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Quadrature Methods with Adjusted Grids for
Stochastic Models of Coupled Problems

Roland Pulch and Andreas Bartel and Sebastian Schöps

Abstract We consider coupled problems with uncertain parameters modelled as
random variables. Due to the largely differing behaviour of subsystems in coupled
problems, we introduce a strategy of adjusted grids defined in the parameter do-
main for resolving the stochastic model. This allows us to adapt quadrature grids
to each subsystem. The communication between the different grids requires global
approximations of coupling variables in the random space. Since implicit time inte-
gration methods are typically included, we investigate dynamic iteration schemes to
realise this approach. Numerical results for a thermal-electric test circuit outline the
feasibility of the method.

1 Introduction

In many applications, the simulation task addresses a coupled, multiphysical prob-
lem. Often the resulting models consist of differential algebraic equations together
with partial differential equations, see [2]. Due to an inherent multirate or multiscale
behaviour, a co-simulation of a coupled problem can be often efficient. Mathemat-
ically, this is also referred to as dynamic iteration, see [3]. Our application is in
electrical engineering, where we consider a thermal-electric test circuit.
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Physical parameters of a coupled problem may exhibit uncertainties due to mea-
surement errors, imperfections of an industrial production or other reasons. We
quantify the uncertainties by random variables for the parameters and the solution
becomes a random process. Statistics like the expected value and the variance can
be computed by sampling methods or quadrature rules. Alternatively, a stochastic
Galerkin method or stochastic collocation techniques can be used, see [4–6]. How-
ever, the Galerkin approach results in a much larger coupled system.

We investigate quadrature formulas in this paper. If the parts of the coupled prob-
lem show a different sensitivity with respect to the dependence on the random pa-
rameters, then the usage of quadrature on grids with different refinement levels be-
comes favourable. Thus we introduce different grids for the subsystems of a coupled
problem. The application of this approach is straightforward in case of an explicit
time integration scheme. To realise an implicit time integration, we apply a dynamic
iteration to the overall problem, which decouples the subsystems to some extend. It
follows that communications between the different parameter grids are required in
discrete time points. Arbitrary global approximations of the solution on the ran-
dom space are feasible for this communication. We use truncated expansions of
the solution with respect to orthogonal basis polynomials depending on the random
variables, i.e., a spectral approach appears in the probability space, see [6].

Finally, we test this strategy using a problem from [1], where an electric network
is combined with thermal effects. Two different grids are applied for the two parts of
the coupled problem. We test grids of several resolutions and based on a reference
solution we qualitatively compare the achieved accuracies.

2 Problem Definition

We consider a time-dependent coupled problem consisting of two parts

F1

(
y1(t,p),y

cpl
2 (t,p), t,p

)
= 0,

F2

(
y2(t,p),y

cpl
1 (t,p), t,p

)
= 0,

(1)

where parameters p ∈ Π ⊆ RQ are included. The operators F1,F2 represent ordi-
nary differential equations (ODEs), differential algebraic equations (DAEs) or par-
tial differential equations (PDEs) after a semidiscretisation in space. Hence time
derivatives are involved in each part. The operators Fi comprise ni equations and
the solution of the system (1) is yi : [t0, tend]×Π → RNi for i = 1,2, where initial
values are given for all p ∈ Π . The coupling variables are defined as ycpl

i := Biyi
with constant matrices Bi ∈ {0,1}Ri×Ni such that the coupling variables include just
a subset of yi for each i = 1,2. Typically, it holds that R1 ≪ N1 and R2 ≪ N2, i.e.,
the coupling variables represent just a small portion of the solution. Furthermore, it
is allowed that just one of two subsystems in (1) includes all the parameters. Gener-
alisations to more than two subsystems are straightforward.



Quadrature Methods for Stochastic Coupled Problems 3

In many technical applications, implicit time integration schemes have to be ap-
plied, since either DAEs or stiff ODEs are involved. Due to a multirate behaviour, a
co-simulation based on a dynamic iteration becomes efficient in some cases. More-
over, co-simulation is required if the equations of a subsystem in (1) are not avail-
able directly, i.e., just a software package is given including a numerical solver. We
consider a dynamic iteration, where the total time span is split into windows with a
first window [t0, twin]. For a fixed p ∈ Π , the iteration of Gauss-Seidel type for the
coupled system (1) reads as

F1

(
y(ν+1)

1 (t,p),ycpl(ν)
2 (t,p), t,p

)
= 0,

F2

(
y(ν+1)

2 (t,p),ycpl(ν+1)
1 (t,p), t,p

)
= 0,

for ν = 0,1,2, . . . (2)

using the starting values y(0)2 (t,p)≡ y2(t0,p). However, a numerical method outputs
just the solutions y1, y2 on a discrete set of time points, which may also differ for
the two subsystems. We assume that all coupling variables are interchanged in a few
communication time points t̄ j with t0 ≤ t̄1 < t̄2 < · · ·< t̄J = twin. Interpolation yields
approximations of the coupling variables ycpl

i (t,p) for t ∈ [t0, twin] and i = 1,2.
Now we suppose that the parameters are not known exactly. To perform an uncer-

tainty quantification, the parameters are modelled by random variables p : Ω → Π
on some probability space (Ω ,A ,µ) with a joint density ρ : Π → R. Statistical
information for a function g : Π → R is obtained by probabilistic integrals

E(g) :=
∫

Ω
g(p(ω)) dµ(ω) =

∫
Π

g(p)ρ(p) dp (3)

provided that the integral exists. For example, probabilistic integration can be ap-
plied to the solution of (1) component-wise. Crucial information consists of the
expected value and the standard deviation for the solution. Furthermore, higher mo-
ments and failure probabilities also represent integrals of the type (3). Our aim is to
compute statistics of the solution y1,y2 for either the complete time interval or just
at a final time.

A quadrature scheme or a sampling method yields an approximation of a proba-
bilistic integral (3), see [6] and the references therein. We obtain a finite sum of the
form E(g) .

= w1g(p(1))+ · · ·+wKg(p(K)) with grid points p(1), . . . ,p(K) ∈ Π and
weights w1, . . . ,wK ∈ R. For g = g̃(y1,y2) at some final time tend, it follows that an
initial value problem of the system (1) has to be resolved K times for the different
realisations of the parameters.

3 Quadrature with Adjusted Grids

If the solutions of the subsystems in the coupled problem (1) behave differently
with respect to the random parameters, then the application of different quadrature
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formulas might become advantageous. For example, a higher variance within a sub-
system often indicates that a higher accuracy of the quadrature is required. Thus
we introduce two grids Gi := {p(1)

i , . . . ,p(Ki)
i } with p(k)

i ∈ Π for i = 1,2 dedicated
to the two parts of the coupled problem (1). In general, any grid is initiated by a
quadrature scheme. The numbers of grid points K1,K2 may differ significantly. The
subsystem for Fi together with its solution yi is integrated in time on the grid Gi for
each i = 1,2.

Following (2), we have to solve the problems

F1

(
y(ν+1)

1 (t,p(k)
1 ),ycpl(ν)

2 (t,p(k)
1 ), t,p(k)

1

)
= 0 for k = 1, . . . ,K1,

F2

(
y(ν+1)

2 (t,p(k)
2 ),ycpl(ν+1)

1 (t,p(k)
2 ), t,p(k)

2

)
= 0 for k = 1, . . . ,K2,

(4)

in each step of the dynamic iteration. The first iteration step ν = 0 in (4) for
F1 can be computed directly using the globally defined initial values. The out-
put is y(1)1 (t̄ j,p

(k)
1 ) for k = 1, . . . ,K1 in the communication time points t̄1, . . . , t̄J

introduced in Sect. 2. To this end, we need the coupling variables ycpl(1)
1 (t̄ j,p

(k)
2 )

for k = 1, . . . ,K2 and j = 1, . . . ,J. Likewise, the output of F2 is the solution
y(1)2 (t̄ j,p

(k)
2 ) for k = 1, . . . ,K2 and thus has to be transformed into the coupling vari-

ables ycpl(1)
2 (t̄ j,p

(k)
1 ) for k = 1, . . . ,K1, i.e., the evaluation on the other quadrature

grid is crucial. This strategy repeats in each iteration step. Hence transitions be-
tween the two grids have to be defined for a fixed time point.

For the interchange of information between the two grids, we consider global ap-
proximations in the parameter space Π . An arbitrary global approximation method,
which just requires the evaluations in the grid points, is feasible like an interpolation
scheme, for example. Alternatively, we apply an approximation based on orthogonal
basis polynomials with respect to the L2-inner product of the probability space in-
duced by the integral (3). Hence a truncated sum of the polynomial chaos expansion
is used, see [6]. Let the time t̄ be fixed. The global approximation reads as

ỹcpl
i (t̄,p) :=

Mi

∑
m=0

ui,m(t̄)Φm(p) (5)

for i= 1,2 with known basis polynomials Φm : Π →R satisfying the orthonormality
condition E(ΦmΦn) = δmn. In general, all polynomials up to a certain degree are
involved. The coefficient functions in (5) are determined approximately by

ui,m(t̄) :=
∫

Π
ycpl

i (t̄,p)Φm(p)ρ(p) dp .
=

Ki

∑
k=1

w(k)
i ycpl

i (t̄,p(k)
i )Φm(p

(k)
i ) (6)

for i = 1,2, where the values w(k)
i ∈R represent the weights of quadrature formulas

on the grids Gi. Thus the sums (5) can be evaluated for an arbitrary p ∈ Π . In par-
ticular, we obtain approximations of the coupling variables on each grid. Since the
number of coupling variables is relatively low in comparison to the dimension of the
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coupled problem, the computational effort for the global approximation is usually
negligible compared to the time integration.

After the convergence of the dynamic iteration in a time window, the same ap-
proach is repeated in the next time window. Therein, initial values can be trans-
formed between the two grids again by the above procedure. If the approximations
have been computed at the final time tend, then we reconstruct statistical data by
quadrature formulas using the same grid points.

4 Simulation of a Test Example

To demonstrate the feasibility of the approach described in Sect. 3, we simulate a
coupled problem introduced in [1], which consists of an electric part and a thermal
part illustrated by Fig. 1. A resistor as well as a diode exhibit a voltage-current-
relation depending on the temperature. The electric network is modelled by a non-
linear system of DAEs with dimension N1 = 3. In the thermal part, the tempera-
ture of the resistor follows from a one-dimensional linear heat equation, where a
semidiscretisation yields ODEs of dimension N2 = 20. The diode receives a scalar
temperature from the (right-hand) boundary of the PDE. More details can be found
in [1].

C R load

u u3 4u2
Au1

( )tv

R(  )T (  )TD

Fig. 1 Electric circuit with temperature-dependent resistor and diode.

The electric network is supplied by a sinusoidal input signal. We compute the
numerical solution in the total time interval [0s,0.1s] and apply five time windows
for the dynamic iteration (2). In our example, the solution of the electric part is more
expensive than the thermal part, since smaller step sizes have to be used in time. The
circuit part is solved first in this co-simulation. As communication time points, just
the final times of each window are involved. The time integration of the subsystems
is done by an implicit multistep method based on numerical differentiation formulas.

We introduce two random variables with independent uniform distributions. In
the DAE part, the (temperature-independent) load resistance is a random parameter
with variations of 10%. In the ODE part, the heat conduction coefficient becomes
random with variations of 40%. Although the PDE and its ODE discretisation are
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Fig. 2 Expected values as well as standard deviations for output voltage u4 in unit [V] (solid line)
and dissipated energy in unit [J] (dashed line) within circuit part.
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Fig. 3 Expected values as well as standard deviations for the resistor’s temperature in unit [K]
(spatial domain is standardised to [0,1]) within thermal part.

linear, the dependence of the solution on the parameters is nonlinear in each case. It
follows that the parameter space represents a rectangle Π ⊂ R2.

As quadrature formulas, we employ the two-dimensional midpoint rule on grids
of size L1×L2, i.e., L1 nodes discretise the random resistance and L2 nodes are ded-
icated to the random heat conduction. Two different quadrature formulas are con-
sidered, which gives a first grid G1 for the circuit part and a second grid G2 for the
thermal part. In the communication between the grids, we use the global approx-
imations defined by (5),(6), where all polynomials up to degree two are included
(M1 +1 = M2 +1 = 6 basis functions).

To illustrate some statistics of the coupled problem, we compute the numerical
solution for a combination of a first grid with size 8× 6 and a second grid with
size 6× 8. Fig. 2 and Fig. 3 depict the first and second moment for the output of
the circuit part and the thermal part, respectively, which result from the quadrature
formulas associated to the two grids.

We also tried several other grid sizes for comparison. If two identical grids are
chosen, then the evaluations of the coupling variables are available directly. Nev-
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ertheless, we still perform the projections (6) and reconstructions (5) to investigate
the accuracy. A reference solution is computed by the midpoint rule on a single
grid with 40× 40 nodes, where no transitions between different grids and thus no
errors from global approximations occur. Table 1 demonstrates the comparison for
the expected values as well as the standard deviations, where the maximum differ-
ences have been calculated for both all involved time points and all components of
a subsystem.

Table 1 Maximum differences for statistics computed using different grids with respect to refer-
ence solution separately for circuit variables and temperature.

grid sizes circuit variables temperature
first grid second grid expected value st. deviation expected value st. deviation

10×10 10×10 4.6e-4 8.0e-3 6.2e-4 2.7e-3
5×5 10×10 1.3e-3 7.1e-3 1.9e-3 1.6e-2
5×5 5×5 4.9e-3 4.7e-2 1.1e-2 2.7e-2
8×6 6×8 1.3e-3 2.2e-2 2.7e-3 6.8e-3
8×4 4×8 2.8e-3 6.1e-2 8.3e-3 2.9e-2

5 Conclusions

We explained the need for coupled quadrature grids in uncertainty quantification
and its algorithmic application within co-simulation. With a multiphysics example
we showed the applicability and the prospect of the method.
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