ = {δ < t < T, a ≤ x ≤ b}, ΓT,T−δ is the parabolic part of the boundary
of ΠT,T−δ. Similarly, minΠT,T−δ

u = minΓT,T−δ
u.

Remark 1. The result refers to the truncated problem (2) as for the numerical
method we consider an artificial truncation of the domain so that S ∈ [0, b].
Consistent with their analysis of Barles et al. [5] we solve problems (2) with
Dirichlet boundary conditions, compatible with the payoff:

V (0, t)f(0), V (b, t) = f(b) (8)

Remark 2. Since the payoff function V (S, T ) = f(S) ∈ C0
p(Ω) one has to con-

sider smoothing of the initial data to apply the comparison principle result. Frey
[13] suggests that one may use, for example,

f(S) =
1

2

(

S − E +
√

(S − E)2 + α
)

for some small α > 0.

Let us now consider the Frey and Patie model (2). We have

Gq(S, q) =
σ2

2 (1− ρλ(S)Sq)
2

1 + ρλ(S)Sq

1− ρλ(S)Sq
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so the condition (7) for the local comparison principle takes the form

σ2

2 (1− ρλ(S)Sf ′′)
2

1 + ρλ(S)Sf
′′

1− ρλ(S)Sf ′′
> 0 for 0 = Smin ≤ S ≤ Smax = b

This inequality will be fulfilled if, for example,

∣

∣

∣f
′′

(S)
∣

∣

∣ <
1

ρmax |λ(S)S|
, S ∈ [0, b] (9)

Then also (3) holds for the payoff as, indeed, it is a particular case of (9) for
convex payoff (vanilla option) and nonnegative market liquidity function λ(S).
The assumption (3) is now recognized as the ellipticity condition for the non-
linear operator of the Frey model (2). We now observe the major issue of this
model for the vanilla payoff (and also any other market instrument as their pay-
offs are, in general, linear combination of call and put payoffs): the nonlinear
operator of the Frey model (2) is not elliptic at the strike price near maturity.
That is because the second spatial derivative, the Gamma greek, of the payoff is
the Dirac δ-function (more precisely, δ-distribution), concentrated at the strike,
and it violates (3) near maturity.

The analyzed parabolicity issue of the Frey model is also consistent with the
considerations, presented by Frey and Polte [14] where the authors rewrite (2)
as a dynamic programming (HJB) equation for very small ρ. However, they fail
to give clear and precise answer whether the model is credible or not.

Remark 3. We confirm these considerations by numerical simulations showing
that the diffusive (smoothing) property of solution operator in time is not present
at the strike for the Frey model. The smoothing property for solution u(x, t) of
the (model) heat equation with initial data v(x) and solution operator in time
E(t) asserts that, cf. Larsson and Thomeè [21]:

∥

∥

∥D
j
tD

αE(t)u
∥

∥

∥

∞
≤ Ct−j−|α|/2 ‖v‖∞ , t > 0 (10)

where α stands for the multi-index for d > 1. This property asserts that the
solution of the heat equation is smooth for t > 0 even if v is nonsmooth.

The aim of this paper is the numerical analysis of (2) by a stable explicit
finite difference scheme. Having in mind the presented considerations for the dif-
ferential problem we investigate how the numerical solution inherits these well-
posedness (ellipticity) issues. The application of unconditionally stable time step-
ping method is important for the analysis as we want to focus on the monotonicity
of the scheme (the more restrictive property). In the frame of parabolic problems
the monotonicity of the scheme should be understood as discrete parabolicity
[4,5], ie discrete maximum principle whence the comparison principle follows.

The generalization of the presented illiquid market modelling in multidimen-
sional (multi-asset or stochastic volatility setting) is far from trivial where a
very recent attempt in this direction is presented by Yazdanian and Pirvu [30].

5



We observe severe well-posedness issue with the one-dimensional Frey model
(2) and for multidimensional problems we may outline that (beyond modelling)
there are two major challenges - the analysis of the differential problem and the
construction of a computationally efficient consistent and monotone scheme (in
the general case of time- and space-dependent parameters and cross derivative
term it is a quite difficult task) [12], often referred to as ’curse of dimensionality’.

Our paper is organized as follows. Section 2 analyzes the semi-discretization
of the nonlinear problem (2) and the consequent linearization by the Picard iter-
ation. In Section 3 we present and investigate the local Crank-Nicolson method
(LCN) for the Frey and Patie model (2). A section to follow, Section 4, considers
another modelling approach in illiquid markets, suggested by Liu and Yong [23],
and its numerical solution by the proposed numerical method. Finally, numerical
experiments are given in Section 5, discussing the properties of the numerical
method and supplying numerical evidence to our theoretical analysis.

2 Spatial semi-discretization and linearization

This section is devoted to the analysis of the semi-discretization of the Frey
and Patie PDE (2), equipped with the terminal condition (5) and boundary
conditions (8). After performing time-reversal we introduce the spatial grid Ωh

with step h = △S by the nodes Si = ih, i = 0, . . . ,M so that Mh = b, while we
set tn = nτ , n = 1, 2, . . . , N, for the temporal step τ = T/N .

Before we apply the spatial semi-discretization the following standard as-
sumption on the regularity of the differential solution is made.

Assumption 1 The solution of the problem (2) has continuous spatial deriva-
tives up to fourth order.

The corresponding autonomous ODEs system (by the method of vertical

lines) for the semi-discrete solution v(t) = [v1(t), . . . , vM−1(t)]
⊤
by the centered-

in-space approximation

∂2V

∂S2
(Si, t) =

V (Si+1, t)− 2V (Si, t) + V (Si−1, t)

h2
+O(h2)

is obtained as
v′(t) = A(v(t))v(t) + g, t ∈ (0, T ] (11)

with

A(v) =
1

2h2
tridiag (βi(v), αi(v), γi(v))

αi(v) = −2σ̂2
i (v)S

2
i , βi(v) = σ̂2

i (v)S
2
i , γi(v) = σ̂2

i (v)S
2
i (12)

σ̂2
i (v) =

σ2

(1− ρλ(Si)Si∆iv)
2 ,

where g ∈ R
M−1 is the vector, generated by the boundary conditions,

g =
1

2h2
[β1f(0), 0, . . . , 0, γM−1f(b)]

⊤

and ∆i is the finite difference operator, corresponding to the approximation (2).
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2.1 Properties of the semi-discrete nonlinear system

We now discuss the existence of a unique solution of the semi-discrete nonlinear
ODE system (11). The consistency and stability properties of the scheme are
proven. The qualitative behaviour of the semi-discrete solution is investigated
by the comparison principle and convergence to the viscosity solution of the
nonlinear PDE of Frey and Patie (2) is obtained.

Lemma 1. The system (11) with initial data, corresponding to the payoff, has

unique solution v(t) = [v1(t), . . . , vM−1(t)]
⊤

in the convex domain

D := {w ∈ R
M−1 : |∆iw| <

1

ρ |λ(Si)Si|
, i = 1, . . . ,M − 1, t ∈ (0, T ]}

Proof. In the sequel we use the standard notations for the discrete maximum
norm

‖w‖∞ = max
1≤i≤M−1

|wi| , ‖B‖∞ = max
1≤j≤M−1

M−1
∑

k=1

|bjk|

for w ∈ R
M−1 and B ∈ R

(M−1)×(M−1). Moreover, we also introduce

δ0 := min
ω∈D

{1− ρλ(Si)Si∆iw},

so that we have δ0 > 0. The Lipschitz continuity of the nonlinear operator
F (w) := A(w)v + g

‖F (w̃)− F (w)‖∞ ≤ sup
w∈D

‖JF (w)‖∞ ‖w̃ − w‖∞

is now considered as JF (w) is the Jacobian matrix of F (note that ‖F (w)‖ is
bounded as w ∈ D). One computes

∂Fi

∂wi
=

1

2h2

(

αi +
∂αi

∂wi
wi +

∂βi
∂wi

wi−1 +
∂γi
∂wi

wi+1

)

∂Fi

∂wi−1
=

1

2h2

(

βi +
∂αi

∂wi−1
wi +

∂βi
∂wi−1

wi−1 +
∂γi
∂wi−1

wi+1

)

∂Fi

∂wi+1
=

1

2h2

(

γi +
∂αi

∂wi+1
wi +

∂βi
∂wi+1

wi−1 +
∂γi
∂wi+1

wi+1

)

.

(13)

Further we have

∂αi

∂wi
=

8

h2
σ2ρλ(Si)S

3
i

δ
3

0

∂αi

∂wi+1
=

∂αi

∂wi−1
=
∂βi
∂wi

=
∂γi
∂wi

= −
4

h2
σ2ρλ(Si)S

3
i

δ
3

0

∂βi
∂wi+1

=
∂βi
∂wi−1

=
∂γi
∂wi+1

=
∂γi
∂wi−1

=
2

h2
σ2ρλ(Si)S

3
i

δ
3

0

,

(14)
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so that we derive

∂Fi

∂wi
=

1

2h2

(

αi +
4σ2ρλ(Si)S

3
i

δ
3

0

∆iw

)

∂Fi

∂wi−1
=

1

2h2

(

βi +
2σ2ρλ(Si)S

3
i

δ
3

0

∆iw

)

∂Fi

∂wi+1
=

1

2h2

(

γi +
2σ2ρλ(Si)S

3
i

δ
3

0

∆iw

)

It is now obvious that F (w) is Lipschitz continuous with Lipschitz constant
L = O

(

h−2
)

for w ∈ D and therefore the assertion follows, cf. [17]. ⊓⊔

Remark 4. Let us remark that the condition

|∆iv(0)| ≤
1

ρ |λ(Si)Si|
, i = 1, . . . ,M − 1

may be regarded as a semi-discrete analogue of (9). The condition for existence
and uniqueness of the semi-discrete solution for convex payoff reduces to

1− ρλ(Si)Si∆iv(t) > 0, i = 1, . . . ,M − 1, t ∈ (0, T ]

Further we need this important monotonicity property to motivate the conver-
gence of the proposed discretizations.

Further we need the Gronwall lemma which is a standard tool in estimating
the growth of functions that satisfy an integral inequality.

Lemma 2. [16] (Gronwall) Let p and q be continuous real functions with p ≥ 0.
Let c be a non-negative constant. Assume that

p(t) ≤ q(t) + c

∫ t

0

p(s) ds ∀t ∈ [0, T ]

Then we have the estimate

p(t) ≤ ectq(t) ∀t ∈ [0, T ]

Theorem 1. The semi-discrete difference scheme (11) is consistent and stable.

Proof. We define the spatial truncation error

σh(t) = V
′

h(t)−A(Vh(t))Vh(t)− g

where Vh is the projection of the PDE solution on the spatial grid. The con-
sistency estimate is subject to similar considerations as given in the paper of
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Company et al. [6] and we shall now briefly sketch its application to our prob-
lem. The semi-discrete difference scheme (11) is said to be consistent of order q
with (2) if we have, cf. [19]

‖σh(t)‖∞ = O(hq) uniformly for 0 ≤ t ≤ T

Starting with the following consideration

σh(t) = V
′

h(t)−AVh(t)− g = V
′

(t)−
1

2
σ̂(Si, t)S

2
i

∂2V

∂S2
(Si, t)− g

+
1

2
σ̂(Si, t)S

2
i

∂2V

∂S2
(Si, t)−AVh(t) =

1

2
σ̂(Si, t)S

2
i

∂2V

∂S2
(Si, t)−AVh(t)

we introduce the notation ∆iVh(t) = x +∆x, where x = ∂2V
∂S2 (Si, t) and ∆x =

O(h2), according to (2).
If one considers the function gS(x) =

x
1−ρλ(S)Sx for a fixed value of the un-

derlying asset variable S then gS(x) is a well-defined continuously differentiable
function in any domain where 1 − ρλ(S)Sx 6= 0 which corresponds to the well-
posedness condition (37). Therefore, we obtain by the mean value theorem

σh(t) = σ2S2
i (gSi

(x+∆x)− gSi
(x)) = σ2S2

i g
′

Sj
(x+ θ∆x)∆x, 0 < θ < 1

and since g
′

Sj
= 1+ρλ(S)Sx

(1−ρλ(S)Sx)3
is bounded uniformly in t ∈ [0, T ] we derive that

‖σh(t)‖∞ = O(h2)

so that the semi-discrete difference scheme is consistent of order 2 in space.
Next, we proceed with the stability estimate. The solution of (11) for t ∈

[0, T ] is also a solution of the integral equation

v(t) = v(0) +

∫ t

0

F (v(s)) ds.

A small perturbation in the initial data results in a second solution

ṽ(t) = ṽ(0) +

∫ t

0

F (ṽ(s)) ds

and we arrive at

‖v(t)− ṽ(t)‖∞ ≤ ‖v(0)− ṽ(0)‖∞ +

∫ t

0

‖F (v(s))− F (ṽ(s))‖∞ ds

≤ ‖v(0)− ṽ(0)‖∞ + L

∫ t

0

‖v(s)− ṽ(s)‖∞ ds

By Lemma 2 we obtain

‖v(t)− ṽ(t)‖∞ ≤ eLt ‖v(0)− ṽ(0)‖∞ ∀t ∈ [0, T ] (15)
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This estimate (15) is, however, sub-optimal for stiff problems (large L). The
following improvement is presented in Hairer et al. [17]

‖v(t)− ṽ(t)‖∞ ≤ e0 ‖v(0)− ṽ(0)‖∞ ∀t ∈ [0, T ]

since by (13) and (14) we have

µ∞ (JF (v)) = max
1≤i≤M−1

(

αi + βi + γi +

(

∂αi

∂vi
+
∂βi
∂vi

+
∂γi
∂vi

)

vi

+

(

∂αi

∂vi−1
+

∂βi
∂vi−1

+
∂γi
∂vi−1

)

vi−1 +

(

∂αi

∂vi+1
+

∂βi
∂vi+1

+
∂γi
∂vi+1

)

vi+1

)

= 0,

where µ∞(·) is the logarithmic maximum norm. ⊓⊔

Definition 1. [19] The system (11) is positive (short for ”non-negativity pre-
serving”) if

v(0) ≥ 0 implies v(t) ≥ 0 ∀t ≥ 0

Theorem 2. [19] Suppose that the nonlinear operator F (v) = A(v)v+g is con-
tinuous and satisfies the Lipschitz condition with respect to v. Then the system
(11) is positive if for any vector v ∈ R

M−1 and t ≥ 0

v ≥ 0, vi = 0 implies Fi(v) ≥ 0, i = 1, . . . ,M − 1 (16)

Moreover, if also the following property is valid

∂Fi(v)

∂vj
≥ 0, i 6= j, i, j = 1, . . . ,M − 1 (17)

we also have the comparison principle for the solution of the system (11), ie

v(0) ≤ ṽ(0) implies v(t) ≤ ṽ(t)

Proof. Since the off-diagonal elements βi and γi in (12) are non-negative while
the diagonal elements αi are non-positive the requirement (16) is fulfilled.

We now consider the condition (17) as we obtain by (12), (13) and (14)

∂Fi

∂vi−1
(v) =

1

2h2
σ2S2

i

(1− ρλ(Si)Si∆iv)
2

(

1 +
2ρλ(Si)Si

(1− ρλ(Si)Si∆iv)
∆iv

)

=
1

2h2
σ2S2

i

(1− ρλ(Si)Si∆iv)
2

(

1 + ρλ(Si)Si∆iv

1− ρλ(Si)Si∆iv

)

Recalling v ∈ D so that we have |∆iv| ≤
1

ρ|λ(Si)Si| and therefore ∂Fi

∂vi−1
(v) > 0.

Analogously, we obtain ∂Fi

∂vi+1
(v) > 0. ⊓⊔

Following Barles [4] and taking into account Theorems 1 and 2 we have the
following corollary.

Corollary 1 The semi-discrete solution of (11) converges to the viscosity solu-
tion of the nonlinear PDE (2) (if there is one).
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2.2 The Picard iteration

We now consider the solution of (11) for t ∈ [tn, tn +1]. It is also the solution of
the integral equation

v(t) = v(tn) +

∫ t

tn

(A(v(s))v(s) + g) ds

and will be approximated by the sequence a functions v0, v1, v2, . . . , where v0 =
v(tn) and

vk(t) = v0 +

∫ t

tn

(

A(vk−1(s))vk(s) + g
)

ds (18)

which is called Picard iteration. By similar, yet simplified, considerations as in
the nonlinear case we have that vk exists and is bounded.

On each time level, t ∈ [tn, tn+1], the following estimate is valid for k = 1

∥

∥v(t)− v1
∥

∥

∞ ≤





∞
∑

j=1

1

j!
(L(t− tn))

j



 (t− tn) max
tn≤s≤t

∥

∥

∥

∥

1

2h2
A(v0)v0

∥

∥

∥

∥

∞

where L > 0 is the Lipschitz constant, associated with the nonlinear operator
A(v). Since t− tn ≤ τ we have

∥

∥v(t)− v1
∥

∥

∞ ≤
(

Lτ +O
(

(Lτ)2
))

τL
∥

∥v0
∥

∥

∞ = L2τ2
∥

∥v0
∥

∥

∞ +O
(

(Lτ)3
)

(19)

and second order of convergence in τ on each time level for a fixed h > 0.
It is now reasonable to allow the nonlinearities in (11) to lag one step behind

and we obtain the following linear system

v′(t) = Anv(t) + g, t ∈ [tn, tn+1] (20)

An =
1

2h2
tridiag (βn

i , α
n
i , γ

n
i ) , (21)

where the solution of (20) is also the solution of (18). We use the notations

αn
i = −2σ̂2

i,nS
2
i , βn

i = σ̂2
i,nS

2
i , γni = σ̂2

i,nS
2
i

with

σ̂2
i,n =

σ2

(1− ρλ(Si)Si∆iv(tn))
2 .

We define the solution of the linearized system at the final time level as the
solution, obtained by successive resolution of (20) on each time level [tn, tn+1],
i = 0, . . . , N − 1.

Lemma 3. The solution of the linearized system (20) at the final time level,
converges to the solution of the nonlinear system with rate of convergence 2 in
τ = tn+1 − tn, n = 0, . . . , N − 1.
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Proof. We define ǫn+1 = v(tn+1) − v1(tn+1), i = 0, . . . , N − 1, and therefore,
from (19), we have

‖ǫ1‖∞ ≤ L2τ2‖v0‖∞ +O(L3τ3) = L2τ2‖f‖∞ +O(L3τ3)

For ǫ2 = v(t2)− v1(t2) we obtain

‖ǫ2‖∞ ≤ L2τ2‖v1(t1)‖∞ +O(L3τ3)

≤ L2τ2‖ − v(t1) + v(t1) + v1(t1)‖∞ +O(L3τ3)

≤ L2τ2
(

‖ǫ1‖∞ + ‖v(t1)‖∞,t∈[t0,t1]

)

+O(L3τ3)

≤ L2τ2
(

L2τ2‖f‖∞ +O(L3τ3) + ‖v(t1)‖∞
)

+O(L3τ3)

and therefore we have

‖ǫ2‖∞ ≤ L2τ2‖v(t1)‖∞ +O(L3τ3).

Successive application of these considerations yields

‖ǫN‖∞ ≤ L2τ2‖v(tN−1)‖∞ +O(L3τ3).

⊓⊔

Further, we apply the following abuse of notations, see (21),

An = tridiag (βn
i , α

n
i , γ

n
i )

and the solution of (20) reads, cf. Smith [25]

v(t) = −2h2A−1
n g + exp

(

t− tn
2h2

An

)

(

v(tn) + 2h2A−1
n g

)

. (22)

3 The LCN time stepping method for the Frey and Patie

problem

The time stepping method is of particular importance to the numerical analysis
of a differential problem as the stability of the scheme is a necessary condition
for convergence of both linear and nonlinear problems.

Indeed, the standard fully-explicit scheme implies serious restrictions on the
time step and in the nontrivial case of, e.g., singularly perturbed problems it is
highly impractical as the grid Péclet number (the ratio of the convection and
diffusion coefficients, scaled by h) becomes extremely large. Company et al. [6]
propose fully-explicit finite difference schemes for the PDE (2). However the
scheme is stable only for the severe time step τ restriction

τ

h2
≤

1

L(h)σ2b2
, L(h) =

1

(1− ρm/h)
2 > 0 (23)
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where m = max{Sλ(S) : 0 ≤ S ≤ b}. Condition (23) is the necessary condition
for L∞-stability and monotonicity of the standard fully-explicit scheme.

Implicit time stepping prove to be more reliable for the problem (2), cf.
Heider [18]. However, when using implicit schemes one has to invert large-sized
matrices which is computationally expensive. The issues with the convergence
of the Newton’s iteration and whether the scheme is stable but not monotone or
just unstable are not clearly answered as stability of the backward Euler scheme
follows by the discrete maximum principle.

We consider now the application and the analysis of a distinct, yet also fully
explicit, unconditionally stable approach to the time semi-discretization under
the following assumption.

Assumption 2 The solution of the problem (2) has continuous temporal deriva-
tives up to second order.

It is well-known that the Crank-Nicolson time-stepping method is based on
the following approximation of the time propagator, cf. [25]:

exp
( τ

2h2
An

)

≈ (I − µAn)
−1(I + µAn) (24)

where µ = τ
4h2 . We now present the Lie-Trotter product formula:

Lemma 1 [27] Let the matrix A can be denoted as A =
∑M−1

i=1 Ai. Then

exp

(

t

h2
A

)

= lim
δ→∞

(

M−1
∏

i=1

exp

(

tAi

δh2

)

)δ

, δ = 1, 2, . . .

for any h, t.

The Lie-Trotter product formula is a corollary of the Baker-Campbell-Hausdorff
formula (BCH) for A = A1 +A2 [19]

exp(τA2) exp(τA1) = exp(τÃ) with

Ã = A+
1

2
τ [A2, A1] +

1

12
τ2 ([A2, [A2, A1]] + [A1, [A1, A2]]) + . . . (25)

where [A2, A1] denotes the commutator of A2 and A1. It follows from Lemma 1

exp
( τ

2h2
A
)

≈

M−1
∏

i=1

exp

(

τAi

2h2

)

(26)

so (26) is a new approximation. In order to use this approximation we split the
matrix A in (21) as follows:

A1 =















αn
1 γn1 0 . . . 0
0 0 0 . . . 0

·
. . .

. . .
. . . ·

0 . . . 0 0 0
0 . . . 0 0 0















, AM−1 =















0 0 . . . 0
0 0 . . . 0

·
. . .

. . . ·
0 . . . 0 0
0 . . . βn

M−1 α
n
M−1
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Ai =

















0 . . . . . . . . . . . . . . . 0

·
. . .

. . .
. . .

. . .
. . . ·

0 . . . βn
i αn

i γni . . . 0

·
. . .

. . .
. . .

. . .
. . . ·

0 . . . . . . . . . . . . . . . 0

















.

For any i = 1, 2, . . . ,M − 1, we obtain by (24)

exp
( τ

2h2
Ai

)

≈ (I − µAi)
−1(I + µAi) (27)

and further application of (26) and (27) results in

exp
( τ

2h2
A
)

≈

M−1
∏

i=1

(I − µAi)
−1(I + µAi). (28)

We now consider the matrix I−µAi, i = 2, . . . ,M−2 (similar considerations
are valid for i = 1 and i =M − 1). The approximation (28) is applicable to the
problem (20) if the inverse matrix (I − µAi−1)

−1 exists.

Lemma 4. The matrix I − µAi−1 is a M-matrix.

Proof. By (21) we have that

I − µAi =

















1 . . . . . . . . . . . . . . . 0

·
. . .

. . .
. . .

. . .
. . . ·

0 . . . −µβn
i 1− µαn

i −µγni . . . 0

·
. . .

. . .
. . .

. . .
. . . ·

0 . . . . . . . . . . . . . . . 1

















so that I − µAi is a M-matrix if the following conditions are fulfilled

sign condition : 1− µαn
i > 0, βn

i ≥ 0, γni ≥ 0

diagonal dominance : 1− µαn
i − µβn

i − µγni ≥ 0

All of the above inequalities are trivial to check. ⊓⊔

Consequently, I − µAi−1 is non-singular and we combine (20) and (28) to
derive a new scheme

Ún+1 = −2h2A−1
n g +

M−1
∏

i=1

(I − µAi)
−1(I + µAi)

(

Ún + 2h2A−1
n g

)

(29)

In order to improve the numerical accuracy of (29) we define Bi = AM−i. By
substituting Bi into (29) we deduce that

Ùn+1 = −2h2A−1
n g +

M−1
∏

i=1

(I − µBi)
−1(I + µBi)

(

Ùn + 2h2A−1
n g

)

(30)
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We take the mean value of (29) and (30) to obtain a more symmetric scheme

Un+1 =
1

2

(

M−1
∏

i=1

(I − µAi)
−1(I + µAi) +

M−1
∏

i=1

(I − µBi)
−1(I + µBi)

)

·
(

Un + 2h2A−1
n g

)

− 2h2A−1
n g

(31)

The presented method is referred to as the local Crank-Nicolson (LCN) method
as proposed by Abduwali et al. [1,20].

The matrix (I+µAi) can be denoted by a simple form for i = 2, 3, . . . ,M−2

(I + µAi) =





Ii−2 · ·
· R̄i ·
· · IM−i−2



 , R̄i =





1 0 0
µβn

i 1 + µαn
i µγ

n
i

0 0 1



 (32)

where Ii is the i× i identity matrix.
Similar to (32) we derive

(I − µAi)
−1 =





Ii−2 · ·

· R̂−1
i ·

· · IM−i−2



 , R̂−1
i =







1 0 0
µβn

i

1−µαn
i

1
1−µαn

i

µγn
i

1−µαn
i

0 0 1






(33)

We obtain an explicit expression of Un+1 and, clearly, (31) is an explicit scheme.

Remark 5. The final scheme (31) shows that in the case of nonzero boundary
conditions, i.e. g 6= 0, one has to invert the system matrix An in order to de-
rive the numerical solution and the method is still not completely explicit. The
efficient treatment of this issue is ongoing. However, the method is completely
explicit for the case of zero boundary conditions, e.g. for the butterfly spread op-
tion [18]. Further, when considering the computational efficiency of the method
one may recall, for example, the parallel computing of (29) and (30).

3.1 Positivity and stability

In this subsection we investigate the positivity property of the numerical solu-
tion of (31) and the stability of the fully discrete scheme. Stability analysis is
a necessary part of the numerical analysis but positivity (some discrete maxi-
mum principle) also has to be considered when solving problems in finance since
the prices and costs are always positive and this essential property should be
preserved by the numerical method.

Theorem 3. The numerical scheme (31) is unconditionally stable.

Proof. Analogously to the considerations in [20] the application of the Ger-
schgorin theorem [25] to the matrix Ai implies that the non-zero matrix eigen-
values lie in the disc

∣

∣z + 2σ2
i,nS

2
i

∣

∣ ≤ 2σ2
i,nS

2
i
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and hence they are negative. Then, by the spectral mapping theorem,

|ηi| ≤
|I + µζi|

|I − µζi|
≤ 1

for any of the eigenvalues ηi of the the matrix (I − µAi)
−1(I + µAi), corre-

sponding to the eigenvalues ζi of Ai. Further, we have that
∏M−1

i=1 |ηi| ≤ 1 and

ρ
(

∏M−1
i=1 (I − µAi)

−1(I + µAi)
)

≤ 1, where ρ(A) denotes the spectral radius of

the matrix A. Stability follows from this estimate, derived by the Gerschgorin
theorem, as discussed in [25].

Theorem 4. If f(S) is positive and we assume that

τ

2h2
≤

1

σ̂2
i,nS

2
i

=
δ
2

0

σ2b2
, (34)

then the solution of (31) is positive on each time level tn+1, n = 0, . . . , N − 1.

Proof. We analyze the matrix I + µAi, i = 2, . . . ,M − 2, (analogously for i = 1
and i =M − 1)

I + µAi =

















1 . . . . . . . . . . . . . . . 0

·
. . .

. . .
. . .

. . .
. . . ·

0 . . . µβn
i 1 + µαn

i µγ
n
i . . . 0

·
. . .

. . .
. . .

. . .
. . . ·

0 . . . . . . . . . . . . . . . 1

















All entries of the matrix I + µAi are positive by (34). Successful application of
this consideration and Lemma 4 (one observes the positive entries of (I−µAi)

−1

in (33)) yields a positive solution Un+1 of (31) on each time level, where U0 is
the restriction of f(S) on the spatial grid, if g = 0.

If g 6= 0 we have that A−1
n g is negative since −An is a M-matrix and g is

positive. Therefore, since Un + 2h2A−1
n g can be always considered positive for

sufficiently small h, we have a positive solution of (31). ⊓⊔

Indeed, the condition (34) is the discrete analogue of the ellipticity Assump-
tion A4 in [13] and also of the monotonicity condition, considered in Lemma 1
and 2. It enforces slightly relaxed bound on the temporal step τ than the one
given by (23), obtained by Company et al. [6]. However, let us emphasize again
that in our numerical analysis, it is not a necessary condition for stability and,
as discussed in Section 5, it is solely a sufficient condition for positivity.

3.2 Consistency and convergence

In this section we discuss the consistency, monotonicity and convergence prop-
erties of the fully discrete scheme (31).
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Lemma 5. The local Crank-Nicolson method (31) has the second-order approx-
imation in time.

Proof. Starting from the following expansion formula

exp
( τ

2h2
Ai

)

=
∞
∑

n=0

1

n!

( τ

2h2
Ai

)n

,

the local Crank-Nicolson approximation (27) can be regarded as

(I −
τ

2

1

2h2
Ai)

−1(I +
τ

2

1

2h2
Ai) = I +

τ

2h2
Ai −

(

τ
2h2Ai

)2

2
+

(

τ
2h2Ai

)3

4
− . . .

and is a second-order approximation in time to exp
(

τ
2h2Ai

)

. Considering (28),
we derive

M−1
∏

i=1

(I − µAi)
−1(I + µAi) =

M−1
∏

i=1

(

exp
( τ

2h2
Ai

)

−O

(

( τ

2h2

)2
))

=
M−1
∏

i=1

exp
( τ

2h2
Ai

)

−O

(

( τ

2h2

)2
)

= exp
( τ

2h2
A
)

+O

(

( τ

2h2

)2
)

since
∏M−1

i=1 exp
(

τ
2h2Ai

)

is a second-order approximation in time to exp
(

τ
2h2A

)

.
⊓⊔

It follows that the LCN time stepping method is first-order consistent in
time. This consideration also follows from the BCH formula (25).

Next, we investigate the error en = Un+1 − v(tn+1), where v(tn+1) is the
solution of linearized system (20). Subtracting (22) from (31) we obtain

en =

(

exp
( τ

2h2
An

)

+O

(

( τ

2h2

)2
))

(

Un + 2h2A−1
n g

)

− exp
( τ

2h2
An

)

·
(

v(tn) + 2h2A−1
n g

)

= exp
( τ

2h2
A
)

en−1 +O

(

( τ

2h2

)2
)

2h2A−1
n g

and therefore

eN = exp
( τ

2h2
AN−1

)

eN−1 +O

(

( τ

2h2

)2
)

2h2A−1
N−1g

= exp
( τ

2h2
AN−1

)

(

exp
( τ

2h2
AN−2

)

eN−2 +O

(

( τ

2h2

)2
)

2h2A−1
N−2g

)

+O

(

( τ

2h2

)2
)

2h2A−1
N−1g =

N−1
∏

i=0

exp
( τ

2h2
Ai

)

e0

+O

(

( τ

2h2

)2
)

(

2h2A−1
N−1g + exp

( τ

2h2
AN−1

)

2h2A−1
N−2g + . . .

)
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Finally, since the initial data f(S) can be projected exactly on the grid, i.e.,
e0 = 0, and by the condition for the temporal step (34) we obtain a first-
order convergence in τ of the numerical solution to the solution of the linearized
system.

Rewriting the fully-discrete scheme (31) in the following form

Ui,n+1 = H(Ui−1,n, Ui,n, Ui+1,n), i = 1, . . . ,M − 1 (35)

we introduce the definition of monotone scheme, see Grossmann and Roos [16].

Definition 2. The scheme (35) is monotone if H is nondecreasing in each ar-
gument.

Theorem 5. The scheme (31) is monotone and it also satisfies the discrete
maximum and comparison principles. The numerical solution converges to the
viscosity solution of the problem (2) (if there is one).

Proof. By the condition (34) we deduce that all elements of the matrices (32) and
(33) are positive. ThereforeH is non-decreasing in each argument and the scheme
is monotone. The discrete maximum and comparison principles [16] follow by the
diagonal dominance of the matrices (32), (33).

Assembling all results together – convergence of the semi-discrete scheme,
convergence of the linearized system, consistency, stability and monotonicity of
the fully-discrete scheme – convergence of the solution of fully-discrete scheme
to the viscosity solution of (2) follows by [4]. ⊓⊔

Corollary 2 A direct consequence of the monotonicity of the fully-discrete scheme
is the monotonicity of the numerical solution Un+1 w.r.t. the spatial variable if
f(S) is monotone w.r.t. the spatial variable.

4 The Liu and Yong model

In this section we discuss briefly another illiquid market model, proposed by Liu
and Yong [23]. Let us consider the problem of hedging a terminal value claim
with maturity T and payoff f(S) for the stock price SDE for t ≥ 0

dS(t) = {µ(t, S(t)) + λ(t, S(t))η(t)} dt+ {σ(t, S(t)) + λ(t, S(t))ζ(t)} dW (t)

where µ(t, S(t)) and σ(t, S(t)) are the expected return and the volatility, respec-
tively, λ(t, S(t)) is the price impact function of the trader for some processes
η(t) and ζ(t). The nonlinear BS problem is given as

∂V

∂t
+

σ2S2

2
(

1− λ(S, t)S ∂2V
∂S2

)2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, (S, t) ∈ ΩT

V (S, T ) = f(S), S ∈ Ω := (0,+∞)

(36)

for the case of constant interest rate (r ≥ 0) and reference volatility (σ > 0).
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The existence and uniqueness of a classical (Hölder) solution of problem (36)
and the comparison principle are studied by the well-posedness condition [23]

1− λ(S, t)S
∂2V

∂S2
≥ δ0 > 0, (S, t) ∈ Ω × [0, T ] (37)

if f(ex) is Lipschitz continuous and e−β
√
1+x2

f(ex) is bounded for some β ≥ 0.

The price impact function λ(S, t) for the nonlinear problem (36),

λ(S, t) =

{

γ
S (1− e−β(T−t)), S ≤ S ≤ S

0, otherwise
(38)

reflects the assumption that as a trader buys, the stock price goes up and as
the trader sells, the stock price goes down. The constant price impact coefficient
γ > 0 measures the price impact per traded share and S and S represent,
respectively, the lower and upper limit of the stock price within which there is a
price impact. The price impact function influences heavily both the differential
problem and the numerical method. By inspecting (38) one observes that the
PDE (36) is obviously linear outside the interval (S, S).

The major difference between the presented two illiquid market problems is
the following: while the nonlinear operator of the Frey model (2) is not elliptic at
the strike price near maturity the nonlinear operator of (36) is elliptic because
of the choice (38) of the price impact function λ(S, t) (as λ(S, T ) = 0). This
smoothing property is also present for (36) but there arises another question
whether the smoothing is strong enough to damp the singularity of the Gamma
in time, i.e. for which values of the parameters γ and β the price impact function

λ(S, t) (increasing w.r.t. time to maturity) can still control S ∂2V
∂S2 (decreasing) in

time. We recall the results in [23] on this issue as detailed analysis of this issue
is out of the scope of the current manuscript.

The numerical scheme for (36) is constructed analogously as for the Frey
model. There are, however, few issues that has to be take into accounts. The de-
generacy of the BS operator at S = 0 influences the spatial discretization as the
equation is convection-dominated in this neighbourhood. The basic and efficient
approach to this issue is maximal use of central differencing [29], i.e. central ap-
proximation of the convection term far away from S = 0 and upwind discretiza-
tion in the few nodes where the convection dominance is present. The explicit
time-dependence of the spatial discretization matrix also has to be resolved as
the semi-discrete solution formula (22) is not valid unless [A(t), A(s)] 6= 0 (which
is the general case), where [A,B] := AB − BA denotes the commutator of the
matrices A and B [17]. We further refer to the Magnus series expansion for the
treatment of this issue [24].

We investigate the considered problem (36) only experimentally as rigorous
theoretical results are subject to detailed extension of the analysis already pre-
sented in the previous sections.
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5 Numerical experiments

Numerical experiments are presented in this section in order to illustrate the
stability and convergence properties of the method. We stress the fact that no
smoothing techniques are applied to the terminal condition (5) and no grid
refinement is used. The considered payoff corresponds to the vanilla call option.

We solve numerically the presented Frey and Patie model (FP) (2) and the
Liu and Yong model (LY) (36) with the payoff (5). The parameters are:

1. (FP) λ(S) = 1. The strike price is E = 100, the volatility is σ = 0.2, the
maturity date - T = 0.25 and the artificial boundary location is b = 200.

2. (LY) λ(S, t) as in (38) with β = 100, γ = 1 and S = 20, S = 80. The strike
price is E = 50, the volatility is σ = 0.4, the interest rate is r = 0.06, the
maturity date - T = 0.25 and the artificial boundary location is b = 200.

In the tables below are presented the computed discrete maximum and
RMSE (root mean square error) norms of the error E = U − V , V is the
restriction of the exact solution V (S, t) on the grid, by the formulas

‖E‖∞ = max
i

‖UN
i − V N

i ‖, ‖E‖RMSE =

√

√

√

√

1

Mbr

∑

i:Si∈[0.8E;1.2E]

(

UN
i − V N

i

)2
,

where the area of interest to be tracked by the RMSE norm is chosen to be
Si ∈ [0.8E, 1.2E] (the area of practical interest) and Mbr is the number of
spatial nodes in this area.

The numerical rate of convergence (RC) is calculated using the double mesh
principle

RC = log2(E
M/E2M ), EM = ‖VM − UM‖,

where ‖ · ‖ is the discrete norm, VM and UM are respectively the exact solution
and the numerical solution, computed at the mesh with M sub-intervals.

The numerical results are focused on the particular ratio := τ/(2h2), consid-
ered in the monotonicity condition (34). For the simple case of ρ = 0 we have
the linear Black-Scholes operator, where the interest rate and dividend rate are
equal to 0. The condition (34) now reads as (with parameters as given in (FP))

τ

2h2
≤ 0.000625 (39)

Table 1 displays the convergence results of the presented LCN method for the
discussed simple linear test equation w.r.t. to the reference solution, generated by
the MATLAB function blsprice(Price, Strike, Rate, Time, Volatility,

Yield). We observe that even though (34) is violated there are no stability issues.
The accuracy, of course, profits from smaller values of the ratio.

Figures 1 and 2 illustrate the numerical solution for ρ = 0 and ρ = 0.06,
respectively, for ratio = 0.1 and M = 1280. We conclude that there are no
stability issues both in the linear and nonlinear case. The conclusion completely
corresponds to the unconditional stability, obtained in Section 3.1.
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Fig. 1. ρ = 0

Fig. 2. ρ = 0.06
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Table 1.

ratio = 0.01 ratio = 0.001

M ×N EN

∞
RC RMSE RC EN

∞
RC RMSE RC

160 4.716e-1 - 2.244e-1 - 1.269e-2 - 6.742e-3 -
320 1.287e-1 1.874 6.659e-1 1.753 3.185e-3 1.995 1.704e-3 1.985

640 3.195e-2 2.010 1.721e-2 1.952 7.970e-4 1.999 4.278e-4 1.994

1280 7.962e-3 2.005 4.331e-3 1.991 1.993e-4 1.999 1.072e-4 1.997

However, we also observe in Figure 2 that the solution does not show the
smoothing property 10 that characterizes parabolic problems and that can be
observed in Figure 1. In further support to this consideration we illustrate the
corresponding numerical Gamma greek on Figures 3 and 4. The higher the value
of the nonlinearity parameter ρ the stronger the nonlinearity in the PDE (2)
and therefore the smaller δ0 in the well-posedness condition (3) because of the
non-smoothness of the payoff.

Fig. 3. ρ = 0 Fig. 4. ρ = 0.06

Let us now briefly consider the standard fully-explicit scheme, suggested in
[6] and compare the numerical results. Figure 5 visualizes the numerical Gamma
for M = 640 and ratio = 0.001 as we observe two major sources of oscilla-
tions, resulting from violating the stability condition (23). First, they appear
around the strike, where the strength of these oscillations is controlled by the
nonlinear parameter ρ and the size of the spatial step h (i.e. how accurately
the numerical Gamma of the payoff approximates the analytical Gamma, the
Dirac’s δ-function). Away from the strike oscillations appear as the condition
(23) is more restrictive for large values of S (away from the influence of the
nonlinearity marginal values of Gamma are enough to destabilize the scheme).

Figure 6 shows the numerical Gamma for M = 320 and ratio = 0.0001. We
observe stability (not present for M = 640 and the same value of ratio) but the
figure implies that there is smoothing in time (deterioration of the strong norm
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Fig. 5. ρ = 0.06

Fig. 6. ρ = 0.06

23



of the Gamma) - side effect of the inaccurate numerical approximation of the
δ-function - and this property is not present for the differential problem. Indeed,
the standard fully-explicit scheme is either unstable or, if decides to compute
with the stability condition (23), it gives wrong qualitative information.

Taking these conclusions into account we compute the convergence of the
numerical method, applied to (2) with parameters as given in (FP), for ρ = 0.01
in Table 2. The error is calculated w.r.t. the numerical solution for M = 640
and the size of τ is determined by the value of ratio.

Table 2.

ratio = 0.001 ratio = 0.0001

M EN

∞
RC RMSE RC EN

∞
RC RMSE RC

40 9.983e-1 - 6.625e-1 - 1.062e-1 - 5.853e-2 -
80 9.152e-1 0.126 6.631e-1 0.089 1.875e-2 2.502 1.045e-2 2.486

160 8.607e-1 0.089 5.984e-1 0.058 9.647e-3 0.969 7.142e-3 0.548

320 8.851e-1 -.040 6.203e-1 -.052 1.144e-3 3.077 8.964e-4 2.994

Clearly, we observe no convergence for ratio = 0.001 because the condition
(39) is not even remotely satisfied. By the RMSE behaviour we observe that
divergence is present in the strike region where the δ-function is concentrated.
Actually, the condition (39) is even stricter in the nonlinear case (34) since δ0
is smaller than 1 and it is getting smaller as h → 0 (the more precisely the
numerical Gamma approximates the ∂2V/∂S2 the smaller δ0 is). Convergence
is present for the case ratio = 0.0001 but let us remind the reader and the
convergence is computed w.r.t. the numerical solution for M = 640. Since the
problem (2) is not parabolic at the strike and no comparison principle is present
convergence to the viscosity solution cannot be established since we do not know
if there is such a solution.

We further investigate the influence of the liquidity parameter ρ and the space
step h on the numerical solution. In Figures 7 and 8 we present the numerical
solution for different values of ρ and h. The value of the hedge cost increases as
ρ increases as also mentioned in [13].

It can observed, see Figures 9 and 10, that small values of h deteriorate the
smoothing property of the numerical solution as the numerical Gamma copies
the behaviour of the δ-function.

We now present the convergence results for the problem (LY), Table 3. The
convergence is computed w.r.t. the numerical solution forM = 1280 and number
of time levels, determined by the value of ratio.

Stable convergence for the given values of ratio is observed although the
monotonicity condition is unlikely to be satisfied. In comparison with the Frey
and Patie problem we are now computing convergence on a finer mesh without
implying serious restriction on the time step τ . It is evident that small values
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Fig. 7. M = 80, ratio=0.001
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Fig. 8. M = 640, ratio=0.001
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Fig. 9. M = 80, ratio=0.001

50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

S

G
am

m
a

 

 
ρ=0

ρ=0.02

ρ=0.06

Fig. 10. M = 640, ratio=0.001

Fig. 11. M = 1280, ratio=0.1 Fig. 12. M = 1280, ratio=0.1
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Table 3.

ratio = 0.001 ratio = 0.0001

M EN

∞
RC RMSE RC EN

∞
RC RMSE RC

40 9.988e-2 - 6.685e-2 - 5.662e-1 - 5.334e-2 -
80 4.477e-2 1.143 2.890e-2 1.121 2.785e-2 1.023 2.607e-2 1.033

160 1.717e-2 1.383 1.288e-2 1.167 1.273e-2 1.130 1.220e-2 1.096

320 6.409e-3 1.422 5.387e-3 1.257 5.372e-3 1.244 5.231e-3 1.221

640 1.979e-3 1.695 1.728e-3 1.640 1.774e-3 1.599 1.556e-3 1.749

of h do not have any deteriorating impact on the numerical solution even for
relatively large ratio. This can be related to the smoothing effect that the choice
of price impact factor function λ(S, t) (38) has both on the differential and
discrete problems. Our conclusion is further supported by Figures 11 and 12
that one may compare with Figures 2 and 4. It is interesting to observe that the
smoothing effect is present only for small time to maturity.

The impact of the parameter γ on the numerical solution and the Gamma
greek is illustrated by Figures 13 and 14. The parameter’s role is analogous to ρ
in the Frey and Patie model – the higher the value the more illiquid the market
is (and the higher the hedge cost is) and the stronger the nonlinearity in the
differential problem is. We now observe deterioration of absolute value of the
Gamma even for small values of the space step h.
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Fig. 13. M = 640, ratio=0.001
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Fig. 14. M = 640, ratio=0.001

6 Conclusion

In this paper we present the numerical analysis of the fully-nonlinear problem,
modelling the replication of contingent claims in illiquid markets. The discrete
scheme is shown to be consistent and unconditionally stable. However, due to

26



the non-parabolic nature of Frey and Patie model at the strike the monotonic-
ity condition in practice can not be satisfied for small space discretization step.
For the Liu and Yong model we observe stable convergence results and parabolic
behaviour of the numerical solution even without strongly considering the mono-
tonicity restriction on the time step.

Further we will combine the presented numerical method with the transpar-
ent boundary condition (TBC) method [9].
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8 Appendix: Introduction to Viscosity Solution Theory

We briefly introduce the reader to the viscosity solution theory following [8,12,31].
Let us consider the following Cauchy problem (here Du denotes the derivative

of u(x, t) in the spatial variables where D2u denotes the Hessian matrix)

ut + F(x, t,Du,D2u) = 0 in Q = R
n × (0, T ] (40)

u(x, 0) = u0(x) in R
n (41)

We further assume that F is degenerate elliptic and proper according to the
following definition.

Definition 3. Eq. (40) is degenerate parabolic if F is degenerate elliptic

F(x, t, z, q,X + Y ) ≤ F(x, t, z, q,X) ∀Y ≥ 0, X, Y ∈ S
n

and F(x, t, z, q,X) ∈ C(J), where S
n denotes the space of n × n symmetric

matrices with the usual ordering and J = Q×R×R
n × S

n, X, Y ∈ S
n. If there

are positive constants θ and Θ such that

θ trY ≤ F(x, t, z, q,X)−F(x, t, z, q,X + Y ) ≤ Θ trY ∀Y ≥ 0

where trY denotes the trace of the matrix Y we then say that F is uniformly
elliptic and eq. (40) is uniformly parabolic. Also, F is proper if F satisfies:

∃c0 > 0 : c0r + F (x, t, r, q,X) ≤ c0s+ F (x, t, s, q,X) for r ≤ s

and ∀(x, t, r, q,X), (x, t, s, q,X) ∈ J .

Let us consider u ∈ C2,1(Q) and

ut(x, t) + F(x, t, u(x, t),Du(x, t),D2u(x, t)) ≤ 0 for all (x, t) ∈ Q

i.e. u is classical subsolution of ut + F = 0 and F is degenerate parabolic.
Suppose that φ ∈ C2,1(Q) and (x, t) is a local maximum of u − φ in Q so that
ut(x, t) = φt(x, t),Du(x, t) = Dφ(x, t) and D2u(x, t) ≤ D2φ(x, t) and by the
ellipticity property we have

φt(x, t) + F(x, t, u(x, t),Dφ(x, t),D2φ(x, t))

≤ ut(x, t) + F(x, t, u(x, t),Dφ(x, t),D2φ(x, t)) ≤ 0

The inequality φt(x, t)+F(x, t, u(x, t),Dφ(x, t),D2φ(x, t)) ≤ 0 does not depend
on the derivatives of u so we may consider an arbitrary function u to be (some
kind of generalized) subsolution of ut + F ≤ 0 if

φt(x, t) + F(x, t, u(x, t),Dφ(x, t),D2φ(x, t)) ≤ 0

whenever φ ∈ C2,1(Q) and (x, t) is a local maximum of u − φ. The viscosity
supersolution is defined analogously by replacing ’maximum’ with ’minimum’.
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A viscosity solution of problem (40), (41) is both a viscosity subsolution and a
viscosity supersolution and a classical solution is also a viscosity solution.

We say that a comparison principle (extension of the maximum principle)
between the viscosity subsolution u(x, t) and the supersolution v(x, t) holds if
u(x, 0) ≤ v(x, 0) implies u(x, t) ≤ v(x, t) in Q. Further assumptions on the non-
linear operator F are, however, needed, e.g. F is locally uniformly continuous in
q, F is Lipschitz continuous in x and satisfies the Kruzhkov’s structure condition
as well as the standard assumption for the growth at infinity of (41), cf. Zhan
[31].

The existence and uniqueness results for viscosity solution of (40) are based
on the comparison principle and carried out by two major techniques - ap-
proximate method via the stability property by the Arzela-Ascoli compactness
theorem or the Perron method by the construction of suitable barrier functions.
Regularity results are also provided by a maximum principle and construction
of barriers of solutions, cf. the discussions in [12,31].
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