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equations on a one-dimensional spatial domain

Birgit Jacob Kirsten Morris Hans Zwart

Abstract

Hyperbolic partial differential equations on a one-dimensional spa-
tial domain are studied. This class of systems includes models of
beams and waves as well as the transport equation and networks of
non-homogeneous transmission lines. The main result of this paper is
a simple test for C0-semigroup generation in terms of the boundary
conditions. The result is illustrated with several examples.

Keywords: C0-semigroups, hyperbolic partial differential equations,
port-Hamiltonian differential equations.

1 Introduction and main result

Consider the following class of partial differential equations

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)), ζ ∈ [0, 1], t ≥ 0, (1)

x(ζ, 0) =x0(ζ),

where P1 is an invertible n × n Hermitian matrix, P0 is a n × n matrix,
H(ζ) is a positive n × n Hermitian matrix for a.e. ζ ∈ (0, 1) satisfying
H,H−1 ∈ L∞(0, 1;Cn×n). This class of Cauchy problems covers in partic-
ular the wave equation, the transport equation and the Timoshenko beam
equation, and also coupled beam and wave equations. These Cauchy prob-
lems are also known as Hamiltonian partial differential equations or port-
Hamiltonian systems, see [3] ,[6] and in particular the Ph.D thesis [7]. The
boundary conditions are of the form

W̃B

[
(Hx)(1,t)
(Hx)(0,t)

]
= 0, (2)

where W̃B is an n× 2n-matrix.
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Define

Ax :=

(
P1

d

dζ
+ P0

)
(x), x ∈ D(A), (3)

on Xp := Lp(0, 1;Cn), 1 ≤ p <∞, with the domain

D(A) :=
{
x ∈ W1,p(0, 1;Cn) | W̃B

[
x(1)
x(0)

]
= 0
}
. (4)

Then the partial differential equation (1) with the boundary conditions (2)
can be written as the abstract differential equation

ẋ(t) = AHx(t), x(0) = x0.

If we equip X2 with the energy norm 〈·,H·〉, then AH generates a con-
traction semigroup (or an unitary C0-group) on (X2, 〈·,H·〉) if and only if
A is dissipative on (X2, 〈·, ·〉)(or A and −A are dissipative on (X2, 〈·, ·〉),
respectively) [1, 3, 4]. Matrix conditions to guarantee generation of a con-
traction semigroup or of a unitary group have been obtained [1, 3, 4]. The
following theorem extends these results.

Theorem 1.1. Let WB := W̃B

[
P1 −P1
I I

]−1
and Σ :=

[
0 I
I 0

]
.

1. The following statements are equivalent:

(a) AH with domain D(AH) := {x ∈ X2 | Hx ∈ D(A)} = H−1D(A)
generates a contraction semigroup on (X2, 〈·,H·〉);

(b) Re 〈Ax, x〉 ≤ 0 for every x ∈ D(A);

(c) ReP0 ≤ 0 and u∗P1u− y∗P1y ≤ 0 for every [ uy ] ∈ ker W̃B;

(d) ReP0 ≤ 0, WBΣW ∗B ≥ 0 and rank W̃B = n.

2. The following statements are equivalent:

(a) AH with domain D(AH) := {x ∈ X2 | Hx ∈ D(A)} = H−1D(A)
generates a unitary C0-group on (X2, 〈·,H·〉);

(b) Re 〈Ax, x〉 = 0 for every x ∈ D(A);

(c) ReP0 = 0 and u∗P1u− y∗P1y = 0 for every [ uy ] ∈ ker W̃B;

(d) ReP0 = 0, WBΣW ∗B = 0 and rank W̃B = n.

Theorem 1.1 was proved in [3, Theorem 7.2.4] with the additional as-
sumptions that P ∗0 = −P0 and rank W̃B = n. The extension to non skew-
adjoint matrices P0 is in [1]. However, the equivalence with (c) is not ex-
plicitly shown in the above references and it is assumed that rank W̃B = n.
A short proof of Theorem 1.1 is in the following section.
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By the assumptions on H it is clear that the norm on (X2, 〈·,H·〉) is
equivalent to the standard norm on X2. Hence if AH generates a contraction
(or a unitary group) with respect to the energy norm for some H, then it
will generate a C0-semigroup (C0-group) on X2 equipped with the standard
norm as well.

The following corollary follows immediately.

Corollary 1.2. The following statements are equivalent:

1. A generates a contraction semigroup on (X2, 〈·, ·〉),

2. AH generates a contraction semigroup on (X2, 〈·,H·〉).

Corollary 1.2 implies that whether or not AH generates a contraction
semigroup on the energy space (X2, 〈·,H·〉) is independent of the Hamilto-
nian density H: A is the generator of a contraction semigroup on (X2, 〈·, ·〉)
if and only if AH generates a contraction semigroup on (X2, 〈·,H·〉). The
condition of a contraction semigroup is essential here. For a counterexample,
see Example 3.2 or [8, Section 6].

Definition 1.3. An operator A generates a quasi-contractive semigroup if
A− ωI generates a contraction semigroup for some ω ∈ R. �

Corollary 1.4. If ReP0 ≤ 0 then AH generates a quasi-contractive semi-
group on (X2, 〈·,H·〉) if and only if AH generates a contraction semigroup
on (X2, 〈·,H·〉).

The proof of Corollary 1.4 will be given in Section 2.
Theorem 1.1 characterizes boundary conditions for which AH generates

a contraction semigroup or a unitary group. However, other boundary condi-
tions may still lead to a C0-semigroup. To characterize those we diagonalize
P1H(ζ). It is easy to see that the eigenvalues of P1H(ζ) are the same as

the eigenvalues of H(ζ)
1
2P1H(ζ)

1
2 . Hence by Sylvester’s Law of Inertia the

number of positive and negative eigenvalues of P1H(ζ) equal those of P1.
We denote by n1 the number of positive and by n2 = n− n1 the number of
negative eigenvalues of P1. Hence we can find matrices such that

P1H(ζ) = S−1(ζ)

[
Λ(ζ) 0

0 Θ(ζ)

]
S(ζ), a.e. ζ ∈ (0, 1), (5)

with Λ(ζ) and Θ(ζ) diagonal matrices of size n1×n1 and n2×n2, respectively.
The main result of this paper is the following theorem that provides easily

checked conditions for when the operator AH generates a C0-semigroup on

3



Xp. These cover the situation where AH may not generate a contraction
semigroup.

Theorem 1.5. Assume that S, Λ and Θ in (5) are continuously differen-
tiable on [0, 1] and that rank W̃B = n. Define Z+(ζ) to be the span of
eigenvectors of P1H(ζ) corresponding to its positive eigenvalues. Similarly,
we define Z−(ζ) to be the span of eigenvectors of P1H(ζ) corresponding to
its negative eigenvalues. We write W̃B as

W̃B =
[
W1 W0

]
(6)

with W1,W0 ∈ Cn×n. Then the following statements are equivalent:

1. The operator AH defined by (3)–(4) generates a C0-semigroup on Xp.

2. W1H(1)Z+(1)⊕W0H(0)Z−(0) = Cn.

The proof of Theorem 1.5 will be given in the next section.

Remark 1.6. 1. In Kato [9, Chapter II], conditions on P1H are given
guaranteeing that S, Λ and Θ are continuously differentiable.

2. In [2], a more restrictive version of Theorem 1.5 that applies when
H = I and p = 2 was proven by a different approach. In [2] estimates
for the growth bound are given.

3. Theorem 1.5 implies that if AH generates a C0-semigroup on one Xp,
then AH generates a C0-semigroup on every Xp, 1 ≤ p < ∞. A
similar statement does not hold for contraction semigroups. Example
3.3, given later in this paper, illustrates this point. �

2 Proof of Theorems 1.1 and 1.5 and Corollary 1.4

Proof of Theorem 1.1:
Since the proof of Part 2 is similar to that of Part 1 we only present the

details for Part 1.
The implication (a) ⇒ (b) follows directly from the Lumer-Phillips the-

orem and Lemma 7.2.3 in [3]. Next we show the implication (b) ⇒ (c). It
is easy to see that

Re〈Ax, x〉 = x(1)∗P1x(1)− x(0)∗P1x(0) + Re

∫ 1

0
x(ζ)∗P0x(ζ)dζ (7)
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holds for every x ∈ D(A). Choosing x ∈ W 1,2(0, 1;Cn) with x(0) = x(1) =
0, we obtain ReP0 ≤ 0. For every u, y ∈ Cn and every ε > 0 there exists a
function in x ∈W 1,2(0, 1;Cn) such that x(0) = u, x(1) = y and the L2-norm
of x is less than ε. Choosing this function in equation (7) and letting ε go
to zero implies the second assertion in (c), see also Lemma 2.4 of [1]. The
implication (d) ⇒ (a) follows from Theorem 2.3 of [1], see also [4]. Hence it
remains to show (c) ⇒ (d).

We introduce the notation f1 = x(1) and f0 = x(0). Then the condition
in (c) can be written as

[
f∗1 f∗0

] [ P1 0
0 −P1

] [
f1

f0

]
≤ 0, for

[
f1

f0

]
∈ ker W̃B. (8)

Since W̃B is an n × 2n matrix, its kernel has dimension 2n minus its rank.
Hence this dimension will be larger or equal to n. Since P1 is an invertible

Hermitian n × n matrix, the matrix
[
P1 0
0 −P1

]
will have n positive and n

negative eigenvalues. This implies that if v∗
[
P1 0
0 −P1

]
v ≤ 0 for all v in a

linear subspace V , then V has at most dimension n. Combining these two
facts, the dimension of the kernel of W̃B equals n, and so W̃B is a matrix of
rank n.

Defining [ y1y0 ] =
[
P1 −P1
I I

] [ f1
f0

]
, and using (8), an easy calculation shows

y∗1y0 + y∗0y1 ≤ 0, for

[
y1

y0

]
∈ kerWB. (9)

We write WB as WB = [W1 W2]. Now it is easy to see that W1 + W2

is invertible (we refer to page 87 in [3] for the details). Defining V :=
(W1 +W2)−1(W1 −W2), we obtain

WB =
1

2
(W1 +W2) [I + V, I − V ] .

Let [ fe ] ∈ kerWB be arbitrary. By [3, Lemma 7.3.2] there exists a vector `
such that [ fe ] =

[
I−V
−I−V

]
`. This implies

0 ≥ f∗e+ e∗f = `∗(−2I + 2V ∗V )`, (10)

This inequality holds for any [ fe ] ∈ kerWB. Since the n × 2n matrix WB

has rank n, its kernel has dimension n, and so the set of vectors ` satisfying
[ fe ] =

[
I−V
−I−V

]
` for some [ fe ] ∈ kerWB equals the whole space Kn. Thus (10)

implies that V ∗V ≤ I, and by [3, Lemma 7.3.1] we obtain WBΣW ∗B ≥ 0. �
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Proof of Corollary 1.4: As AH− ωI generates a contraction semigroup,
Theorem 1.1 implies WBΣW ∗B ≤ 0 and rank W̃B = n. Thanks to ReP0 ≤ 0
and Theorem 1.1, finally AH generates a contraction semigroup. �

The following proposition is needed for the proof of Theorem 1.5.

Proposition 2.1. ([8, Theorem 3.3] [3, Theorem 13.3.1] for p = 2 and [8,
Theorem 3.3 and Section 7] for 1 ≤ p < ∞) Suppose K,Q ∈ Cn×n, Λ ∈
C1([0, 1];Cn1×n1) is a diagonal real matrix-valued function with (strictly)
positive functions on the diagonal and Θ ∈ C1([0, 1];Cn2×n2), n1 + n2 = n,
is a diagonal real matrix-valued function with (strictly) negative functions
on the diagonal. We split a function g ∈ Lp(0, 1;Cn) as

g(ζ) =

[
g+(ζ)
g−(ζ)

]
, (11)

where g+(ζ) ∈ Cn1 and g−(ζ) ∈ Cn2 .
Then the operator Ã : D(Ã) ⊂ Xp → Xp defined by

Ã

[
g+

g−

]
=

d

dζ

([
Λ 0
0 Θ

] [
g+

g−

])
(12)

D(Ã) =

{[
g+

g−

]
∈W 1,p(0, 1,Cn) | K

[
Λ(1)g+(1)
Θ(0)g−(0)

]
+Q

[
Λ(0)g+(0)
Θ(1)g−(1)

]
= 0

}
(13)

generates a C0-semigroup on Xp if and only if K is invertible.

Proof of Theorem 1.5: We define the new state variable g := Sx. Since
S defines a boundedly invertible operator on Lp(0, 1;Cn), the operator AH
generates a C0-semigroup if and only if SAHS−1 generates a C0-semigroup.
We define

∆ :=

[
Λ 0
0 Θ

]
.

Then the operator

(SAHS−1g)(ζ) =
d

dζ
(∆(ζ)g(ζ)) + S(ζ)

dS−1

dζ
(ζ)∆(ζ)g(ζ)

+S(ζ)P0H(ζ)S−1(ζ)g(ζ) (14)

D(SAHS−1) = {g ∈W 1,p(0, 1;Cn) | W̃B

[
(HS−1g)(1)
(HS−1g)(0)

]
= 0}.
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Since the last two operators in (14) are bounded, SAHS−1 generates a C0-
semigroup if and only if the operator

ASg =
d

dζ
(∆g) (15)

D(AS) =

{
g ∈W 1,p(0, 1;Cn×n) | W̃B

[
(HS−1g)(1)
(HS−1g)(0)

]
= 0

}
(16)

generates a C0-semigroup on Xp. We split the matrices W1(HS−1)(1) and
W0(HS−1)(0) as

W1(HS−1)(1) =
[
V1 V2

]
W0(HS−1)(0) =

[
U1 U2

]
,

where U1, V1 ∈ Cn×n1 and U2, V2 ∈ Cn×n2 , and as in (??) write

g(ζ) =

[
g+(ζ)
g−(ζ)

]
, (17)

where g+(ζ) ∈ Cn1 and g−(ζ) ∈ Cn2 . Then

0 =W̃B

[
(HS−1g)(1)
(HS−1g)(0)

]
=
[
V1 V2

] [g+(1)
g−(1)

]
+
[
U1 U2

] [g+(0)
g−(0)

]
=
[
V1 U2

] [g+(1)
g−(0)

]
+
[
U1 V2

] [g+(0)
g−(1)

]
=
[
V1 U2

] [Λ(1)−1 0
0 Θ(0)−1

] [
Λ(1)g+(1)
Θ(0)g−(0)

]
+
[
U1 V2

] [Λ(0)−1 0
0 Θ(1)−1

] [
Λ(0)g+(0)
Θ(1)g−(1)

]
.

Thus by Proposition 2.1 the operator AS as defined in (15) and (16) gener-
ates a C0-semigroup if and only if the matrix

K =
[
V1 U2

] [Λ(1)−1 0
0 Θ(0)−1

]
is invertible. Since the matrix

[
Λ(1)−1 0

0 Θ(0)−1

]
is invertible, AS generates a

C0-semigroup if and only if
[
V1 U2

]
is invertible. Now,

[
V1 U2

]
is invert-

ible if and only if for every f ∈ Cn there exists x ∈ Cn1 and y ∈ Cn2 such
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that

f =
[
V1 U2

] [x
y

]
=
[
V1 U2

] [x
y

]
+
[
U1 V2

] [0
0

]
=

[
V1 V2

] [x
0

]
+
[
U1 U2

] [0
y

]
= W1(HS−1)(1)

[
x
0

]
+W0(HS−1)(0)

[
0
y

]
. (18)

Referring, to equation (5) the columns of S−1(ζ) are the eigenvectors of
P1H(ζ). The eigenvectors corresponding to the positive eigenvalues forms

the first n1 columns. Thus S−1(1)

[
x
0

]
is in Z+(1). Similarly, S−1(0)

[
0
y

]
is

in Z−(0). Thus
[
V1 U2

]
is invertible if and only if

W1H(1)Z+(1)⊕W0H(0)Z−(0) = Cn,

which concludes the proof. �

3 Examples

The following three examples are provided as illustration of Theorem 1.5.

Example 3.1 Consider the one-dimensional transport equation on the in-
terval (0, 1):

∂x

∂t
(ζ, t) =

∂Hx
∂ζ

(ζ, t), x(ζ, 0) = x0(ζ),

[
w1 w0

] [(Hx)(1, t)
(Hx)(0, t)

]
= 0,

where H ∈ C1[0, 1] with H(ζ) > 0 for every ζ ∈ [0, 1].
An easy calculation shows P1H = H and thus Z+(1) = C and Z−(0) =

{0}. Thus by Theorem 1.5 the corresponding operator

AHx =
∂

∂ζ
(Hx),

D(AH) =

{
x ∈W 1,p(0, 1) |

[
w1 w0

] [(Hx)(1)
(Hx)(0)

]
= 0

}
,

generates a C0-semigroup on Lp(0, 1) if and only if w1 6= 0. Further, by
Theorem 1.1, AH generates a contraction semigroup (unitary C0-group) on
L2(0, 1) equipped with the scalar product 〈·,H·〉 if and only if w2

1 ≥ w2
0

(w2
1 = w2

0). �
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Example 3.2 An (undamped) vibrating string can be modeled by

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, t ≥ 0, ζ ∈ (0, 1), (19)

where ζ ∈ [0, 1] is the spatial variable, w(ζ, t) is the vertical position of the
string at place ζ and time t, T (ζ) > 0 is the Young’s modulus of the string,
and ρ(ζ) > 0 is the mass density, which may vary along the string. We
assume that T and ρ are positive and continuously differentiable functions on
[0, 1]. By choosing the state variables x1 = ρ∂w∂t (momentum) and x2 = ∂w

∂ζ
(strain), the partial differential equation (19) can equivalently be written as

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

])
= P1

∂

∂ζ

(
H(ζ)

[
x1(ζ, t)
x2(ζ, t)

])
, (20)

where P1 = [ 0 1
1 0 ] and H(ζ) =

[ 1
ρ(ζ)

0

0 T (ζ)

]
.

The boundary conditions for (20) are[
W1 W0

] [(Hx)(1, t)
(Hx)(0, t)

]
= 0,

where
[
W1 W0

]
is a 2 × 4-matrix with rank 2, or equivalently, the partial

differential equation (19) is equipped with the boundary conditions

[
W1 W0

]

ρ∂w∂t (1, t)
∂w
∂ζ (1, t)

ρ∂w∂t (0, t)
∂w
∂ζ (0, t)

 = 0.

Defining γ =
√
T (ζ)/ρ(ζ), the matrix function P1H can be factorized as

P1H =

[
γ −γ
ρ−1 ρ−1

] [
γ 0
0 −γ

] [
(2γ)−1 ρ/2
(2γ)−1 ρ/2

]
,

This implies Z+(1) = span
[
T (1)
γ(1)

]
and Z−(0) = span

[
−T (0)
γ(0)

]
. Thus, by

Theorem 1.5 the corresponding operator

(AHx)(ζ) =

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

]
x(ζ)

)
;

D(AH) =

{
x ∈W 1,p(0, 1;C2) |

[
W1 W0

] [(Hx)(1)
(Hx)(0)

]
= 0

}
,
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generates a C0-semigroup on Lp(0, 1;C2) if and only if

W1

[
γ(1)
T (1)

]
⊕W0

[
−γ(0)
T (0)

]
= C2,

or equivalently if the vectors W1

[
γ(1)
T (1)

]
and W0

[
−γ(0)
T (0)

]
are linearly inde-

pendent.
If W1 := I and W0 :=

[−1 0
0 1

]
, then AH generates a C0-semigroup if and

only if the vectors
[
γ(1)
T (1)

]
and

[
γ(0)
T (0)

]
are linearly independent. Thus, not

only the nature of the boundary conditions but also Young’s modulus and
the mass density on the interval [0, 1] affect whether or not AH generates a
C0-semigroup. �

Example 3.3 Consider the following network of three transport equations
on the interval (0, 1):

∂xj
∂t

(ζ, t) =
∂xj
∂ζ

(ζ, t), t ≥ 0, ζ ∈ (0, 1), j = 1, 2, 3,

xj(ζ, 0) = xj,0(ζ), ζ ∈ (0, 1), j = 1, 2, 3

1 0 0 0 0 0
0 1 0 −1 0 −1
0 0 1 0 −1 0




x1(1, t)
x2(1, t)
x3(1, t)
x1(0, t)
x2(0, t)
x3(0, t)

 = 0, t ≥ 0.

Writing x =
[
x1
x2
x3

]
, the corresponding operator A : D(A) ⊂ Lp(0, 1;C3) →

Lp(0, 1;C3) is

(Ax)(ζ) =
∂x

∂ζ
(ζ),

D(A) =

x ∈W 1,p(0, 1;C3) |

1 0 0 0 0 0
0 1 0 −1 0 −1
0 0 1 0 −1 0

[x(1)
x(0)

]
= 0

 .

In this example H = P1 = I and P0 = 0 and therefore the assumptions on
S, Λ and Θ are satisfied. An easy calculation yields

x∗(1)x(1)− x∗(0)x(0) = 2x1(0)x3(0)
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for every x ∈ D(A). Theorem 1.1 implies that A does not generate a con-
traction semigroup on L2(0, 1;C3).

However, by Theorem 1.5 A generates a C0-semigroup on Lp(0, 1;C3)
for 1 ≤ p < ∞: In this example, Z+(ζ) = C3 , Z−(ζ) = {0}, W1 = I and

W0 =
[

0 0 0
−1 0 −1
0 −1 0

]
. Thus,

W1Z
+(1)⊕W0Z

−(0) = C3.

Finally, [5, Corollary 2.1.6] implies that A generates a contraction semigroup
on L1(0, 1;C3).

Summarizing, A generates a generates a C0-semigroup on Lp(0, 1;C3)
for 1 ≤ p < ∞ and in fact a contraction semigroup on L1(0, 1;C3) but it
does not generate a contraction semigroup on L2(0, 1;C3). �
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