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Model Order Reduction for Multirate
ODE-Solvers in a Multiphysics Application

Christoph Hachtel, Michael Günther and Andreas Bartel

Abstract Given a multiphysics problem with components of different dynamical
behaviour reduction-multirate methods start with a model order reduction of the
slow part system and apply than a multirate ODE-integration to the whole system.
This approach lets us profit as much as possible from properties of the given system
related to computational efficiency. In this paper we present the motivation and the
idea behind this reduction-multirate approach.

1 Introduction

In general, the modeling of a multiphysical setting leads to a coupled system with
largely differing dynamical behaviour. Possibly after a semi-discretization of the
spatial variables, these models are often given by coupled systems of ODEs. Now,
the existence of stiff parts suggest which type of time domain method should be
applied. Furthermore the most active part, i.e., the part with the highest frequencies,
determines the step size to be used.

Multirate ODE-solvers allow us to use different step sizes for each subsystems.
The use of inherent step sizes for the subsystems with different dynamical behaviour
gives us potential to enhance the numerical efficiency (the performance concerning
computation time). The crucial part of a multirate solver is the coupling of the dif-
ferent scales, i.e., the computation of the coupling variables. We follow the idea
of compound-step methods, which was first presented in [5]. Often the physics of
the underlying systems justifies the usage of a certain coupling type. Although one
saves computation time due to larger step sizes for latent components (macrostep),
usually a large and stiff system remains to be solved in each macrostep.
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2 Christoph Hachtel, Michael Günther and Andreas Bartel

In the last years, model order reduction has been developed to a reliable technique
to solve high dimensional systems of differential equations efficiently [8]. Until now
there has been no work on combining model order reduction with multirate ODE-
solvers. We present related ideas and concepts of the reduction-multirate methods
and a suitable multiphysics example.

2 Mixed Multirate Methods

Multirate integration schemes are interesting for systems of differential equations
with parts of very different dynamic behaviour. As in most of the previous works
about multirate methods we consider a system with very fast dynamic changes, the
so-called active part, and a considerable slower part, the so-called latent behaviour,
both parts depend on each other. In an ODE-framework that reads

ẏA = fA

(
yA, yL

)
yA(t0) = yA,0 (1)

ẏL = fL

(
yA , yL

)
yL(t0) = yL,0. (2)

The coupling is illustrated by the boxes around the coupling terms. There are several
approaches how to get such a partition. While [3] or [4] deal with a given mono-
lithic system and partition it dynamically we are following the setting of a given
partition like in [5] or [2]. This is justified since we are considering multiphysics
problems and usually the underlying physical behaviour defines a certain dynamical
behaviour. The idea of a mixed multirate intergration scheme is given in [2] and is
based on the idea of multirate compound step Runge-Kutta methods first presented
in [5]. In the latter the coupling is realized by integrating the latent and the active
component coupled together but with different stepsizes: The latent component with
a large macrostep H, the active one with a small microstep of size h = H/m. The
remaining m−1 microsteps are computed with interpolating the latent component.
Günther and Rentrop presented ROW-methods for multirate integration schemes
in [6] and Bartel and Günther developed W-methods for compound-step multirate
integrators in [7]. Here compound-step and remaining micro-steps are computed
with the same integration scheme. In mixed multirate methods different schemes
can be used for compound and micro-steps. That can be reasonable if the dimension
of the active part is small compared to the whole system and a high accuracy is de-
sired so a method of higher order can be applied to the remaining microsteps. This
is exactly the case for the here presented topic so we follow [2] and apply a 2(3)-
ROW-scheme for the compound step and a 3(4)-ROW-scheme for the remaining
micro-steps. A set of coefficients can be also found in [2].
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Model Order Reduction for Multirate ODE-Solvers in a Multiphysics Application 3

3 Model Order Reduction with Balanced Truncation

In multirate context we deal very often with a high-dimensional slow part of the
ODE-system and only few active components. The question is whether we can gain
efficiency not only by adapting stepsize but also to consider the dimension of the
slow part: The idea is to apply a model order reduction before integrating the system.
We assume a linear ODE-system for the slow part system so we can use the methods
of linear model order reduction. We now present briefly the method of balanced
truncation as it can be found in [8]. For a given linear time invariant (LTI) system

ẋ = A ·x+B ·u(t) x(t0) = x0 ∈ Rn (3)
y(t) = C ·x (4)

model order reduction computes rectangular biorthogonal projection matrices Vr, Wr
so that the dimension r of reduced system matrices WT

r AVr, WT
r B, CVr is rele-

vantly smaller than of the original system (r� n). While the output of the reduced
system yr(t) shall approximate the original output as good as possible. The idea of
balanced truncation is now to keep all important states and truncate all states who
need a lot energy to be reached and to be observed. Truncating states that are diffi-
cult to reach and to observe become equivalent if the system is balanced. One gets
such a balanced system by solving Lyapunov-Equations and construct a suitable
transformation matrix. Balanced truncation has many advantages over other MOR
methods, e.g. i) the input and the output matrix are considered in the computation
of projection matrices and ii) an efficient error estimate is available:

‖H−Hr‖H∞
≤ 2

n

∑
i=r+1

σi (5)

while H denotes the transfer function, σ the eigenvalues of the Gramian matrices of
the balanced system and r is the dimension of the truncated system. Due to the fact
that for this method the Lyapunov-Equations have to be solved, the method is less
efficient for high dimensional problems.

4 A Multiphysics Application: An Electric-Thermal Problem

Benefits from multirate ODE-solvers can only be expected if applied to a system
with differing dynamic behaviour. Here we consider an electric circuit in where
the thermal behaviour of a resistor is included. This results in a coupled system
of the network equations and the heat equation. While voltages change very fast,
heating or cooling of devices is a much slower process. So this example suits for
using multirate integration methods. Before applying the time integration, a semi-
discretisation of space is performed for the heat equation. High accuracy demands
as well as fine structures may lead to a large scale system. Therefore a model order
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4 Christoph Hachtel, Michael Günther and Andreas Bartel

reduction of the slow components will improve efficiency. The presented model is
adapted from [1] with some modifications.

Circuit Modeling. The electric part is represented by the circuit diagram in
Fig. 1. It is obvious that the corresponding nodal equations describe a relative stiff
system of differential equations. So the mixed multirate ROW-method presented in
section 2 is not a natural choice. To be able to apply this method to this circuit we
use some unphysical parameters amongst others for the capacitances. Table 1 shows
all relevant parameters. The ODE model reads

C1u̇3 = (u2−u3)/R(T )− idi(u3−u4,Tdi) (6)
C2u̇4 = idi(u3−u4,Tdi)−u4/RL (7)

with the node voltages u3, u4 and u2 = Av(t), the resistors’s temperature T and the
diode’s temperature Tdi. Between node two and three we consider a copper wire of
length l and model it as a 1-D thermal dependent resistor. Let
a(x) = a0 ·1/(1+(2/l)2(l− x)x) denote the cross section of the wire while x repre-
sents the spatial coordinate; so at half of the length of the wire the cross section is
half of the cross section at the ends. So we expect higher temperatures in the middle
of the resistor. We assume a local resistance of the following type:

ρ(T ) = r0(1+α(T −Tmeas)) (8)

with thermal coefficient α and specific resistance r0 at temperature Tmeas. We get
the total resistance R(T ) by integrating the local resistance over the length of the
wire l with respect to the cross section

R(T ) =
∫ l

0

ρ(s,T (t,s))
a(s)

ds =
∫ l

0
ρ̃(s,T (t,s))ds. (9)

The diode is also temperature dependent and has a strong nonlinear behaviour, for
the characteristic curve and more details see [1].

Table 1 Parameters of the electric circuit

decide parameter decide capacity

amplification A = 300 capacity 1 C1 = 1F
load resistance RL = 0.3kΩ capacity 2 C2 = 100µF

pulsed voltage source v(t) =

{
0.5sin(πt/(2.5 ·10−5s)) [mV] if t < 2.5 ·10−5s
0 [V] otherwise

Thermal Modeling and Coupling. The starting point of the thermal model is
the 1-D heat equation for diffusive heat transport, which we use for the copper wire
(resistor):

M′W Ṫ =
∂

∂x

(
Λ(x)

∂T
∂x

)
+ sources (10)
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Model Order Reduction for Multirate ODE-Solvers in a Multiphysics Application 5

with thermal mass of the wire M′W and local 1-D conductivity Λ(x) = λ (x) · a(x).
The sources term is comprised of two effects: (a) Local self heating due to the elec-
tric current. In fact, the dissipated power PW = u2

R/R of the resistor results in heat-
ing the wire; (b) Cooling to the ambient temperature Tenv, which given by Newton’s
cooling C =−γS′(T −Tenv) with surface S′. For further details see [1].

To be able to apply the multirate ODE-integration scheme presented in chapter
2, we discretise space in the parabolic PDE (10) first (method of lines). We equip
the wire with an equidistant grid Ih : Xi = i ·h, i = 0, . . . ,N with XN = N ·h = l and
use a finite volume approach. For that we sub-divide the wire in cells of length h in
the inner and h/2 at the boundaries. A schematic representation is given in Fig. 2.
The heat conduction over one single cell can be simplified described by change of
is inflow minus outflow. So we get the approximation

M′W,iṪi = Λ
Ti+1−2Ti +Ti−1

h2 +P′W,i− γS′W,i(Ti−Tenv) (11)

for the inner cells while i denotes the property of the i-th cell, i = 1, . . . ,N−1. For
the boundary cells we have

M′W,0Ṫ0 = Λ(T1−T0)/h+P′W,0− γS′W,0(T0−Tenv) (12)

M′W,N ṪN = Λ(TN−1−TN)/h+P′W,N− γS′W,N(TN−Tenv). (13)

The diode is temperature dependent but without own thermal mass. So we just set
the temperature at the end of the copper wire to be the temperature of the diode.

The coupling terms have been given indirectly in the above models.
(i) Circuit to thermal: Joule’s law gives the dissipated power at the resistor. By

adding an additional differential equation to the circuit equations,

ė = ur · ir = (u2−u3)
2/R(T ) (14)

total energy e is computed in each time step. And PW = e/∆ t gives us the required
power for some time step ∆ t.

(ii) Thermal to circuit: Since the resistance R(T ) depends on the temperature
profile T we need the temperature distribution in the resistor to compute it, for a

Fig. 1 Circuit diagramm

u2 u3

RL

u4

idi

A R(T )

v(t)

C1 C2

Fig. 2 Finite Volume Discretised Resistor
resistor

X0 =0 l=XN
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6 Christoph Hachtel, Michael Günther and Andreas Bartel

Fig. 3 Voltage at Node 3
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Fig. 4 Resistor’s and Diode’s Temperature
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given distribution we use equation (9) to compute the total resistance. In addition
the diode’s current depends on the wire temperature of the last cell.

Numerical Results. To the coupled thermal-electric problem we apply the mixed
multirate ODE-integration scheme from chapter 2. The acitve part is given by
the circuit equations (6)-(7) and (14) while the latent part is given by the semi-
discretised heat equation (11)-(13). The coupling is realised in the compound step
of the multirate scheme and in the off-diagonal Jacobian matrices. Core of this work
is the combination of the multirate integration with a model order reduction for the
latent part given for example in chapter 3. In a early stage of research we restrict the
setting to linear MOR. A thermal model is a priori non-linear, due to a relative short
simulation time (0.1 seconds) and a even shorter timespan where voltage is applied
in the circuit and several small assumptions like in equation (8). We can linearise
the thermal behaviour of the resistor so that we get a linear system of the form

Ṫ = A ·T +B · [Tenv, PW ] (15)
[R(T ), TN ] = C ·T. (16)

To get an impression of the electric behaviour of the system figure 3 shows the
resulting voltage u3 at node three. First we are investigating the influence of the lin-
earisation of the thermal components. Figure 4 shows the temperature of the central
cell in the resistor and of the diode in a linear and a nonlinear model. As we see the
influence of the linearisation is negligible.

For this results the resistor was discretised in n = 10 cells. If we consider a more
detailed discretisation the dimension of the system and the computation time would
increase. For this case a model order reduction promises more efficiency in com-
putation time. Due to that we will focus on model order reduction performed in
a pre-processing step and the influences on the simulation results in the future re-
search.
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Model Order Reduction for Multirate ODE-Solvers in a Multiphysics Application 7

5 Conclusions and Outlook

Combining a model order reduction with a multirate integration scheme can increase
the efficiency of the broad algorithm. Since the multirate problem already provides
a partitioning relating to the dynamics of the system we already know that there
is no fast change in the latent component so that the error due to the model order
reduction might be controllable. Especially for linear latent components the wide
theory of linear model order reduction gives efficient and reliable error information.

The influence of the model order reduction on the multirate integrator ist not yet
considered so it is desirable to have all-in-one multirate-MOR error bounds. After
all in real-world multiphysics problems a latent linear component is not available so
the question is whether a linearisation following linear MOR or a nonlinear MOR
gives better results.
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