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Efficient Numerical Simulation of the Wilson
Flow in Lattice QCD

Michèle Wandelt and Michael Günther

Abstract Lattice Quantum Chrome Dynamics (Lattice QCD) is a gauge theory for-
mulated on a highly dimensional grid or lattice of points in space and time. It aims
at determining observables such as the mass of elementary particles as accurate as
possible, with computational costs as low as possible at the same time. Thus high
performance computing tools are inevitable, as well as the construction of HPSC
hardware tailored to the needs of Lattice QCD. In the Hybrid Monte Carlo (HMC)
approach [1], Monte Carlo simulations involving a molecular dynamics step in its
core are performed, which yield physical values provided with their statistical er-
rors.

In this talk we concentrate on the Wilson Flow, a system of differential equations
defined on the Lie group SU(3). The Wilson Flow can be used, e.g., to determine
the physical lattice spacing which influences the result of the HMC simulations. We
focus on tailored Runge-Kutta Lie group integration methods with step size predic-
tion. The numerical results confirm that our strategy is able to reduce the statistical
errors of the simulation.

1 Introduction

Quantum Chromo Dynamics (QCD) is a quantum field theory that describes the
strong interaction between fundamental constituents of matter inside subatomic par-
ticles. The discretized version of QCD is formulated on a 4-dimensional grid - or
lattice - in space and time and called Lattice QCD. It aims at the computation of
observables like the mass of elementary particles which is theoretically done via
the computation of path integrals. Due to the fact that these integrals are very high
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dimensional, this calculation is done using Monte Carlo simulations. During these
simulations, a sequence [U ]0 → [U ]1 → [U ]2 → . . . of field configurations is com-
puted which consists of a set of matrices being elements of the special unitary matrix
Lie group SU(3). Moreover, the observables are determined as expectation values of
certain operators of the different configurations. As a byproduct of the Monte Carlo
simulation, the so-called Wilson flow can be computed, see [2, 3]. It is a flow in the
field space and can be used to investigate certain physical properties of the lattice
as, for example, the physical lattice spacing. The Wilson flow is defined by a system
of differential equations of the kind

V̇ (t) = Z([V (t)]) ·V (t) . (1)

Since the variables V (t) are elements of the matrix Lie group SU(3) and the vari-
ables Z([V (t)]) elements of the appropriate matrix Lie algebra su(3) we have a dif-
ferential equation on the manifold SU(3). This means, the solution has to be also in
the Lie group. Thus, we have to choose a numerical method that ensures a solution
in the Lie group like, for example, Munthe-Kaas Runge-Kutta (RK-MK) methods.
Usually, the Wilson Flow is computed via Runge-Kutta methods for Lie groups of
fixed convergence order.
In this paper, we concentrate on the numerical integration of the Wilson flow us-
ing step size prediction. In section 2, we start with a brief explanation of RK-MK
schemes for differential equations of type (1). Then, we focus on step size predic-
tion for RK-MK schemes in section 3. Afterwards, we show the numerical results
for a RK-MK scheme of convergence order (2)3 in section 4. Here, we compute the
Wilson flow and investigate the so-called Wilson energy as observable. Then, we
adapt the step size prediction for the whole set of variables of a field configuration.
Finally, we show some simulation results.

2 Runge Kutta Methods for Lie Groups

In the Wilson flow, a differential equation on a Lie group which is a differentiable
manifold has to be solved. This differential equation has a special structure:

V̇ = Z ·V (2)

with V being an element of a Lie group G and Z an element of the Lie algebra g.
This kind of differential equation can be solved using the theorem of Magnus [4].
That means, the unknown Lie group element V can be replaced by a mapping

V = exp(Ω)V0 (3)

with unknown Lie algebra element Ω . Then, Ω is the solution of the differential
equation

Ω̇ = d exp−1
Ω
(Z) (4)
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Efficient Numerical Simulation of the Wilson Flow in Lattice QCD 3

in the Lie algebra with Ω̇ being the derivative of the inverse exponential mapping
and initial value Ω(0) = 0. At the end, the solution of (2) is given as the mapping
(3) of the solution Ω of (4). Thereby, the derivative of the inverse exponential map
can be rewritten as infinite series

d exp−1
Ω
(Z) =

∞

∑
k=0

Bk

k!
adk

Ω (Z)

with Bk being the k-th Bernoulli number and adjoint operator adk
Ω

which is a map-
ping

adΩ (A) := [Ω ,A] = Ω ·A−A ·Ω

in the Lie algebra g. For the numerical simulation, the infinite series of the derivative
of the inverse exponential map has to be truncated. This truncation induces a model
error which should be smaller or equal than the convergence order of the numerical
method used for the detection of the solution Ω .

Munthe-Kaas describes a suitable truncation for Runge-Kutta methods [5, 6] as
follows: for a Runge-Kutta method of convergence order p, the truncation index q
has to be larger than p−2:

Ω̇ =
q

∑
k=0

Bk

k!
adk

Ω (Z) ,q≥ p−2 (5)

A Runge-Kutta method for the differential equation (2) can be computed in three
steps: Start with the mapping V = exp(Ω)V0. Then, use an appropriate numerical
integration scheme to solve the differential equation

Ω̇ = d exp−1
Ω
(Z) =

q

∑
k=0

Bk

k!
adk

Ω (Z)

with initial value Ω(0) = 0, e.g the Munthe-Kaas Runge Kutta scheme. Finally, map
the solution Ω via equation (3) from the Lie algebra to the Lie group.

The RK-MK for the computation of the solution of the differential equation (4)
is given as:

Ω1 = h∑
i

biKi with Ki = fq(Yi,Zi)

Yi = h∑
k

aikKk, Zi = Z(Vi), Vi = exp(Yi) ·V0

Here, fq(Yi,Zi) is described by (5) as

fq(Yi,Zi) = B0 ·Z +B1 · [Ω ,Z]+
B2

2
·
[
Ω , [Ω ,Z]

]
+ . . .+

Bq

q!
adq

Ω
(Z)
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4 Michèle Wandelt and Michael Günther

This means, the function fq has to be suitably truncated according to the desired
convergence order of the method. For example, a convergence order p = 2 can be
achieved using f0 = B0 ·Z, and for p = 3 we would need f1 = B0 ·Z +B1 · [Ω ,Z].

3 Step Size Control

Our aim is to solve the equation V̇ = Z ·V using a step size control. Here, we use
a common step size control as, for example, described in [7] and combine it with a
Munthe-Kaas Runge-Kutta method. We proceed as follows: Start from initial values
V0 with a given step size and compute the solutions V̂1 of convergence order p and
V1 of convergence order p+ 1. Here, the RK-MK method is adapted for the step
size control: start with V1 = exp(Ω1) ·V0 and V̂1 = exp(Ω̂1) ·V0 To reach the desired
convergence order p of V̂1 and p+1 of V1, the RK-MK algorithm is given as

Ω1 = h∑
i

biKi with Ki = fp−2(Yi,Zi)

Yi = h∑
j

ai jK j, Zi = Z(Vi), Vi = exp(Yi) ·V0

Ω̂1 = h∑
i

b̂iK̂i with K̂i = fp−1(Ŷi, Ẑi)

Ŷi = h∑
j

ai jK̂ j, Ẑi = Z(V̂i), V̂i = exp(Ŷi) ·V0 .

The measure for the error is calculated as

err =

√√√√1
n

n

∑
j=1

( ||Ω̂1−Ω1|| j
ATOL+RTOL · ||Ω̂1|| j

)2
.

As we work on a set of matrix Lie algebra elements, the computation of the error
measure has to be adapted to a set of Lie algebra elements: The norms ||Ω̂1−Ω1|| j
and ||Ω̂1|| j have to be chosen as matrix norms like, for example, the Frobenius
norm, row sum norm or the spectral norm. Afterwards, the optimal step size hopt is
computed as

hopt = h · p+1

√
1

err
·ρ

with safety factor ρ . Additionally, the step size should not increase or decrease too
fast which is prevented by

hopt = min
(

α ·h,max
(
β ·h,hopt

))
.
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Efficient Numerical Simulation of the Wilson Flow in Lattice QCD 5

If the error measure is small enough, i.e. err ≤ 1, the step is accepted and V1 taken
as initial value for the new step, otherwise the step is repeated. In any case, the new
step size is set to hopt.

Remark 1 (Step Size Control for the Wilson Flow). The Wilson Flow is a flow in the
field space, i.e. for a lattice of n variables there are n differential equations

V̇j(t) = Z([V (t)]) ·Vj(t) j = 1, . . . ,n

to be solved. The calculation for one Wilson Flow starts at one of the given config-
urations, e.g. [U ]i which serves as initial values [V ]0. Here, we have to refresh our
mind with the fact that the variables Vj(t), j = 1, . . . ,n are elements of the special
unitary Lie group SU(3). The function Z([V (t)]) maps an element Vj ∈ SU(3) to its
appropriate special unitary Lie algebra su(3):

Vj→ Z j = Z([V ]) , SU(3)→ su(3).

Thereby, the function Z does not just depend on Vj itself but of several adjacent
variables Vk (considered to be constants at this moment). This dependence is induced
by the notation Z([V ]). Considering the elements Vj ∈ SU(3),Z j ∈ su(3) we have
a system of the aforementioned differential equations on Lie groups with solution
being as well in the Lie group.

4 Numerical Results and Outlook

We compute the Wilson flow for one single configuration that consists of n lattice
points. Then, we measure the Wilson energy

E = ∑
p

Real Trace(1−U(p)) (6)

whose formula is, for example, described in [2]. We have implemented a Munthe-
Kaas Runge-Kutta method of convergence order (2)3 with Bogacki-Shampine coef-
ficients given in table 1. This means, we have a Runge-Kutta method of four stages
and have to compute

Ω1 = h
k=3

∑
i=1

biKi with Ki = f1(Yi,Zi) = f0(Yi,Zi)+B1[Yi,Zi]

Ω̂1 = h
k=4

∑
i=1

b̂iK̂i with K̂i = f0(Yi,Zi)

for all n points in the configuration. Then, the solutions V1 of convergence order
three and V̂ of convergence order two are reached for all lattice points via

V1 = exp(Ω1)V0 and V̂1 = exp(Ω1)V0 .
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6 Michèle Wandelt and Michael Günther

Table 1 Bogacki-Shampine coefficients

0
1/2 1/2
3/4 0 3/4

1 2/9 1/3 4/9

2/9 1/ 3 4/9 0 ← b

7/24 1/4 1/3 1/8 ← b̂

Since the model error of K̂i is larger than the one of Ki, we use the better approxima-
tion Ki instead of K̂i if it is already available (this is the case in the first three stages).
In figure 4, we compare the Wilson energy (6) computed (via the Wilson flow) with a
RK method of order 2 with one computed with the aforementioned step size predic-
tion. Here, the parameters for the step size control are set to ATOL=1e−3, RTOL=0,
ρ = 0.8, facmin=0.5 and facmax=2. We see that a step size prediction works for the
Wilson flow which consists of a set of matrices being Lie group elements.
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Fig. 1 Wilson energy computed with a Runge-Kutta method of convergence order 2 (blue) and
with step size control (red).
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Efficient Numerical Simulation of the Wilson Flow in Lattice QCD 7

Conclusion and Outlook

Usually, the Wilson flow is computed via a Runge-Kutta method with fixed step size
and physicists are interested in the mean values of the observables computed from
many configurations including their statistical errors. There are two advantages of
the step size prediction explained here: first of all, the computational effort is re-
duced exploiting the dynamics of the system. Here, the parameters controlling the
step size prediction have to be approved in a next step. Then, the step size predic-
tion controls the numerical error such that the statistical errors can be reduced in a
suitable manner. This has to be investigated in a next step.
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