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Abstract

Hyperbolic partial differential equations on a one-dimensional spa-
tial domain are studied. This class of systems includes models of
beams and waves as well as the transport equation and networks of
non-homogeneous transmission lines. The main result of this paper is
a simple test for Cp-semigroup generation in terms of the boundary
conditions. The result is illustrated with several examples.

Keywords: Cjp-semigroups, hyperbolic partial differential equations,
port-Hamiltonian differential equations.

1 Introduction and main result

Consider the following class of partial differential equations

=P+ n) (o). Cebezo )
(¢,0) =w0(¢),

where P; is an invertible n x n Hermitian matrix, Py is a n X n matrix,
H(C) is a positive n x n Hermitian matrix for a.e. ( € (0,1) satisfying
H,H~t € L>(0,1;C"*™). This class of Cauchy problems covers in partic-
ular the wave equation, the transport equation and the Timoshenko beam
equation, and also coupled beam and wave equations. These Cauchy prob-
lems are also known as Hamiltonian partial differential equations or port-
Hamiltonian systems, see [3] ,[6] and in particular the Ph.D thesis [7]. The
boundary conditions are of the form

Wi |Gt ] =0, (2)

where Wg is an n X 2n-matrix.



Define p
Az = <P1dC + P()> (x), x € D(A), (3)

on X, := LP(0,1;C"), 1 < p < oo, with the domain

D(A) = {x e WLP(0,1;C") | Wi [g;g} - o} . (4)

Then the partial differential equation with the boundary conditions
can be written as the abstract differential equation

z(t) = AHx(t), x(0) = xo.

If we equip Xy with the energy norm (-, H-), then AH generates a con-
traction semigroup (or an unitary Cop-group) on (Xa, (-, H-)) if and only if
A is dissipative on (X3, (-,-))(or A and —A are dissipative on (X, (-,)),
respectively) [1l B, [4]. Matrix conditions to guarantee generation of a con-
traction semigroup or of a unitary group have been obtained [I} 3], [4]. The
following theorem extends these results.

Theorem 1.1. Let Wz := Wg [1;1 *fl]_l and ¥ := [9]].
1. The following statements are equivalent:
(a) AH with domain D(AH) := {x € Xo | Hx € D(A)} = H 1 D(A)
generates a contraction semigroup on (Xa, (-, H-));
(b) Re(Ax,x) <0 for every x € D(A);
(¢) RePy <0 and u*Piu — y*Piy < 0 for every [4] € ker Wig;
(d) RePy <0, WgEW3 > 0 and rankWg = n.
2. The following statements are equivalent:
(a) AH with domain D(AH) := {x € Xo | Hx € D(A)} = H 1 D(A)
generates a unitary Co-group on (Xa, (-, H-));
(b) Re(Ax,x) =0 for every x € D(A);
(¢) RePy =0 and u*Piu — y*Pyy = 0 for every [4] € ker Wg;
(d) RePy =0, WgEW3 = 0 and rank Wg = n.

Theorem was proved in [3 Theorem 7.2.4] with the additional as-
sumptions that Py = —Fy and rank WB = n. The extension to non skew-
adjoint matrices Py is in [I]. However, the equivalence with (c) is not ex-
plicitly shown in the above references and it is assumed that rank Wp = n.
A short proof of Theorem is in the following section.



By the assumptions on H it is clear that the norm on (X, (-, H-)) is
equivalent to the standard norm on X5. Hence if AH generates a contraction
(or a unitary group) with respect to the energy norm for some #, then it
will generate a Cy-semigroup (Cp-group) on Xy equipped with the standard
norm as well.

The following corollary follows immediately.

Corollary 1.2. The following statements are equivalent:
1. A generates a contraction semigroup on (Xs, (-, -)),

2. AH generates a contraction semigroup on (Xa, (-, H-)).

Corollary implies that whether or not AH generates a contraction
semigroup on the energy space (Xo, (-,H-)) is independent of the Hamilto-
nian density H: A is the generator of a contraction semigroup on (Xa, (-, -))
if and only if AH generates a contraction semigroup on (Xs, (-,-)). The
condition of a contraction semigroup is essential here. For a counterexample,

see Example [3.2] or [8, Section 6].

Definition 1.3. An operator A generates a quasi-contractive semigroup if
A — wI generates a contraction semigroup for some w € R. Il

Corollary 1.4. If Re Py < 0 then AH generates a quasi-contractive semi-
group on (Xa, (-,H-)) if and only if AH generates a contraction semigroup
on (X, (,H)).

The proof of Corollary will be given in Section 2.

Theorem characterizes boundary conditions for which AH generates
a contraction semigroup or a unitary group. However, other boundary condi-
tions may still lead to a Cp-semigroup. To characterize those we diagonalize
PyH({). Tt is easy to see that the eigenvalues of PyH(¢) are the same as
the eigenvalues of H (¢ )%Pl’}-[(( )% Hence by Sylvester’s Law of Inertia the
number of positive and negative eigenvalues of PiH(() equal those of P;.
We denote by n; the number of positive and by ny = n — n; the number of
negative eigenvalues of P;. Hence we can find matrices such that

o) =57 [N gl 50 aeceon @

with A(¢) and O(() diagonal matrices of size n1 xn; and ng xng, respectively.
The main result of this paper is the following theorem that provides easily
checked conditions for when the operator AH generates a Cy-semigroup on



Xp. These cover the situation where AH may not generate a contraction
semigroup.

Theorem 1.5. Assume that S, A and © in @ are continuously differen-
tiable on [0,1] and that rankWp = n. Define Z*(¢) to be the span of
eigenvectors of PiH(() corresponding to its positive eigenvalues. Similarly,
we define Z~(() to be the span of eigenvectors of PiH(() corresponding to
its negative eigenvalues. We write Wg as

Wp =W, W (6)
with Wy, Wy € C™*™. Then the following statements are equivalent:
1. The operator AH defined by @f@ generates a Cy-semigroup on X,.
2. WiyH()ZT(1) & WoH(0)Z~(0) = C™.
The proof of Theorem will be given in the next section.

Remark 1.6. 1. In Kato [9, Chapter II], conditions on P;H are given
guaranteeing that S, A and © are continuously differentiable.

2. In [2], a more restrictive version of Theorem that applies when
H = I and p = 2 was proven by a different approach. In [2] estimates
for the growth bound are given.

3. Theorem implies that if AH generates a Cp-semigroup on one X,
then AH generates a Cp-semigroup on every X,, 1 < p < oco. A
similar statement does not hold for contraction semigroups. Example
[3:3] given later in this paper, illustrates this point. O

2 Proof of Theorems and and Corollary

Proof of Theorem [1.1k

Since the proof of Part 2 is similar to that of Part 1 we only present the
details for Part 1.

The implication (a) = (b) follows directly from the Lumer-Phillips the-
orem and Lemma 7.2.3 in [3]. Next we show the implication (b) = (c). It
is easy to see that

1
Re(Az,z) = z(1)*Piz(1) — xz(0)* Piz(0) + Re/o z(C)*Pox(¢)d¢  (7)
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holds for every = € D(A). Choosing z € W12(0,1;C") with z(0) = z(1) =
0, we obtain Re Py < 0. For every u,y € C" and every € > 0 there exists a
function in z € W12(0, 1; C") such that (0) = u, (1) = y and the L?-norm
of x is less than €. Choosing this function in equation and letting € go
to zero implies the second assertion in (c), see also Lemma 2.4 of [I]. The
implication (d) = (a) follows from Theorem 2.3 of [I], see also [4]. Hence it
remains to show (¢) = (d).

We introduce the notation fi; = (1) and fy = x(0). Then the condition
in (c) can be written as

[ fT fo][Pl _(;31}[;;}30, for [ﬁ]ekerWB. (8)

Since Wp is an n x 2n matrix, its kernel has dimension 2n minus its rank.
Hence this dimension will be larger or equal to n. Since P; is an invertible

Hermitian n x n matrix, the matrix [1(3)1 _931} will have n positive and n

negative eigenvalues. This implies that if v* [131 _93 } v < 0 for all v in a
linear subspace V/, then V' has at most dimension n. Combining these two
facts, the dimension of the kernel of W5 equals n, and so W is a matrix of

rank n.
Defining [§t] = [f ~F] [;%], and using , an easy calculation shows

y1yo +yoy1 <0,  for [ z; ] € ker Wpg. (9)
We write Wp as Wi = [Wp Ws]. Now it is easy to see that Wi + Wy

is invertible (we refer to page 87 in [3] for the details). Defining V :=
(W1 + W)~ L (W; — Ws), we obtain

1
Wp = Wi+ W) [I +V.I = V],

Let [/] € ker Wpg be arbltrary By [3l Lemma 7.3.2] there exists a vector ¢
such that [/] = [ /%] ¢. This implies

0> ffete*f=0"(—21+2V*V )¢, (10)

This inequality holds for any [/] € ker Wp. Since the n x 2n matrix Wp
has rank n, its kernel has dimension n, and so the set of vectors ¢ satlsfylng
[f1=] _I]__VV] ¢ for some [ /] € ker W equals the whole space K". Thus

e

implies that V*V < I, and by [3, Lemma 7.3.1] we obtain WgXW} > 0. D



Proof of Corollary As AH — wl generates a contraction semigroup,
Theorem implies WpYXWg5 < 0 and rank W = n. Thanks to Re Py <0
and Theorem finally AH generates a contraction semigroup. O

The following proposition is needed for the proof of Theorem [1.5

Proposition 2.1. ([8, Theorem 3.3] [3, Theorem 13.3.1] for p = 2 and [8,
Theorem 3.3 and Section 7] for 1 < p < o0) Suppose K,Q € C"*" A €
C1([0,1];C™>m1) js a diagonal real matrix-valued function with (strictly)
positive functions on the diagonal and © € C*(]0,1]; C"2*"2), ny + ngy = n,
is a diagonal real matrix-valued function with (strictly) negative functions
on the diagonal. We split a function g € LP(0,1;C") as

_ [9+(¢)
o0 = 28], (1)
where g (¢) € C™ and g_(¢) € C"2.

Then the operator A : D(A) C X, — X,, defined by
ilo+| _ d (|A O g+
)= (o el ) w2

D(A) = {[?] eWr(0,1,C") | K[g%;?((é;] L0 [g(o)g+(0):| _ 0}

generates a Cp-semigroup on X, if and only if K is invertible.

Proof of Theorem We define the new state variable g := Sz. Since
S defines a boundedly invertible operator on LP(0,1;C"), the operator AH
generates a Co-semigroup if and only if SAH.S™! generates a Cy-semigroup.

We define A
0
-

Then the operator

-1
TAOIO) + 50—
+S(ORH(OS()g(¢) (14)

D(SAHS™) = {ge W'P(0,1;C") | W [Ezgjggég] -0

(SAHS™'g)(¢) =
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Since the last two operators in are bounded, SAHS™! generates a Cy-
semigroup if and only if the operator

Asg = 5:(89) (15)
~ ~1
p(ag) = {g e o scrn e | (790 ol o

generates a Co-semigroup on X,,. We split the matrices Wi (HS™1)(1) and
Wo(HS1)(0) as

Wi(HS (1) = [Vi Va]  Wo(HS™H)(0) = [Un Us),

where Uy, V; € C"*™ and U, V, € C" "2 and as in (?77?) write

_ [9+(¢)
o0 = [+, a7)
where ¢g4(¢) € C™ and ¢g_(¢) € C™. Then
N -1
o8] e )

e O ]

Thus by Proposition the operator Ag as defined in and gener-
ates a Cp-semigroup if and only if the matrix

SU | R

A~ 0

0 eo!
Co-semigroup if and only if [Vl Ug] is invertible. Now, [Vl Ug] is invert-
ible if and only if for every f € C" there exists x € C™ and y € C"2 such

is invertible. Since the matrix { } is invertible, Ag generates a



that

- - e ]

- b o i

z
0

8

— WS H() [ ] - Wo(HS1)(0) m (18)

Referring, to equation the columns of S™1(¢) are the eigenvectors of
PyH(¢). The eigenvectors corresponding to the positive eigenvalues forms

the first nq columns. Thus S~1(1) [g] is in Z*+(1). Similarly, S~1(0) [2} is

in Z7(0). Thus [V; U] is invertible if and only if
WiH(1)Z T (1) @ WoH(0)Z~(0) = C™,
which concludes the proof. O

3 Examples

The following three examples are provided as illustration of Theorem

Example 3.1 Consider the one-dimensional transport equation on the in-
terval (0,1):

_ OHx

ox
E(C’t) — a—c((,t), z(¢,0) = z0(¢),

(Hz)(1,1)| _
[ wo] [(Hx)(o,t)] =0,

where H € C1[0, 1] with H(¢) > 0 for every ¢ € [0, 1].
An easy calculation shows PyH = H and thus Z7(1) = C and Z~(0) =
{0}. Thus by Theorem the corresponding operator

AHz = ;C(Hw%
D(AH) = {x e WHP(0,1) | [wr wo] [Ezggéﬂ - 0} 7

generates a Cp-semigroup on LP(0,1) if and only if w; # 0. Further, by
Theorem AH generates a contraction semigroup (unitary Cp-group) on
L*(0,1) equipped with the scalar product (-,H-) if and only if w? > w?
(wf = wp). O



Example 3.2 An (undamped) vibrating string can be modeled by

O*w 1 0 ow
S = (T0%n).  tzoceon, )

where ¢ € [0, 1] is the spatial variable, w((,t) is the vertical position of the
string at place ¢ and time ¢, T'(¢) > 0 is the Young’s modulus of the string,
and p(¢) > 0 is the mass density, which may vary along the string. We
assume that 7" and p are positive and continuously differentiable functions on
[0,1]. By choosing the state variables z1 = p%—f (momentum) and xe = g—?
(strain), the partial differential equation can equivalently be written as

e ) <[ ol (0 o] [24E5)
=g (Mo G0]) &
where Py = [{}] and H(¢) = [ﬁ 0 ]

0_T(¢)
The boundary conditions for are

(Ho)(1,0)]
Wi W [(Hm(o,w] =0

where [Wl Wo} is a 2 X 4-matrix with rank 2, or equivalently, the partial
differential equation is equipped with the boundary conditions

p{)%”(la t)
¢ (13 t)
p{;%t”(oa t)
| 3¢ (0:1)

Defining v = \/T'(¢)/p(¢), the matrix function P;H can be factorized as

Pm:[p’ll ‘l] o 0] [<2’V>‘1 p/ﬂ»

Wy W =0.

p 0 =] @) p/2
This implies Z*(1) = span [:((11))] and Z~(0) = span [_VT(E()))}. Thus, by

Theorem [I.5] the corresponding operator

woo- 2 Y& ol

D(AH) = {:13 e WhP(0,1;C?) | [Wh Wy [(Hw)(l)] — 0},



generates a Cp-semigroup on LP(0,1;C?) if and only if

w30 e 76| =<

or equivalently if the vectors W; [%((11))} and Wy [}'Y(g;)} are linearly inde-
pendent.
IfWy:=1and Wy := [*01 (”, then AH generates a Cy-semigroup if and

only if the vectors [%((11))] and [,}((g))} are linearly independent. Thus, not

only the nature of the boundary conditions but also Young’s modulus and
the mass density on the interval [0, 1] affect whether or not AH generates a
Ch-semigroup. O

Example 3.3 Consider the following network of three transport equations
on the interval (0,1):

81‘j aiL'j .
Teny=25¢), t>0 0.1).7=1.2.3
8t(c’) 8C(<7)’ patliy 7(6(7)7] 9~y Uy
.Z'j(C,O) - mj,O(C)? C € (07 1)7 ] = 1a273
:vl(l,t)_
100 0 0 0 “82
010 -1 0 -1 i3(0’t) —0, t>0
1\Y,
001 0 -1 0 o0,
_x3(0’t)_

Writing x = [%ﬂ, the corresponding operator A : D(A) c LP(0,1;C3) —
LP(0,1;C3) is

(42)(¢) = G (©),
100 0 0 0
D(A)={zeW'(0,1;C* |0 1 0 -1 0 -1 [igég]zo
001 0 -1 0

In this example H = P; = I and Py = 0 and therefore the assumptions on
S, A and © are satisfied. An easy calculation yields

z*(1)x(1) — 2™ (0)x(0) = 221(0)x3(0)
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for every x € D(A). Theorem implies that A does not generate a con-
traction semigroup on L?(0,1; C3).
However, by Theorem A generates a Cop-semigroup on LP(0,1;C?)
for 1 < p < oo: In this example, ZT(¢) = C3, Z=(¢) = {0}, Wi = I and
00 0
Wo = [51 0 51]. Thus,

WiZt(1) @ WoZ~(0) = C.

Finally, [5, Corollary 2.1.6] implies that A generates a contraction semigroup
on L'(0,1;C3).

Summarizing, A generates a generates a Cp-semigroup on LP(0,1;C?)
for 1 < p < oo and in fact a contraction semigroup on L'(0,1;C?) but it
does not generate a contraction semigroup on L2(0, 1; C?). O
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