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A Transparent Boundary Condition for an

Elastic Bottom in Underwater Acoustics

Anton Arnold and Matthias Ehrhardt

Abstract This work is concerned with the derivation of a novel transparent bound-

ary condition (TBC) for the coupling of the standard “parabolic” equation (SPE)

in underwater acoustics (assuming cylindrical symmetry) with an elastic parabolic

equation (EPE) for modelling the sea bottom extending hereby the existing TBCs

for a fluid model of the seabed.

1 Introduction

“Parabolic” equation (PE) models appear in (underwater) acoustics as one-way

approximations to the Helmholtz equation in cylindrical coordinates with azimuthal

symmetry. These PE models have been widely used in the recent past for wave prop-

agation problems in various application areas, e.g. seismology, optics and plasma

physics but here we focus on their application to underwater acoustics, where PEs

have been introduced by Tappert [18]. For more details we refer to [11].

In computational ocean acoustics one wants to determine the acoustic pressure

p(z,r) emerging from a time-harmonic point source situated in the water at (zs,0).
The radial range variable is denoted by r > 0 and the depth variable is 0 < z < zb.

The water surface is located at z = 0, and the (horizontal) sea bottom at z = zb. We

point out that irregular bottom surfaces and sub-bottom layers can be included by

simply extending the range of z. For an alternative strategy based on transforma-

tion techniques, including proofs of well-posedness in the case of upsloping and
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downsloping wedge-type domains in 2D and 3D we refer to [2, 7]. Further, the 3D

treatment of a sloping sea bootom in a finite element context was presented in [17].

In the sequel we denote the local sound speed by c(z,r), the density by ρ(z,r),
and the attenuation by α(z,r) ≥ 0. n(z,r) = c0/c(z,r) is the refractive index, with

a reference sound speed c0. The reference wave number is k0 = 2π f/c0, where f

denotes the (usually low) frequency of the emitted sound.

1.1 The Parabolic Approximations

The acoustic pressure p(z,r) satisfies the Helmholtz equation

1

r

∂

∂ r

(

r
∂ p

∂ r

)

+ρ
∂

∂ z

(

ρ−1 ∂ p

∂ z

)

+ k2
0 N2 p = 0, r > 0, (1)

with the complex refractive index (where α accounts for damping in the medium)

N(z,r) = n(z,r)+ iα(z,r)/k0. (2)

In the far field approximation (k0r ≫ 1) the (complex valued) outgoing acoustic field

ψ(z,r) =
√

k0r p(z,r)e−ik0r (3)

satisfies the one-way Helmholtz equation:

ψr = ik0

(√
1−L−1

)
ψ, r > 0. (4)

Here,
√

1−L is a pseudo-differential operator, and L the Schrödinger operator

L =−k−2
0 ρ ∂z(ρ

−1∂z)+V (z,r) (5)

with the complex valued “potential”

V (z,r) = 1−N2(z,r) = 1−
[
n(z,r)+ iα(z,r)/k0

]2
. (6)

“Parabolic” approximations of (4) are formal approximations of the the pseudo–

differential operator
√

1−L by rational functions of L. This procedure yields a PDE

that is easier to solve numerically than the pseudo-differential equation (4). For more

details we refer to [18, 19]. The linear approximation of
√

1−λ by 1− λ
2

gives the

narrow angle or standard “parabolic” equation (SPE) of Tappert [18]

ψr =− ik0

2
Lψ, r > 0. (7)

This Schrödinger equation (7) is a good description of waves with a propagation

direction within about 15◦ of the horizontal. Rational approximations of the form
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(1−λ )
1
2 ≈ f (λ ) =

p0 − p1λ

1−q1λ
(8)

with real p0, p1, q1 yield the wide angle “parabolic” equations (WAPE)

ψr = ik0

(
p0 − p1L

1−q1L
−1

)

ψ, r > 0. (9)

offering an improved description of the wave propagation up to angles of about 40◦.

Here we focus on a proper boundary condition (BC) at the sea bottom for the

SPE (7) coupled to an elastic “parabolic” model for the sea bottom. At the water

surface one usually employs a Dirichlet BC ψ(z = 0,r) = 0 and at the sea bottom

one has to couple the wave propagation in the water to the wave propagation in the

bottom.

1.2 The Coupling Condition

For the bottom region z > zb one usually use a fluid model (i.e. assuming that (7)

or (9) with possibly different rational approximation (8) also hold for z > zb) with

constant parameters cb, ρb, and αb or with a linear squared refractive index [8, 12].

In [4] we analyzed this coupling of WAPEs with different parameters p0, p1, q1

and it turned out that the coupled model is well-defined (and the resulting evolution

equation is conservative in L2(R+;(σρ)−1dz)) if the coupling condition

p1(z)/q1(z) =: µ = const (10)

is satisfied. Hence, it is not advisable to couple the WAPE and the SPE (where

p1 = 1/2;q1 = 0) numerically; in this case the evolution is not conservative in

the dissipation-free case (α ≡ 0) [4]. If the parameters p0, p1, q1 are fixed in one

medium, condition (10) still leaves two free parameters to choose a different ratio-

nal approximation model of (1−λ )
1
2 in (8) for the second medium (cf. [9]). Hence,

one can in fact obtain a better approximation in the second medium than with the

originally intended “parabolic approximation”.

1.3 Transparent Boundary Conditions

In practical simulations one is only interested in the acoustic field ψ(z,r) in the

water, i.e. for 0 < z < zb. While the physical problem is posed on the unbounded

z-interval (0,∞), one wishes to restrict the computational domain in the z-direction

by introducing an artificial boundary at or below the sea bottom. This artificial BC

should of course change the model as little as possible, or ideally not at all.
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In [14, 16] Papadakis derived impedance BCs or transparent boundary condi-

tions (TBC) for the SPE and the WAPE, which completely solves the problem of

restricting the z–domain without changing the physical model: complementing the

WAPE (9) with a TBC at zb allows to recover — on the finite computational domain

(0,zb) — the exact half-space solution on 0 < z < ∞. As the SPE is a Schrödinger

equation, similar strategies have been developed independently for quantum me-

chanical applications, cf. the review article [1].

Let us finally note, that Zhang and Tindle [22] proposed an alternative approach

to the impedance BCs or TBCs of Papadakis. By minimizing the reflection coef-

ficient at the water-bottom interface they derived in their equivalent fluid approx-

imation an expression for a complex fluid density that can be used for modelling

an elastic sea bottom in a classical fluid model. However, this approach yields only

satisfactory results for low shear wave speeds [22].

This work is organized as follows: In §2 we review the TBC for the SPE coupled

to an elastic bottom in the frequency domain and in §3 present in detail the analytic

inverse Laplace transformation to obtain this TBC in the time domain. Finally, we

draw a conclusion and summarize the basic inversion rules previously used.

2 The Transparent Boundary Condition for a Fluid Bottom

The basic idea of the derivation is to explicitly solve the equation in the sea bottom,

which is the exterior of the computational domain (0,zb). The TBC for the SPE (or

Schrödinger equation) was derived in [3, 14, 16] for various application fields:

ψ(zb,r) =−(2πk0)
− 1

2 e
π
4 i ρb

ρw

∫ r

0
ψz(zb,r− τ)eiωbτ τ−

1
2 dτ, (11)

with ωb = k0(N
2
b −1)/2. This BC is nonlocal in the range variable r and involves a

mildly singular convolution kernel. Equivalently, it can be written as

ψz(zb,r) =−
(

2k0

π

) 1
2

e−
π
4 i eiωbr ρw

ρb

d

dr

∫ r

0
ψ(zb,τ)e−iωbτ(r− τ)−

1
2 dτ. (12)

The r.h.s. of (12) can be expressed formally as a Riemann-Liouville fractional

derivative of order 1
2
, cf. [3]:

ψz(zb,r) =−
√

2k0e−
π
4 i eiωbr ρw

ρb

∂
1/2
r

[
ψ(zb,r)e−iωbr

]
. (13)
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3 The Transparent Boundary Condition for an Elastic Bottom

The coupling of the SPE with an elastic parabolic equation (EPE) for the sea bottom

was described in [5, 10, 21]. Papadakis et al. [15, 16] derived a TBC for this coupling

in the frequency regime. It reads for the Laplace transformed wave field:

ψ̂(zb,s) =− ρb

ρw

1

k0N4
s

1
+
√

Mp(s)
×

×
[
(
2Ms(s)+N2

s

)2 −4 +

√

Mp(s)
+
√

Ms(s)
(
Ms(s)+N2

s

)
]

ψ̂z(zb,s), (14)

with the notation

Mp(s) = 1−N2
p − i

2

k0

s, Ms(s) = 1−N2
s − i

2

k0

s. (15)

Here, Np = np + iαp/k0 and Ns = ns + iαs/k0 denote the complex refractive indices

for the compressional and shear waves in the bottom (cf. (2)).

4 The Transparent Boundary Condition in the Time Domain

In a tedious calculation the transformed TBC (14) can indeed be inverse Laplace

transformed and it reads:

ψ(zb,r) =

C

[∫ r

0
ψz(zb,r− τ)eiωpτ g(τ)dτ −2iϕ

∫ r

0
ψzr(zb,r− τ)eiωpτ τ−

1
2 dτ

]

, (16)

with

C =− ρb

ρw

2

k
5/2
0 N4

s

√

2

π
e

π
4 i, ωp =

k0

2

(
N2

p −1
)
, ϕ =−k0

2

(
N2

p −N2
s

)
,

and the kernel g(τ) given by

g(τ) =−3
(
1− eiϕτ

)
τ−

5
2 + i

k0

2

(
3N2

p −N2
s −2N2

s eiϕτ
)
τ−

3
2

+
k2

0

2

(
N4

p −N2
pN2

s +
1
2
N4

s +N2
p −N2

s

)
τ−

1
2 = O

(
τ−

1
2
)
, for τ → ∞.

While this inverse transformation was carried out numerically in [15, 16], our novel

analytical TBC in the time regime may simplify both the analysis and the numerical
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solution of this coupled model. Let us remark that an asymptotic analysis of the

elastic seabed was made by Makrakis [13].

4.1 Derivation of (16)

With the abbreviation ψ̂(s) := ψ̂(zb,s) and the notation

mp(s) =
k0

2
Mp(s) =−i

[

s− i
k0

2
(N2

p −1)
]

, (17)

ms(s) =
k0

2
Ms(s) =−i

[

s− i
k0

2
(N2

s −1)
]

, (18)

the transformed TBC (14) reads

ψ̂(s)

=− ρb

ρw

1

k0N4
s




k0

2

(
4
k0

ms(s)+N2
s

)2

+
√

mp(s)
−4

√
2

k0

+
√

ms(s)
( 2

k0

ms(s)+N2
s

)



 ψ̂z(s)

=− ρb

ρw

8
√

2

k
5/2
0 N4

s

[(
ms(s)+

k0
4

N2
s

)2

+
√

mp(s)
−4 +

√

ms(s)
(

ms(s)+
k0

2
N2

s

)
]

ψ̂z(s),

(19)

where we denote the content of the square brackets by f (s−σ) with

σ = i
k0

2

(
N2

p −1
)
. (20)

We observe that we can write

mp(s) =−i [s−σ ], ms(s) =−i
[

s−σ + i
k0

2
(N2

p −N2
s )
]

. (21)

The next step is a shift in the argument of ψ̂z(s) in (19) by σ :

ψ̂(s+σ) =− ρb

ρw

8
√

2

k
5/2
0 N4

s

f (s) ψ̂z(zb,s+σ), (22)

Taking the branch with positive real part +
√
−i = e−

π
4 i we obtain for the kernel f (s)

f (s) =

[

−is+ k0
2
(N2

p −N2
s )+

k0
4

N2
s

]2

e−
π
4 i +
√

s

− e−
π
4 i +

√

s+ i
k0

2
(N2

p −N2
s )(−i)

+

√

s+ i
k0

2
(N2

p −N2
s )

[

s+ i
k0

2
N2

p

]

,

(23)
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where

[

· · ·
]2

=−
[

s+ i
k0

2
N2

p − i
k0

4
N2

s

]2

=−
[

s+ i
k0

2
(N2

p −N2
s )
][

s+ i
k0

2
N2

p

]

+
k2

0

16
N4

s ,

(24)

i.e. we have

f (s) = e
π
4 i

{
1
+
√

s

[
k2

0

16
N4

s −
[

s+ i
k0

2
(N2

p −N2
s )
][

s+ i
k0

2
N2

p

]]

+
+

√

s+ i
k0

2
(N2

p −N2
s )

[

s+ i
k0

2
N2

p

]
}

= e
π
4 i

{[

+

√

s+ i
k0

2
(N2

p −N2
s )− +

√
s− i

k0

2
(N2

p −N2
s )

1
+
√

s

]

·

·
[

s+ i
k0

2
N2

p

]

+
k2

0

16
N4

s

1
+
√

s

}

= e
π
4 i

{[
+
√

s− γ − +
√

s+ γ
1
+
√

s

][

s+ i
k0

2
N2

p

]

+
k2

0

16
N4

s

1
+
√

s

}

,

(25)

with

γ =−i
k0

2
(N2

p −N2
s ). (26)

Hence, inserting in (22) we obtain

ψ̂(s+σ) =C̃

{

i
k0

2
N2

p

[

+
√

s− γ − +
√

s+ γ
1
+
√

s

]

+
k2

0

16
N4

s

1
+
√

s

}

ψ̂z(s+σ)

+C̃

[

+
√

s− γ − +
√

s+ γ
1
+
√

s

]

{s ψ̂z(s+σ)} ,
(27)

where

C̃ =− ρb

ρw

8
√

2

k
5/2
0 N4

s

e
π
4 i. (28)

Next, an inverse Laplace transformation of (27) yields the convolution integral

ψ(r)e−σr =C̃

∫ r

0
ψz(r− τ)e−σ(r−τ) g1(τ)dτ

+C̃

∫ r

0
− ∂

∂τ

[
ψz(r− τ)e−σ(r−τ)

]
g2(τ)dτ,

(29)
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g1(τ) = L
−1

{

i
k0

2
N2

p

[√
s− γ −

√
s+ γ

1√
s

]

+
k2

0

16
N4

s

1√
s

}

= i
k0

2
N2

pL
−1

{√
s− γ −

√
s
}
+

k2
0

4
(N2

p − 1
2
N2

s )
2
L

−1

{
1√
s

}

= i
k0

4
√

π
N2

p(1− eγτ)τ−
3
2 +

k2
0

4
√

π
(N2

p − 1
2
N2

s )
2 τ−

1
2 ,

(30)

g2(τ) = L
−1

{√
s− γ −

√
s+ γ

1√
s

}

=
1

2
√

π
(1− eγτ)τ−

3
2 +

γ√
π

τ−
1
2

=
1

2
√

π

[

(1− eγτ)τ−
3
2 + γ τ−

1
2

]

︸ ︷︷ ︸

=g3(τ)

+
γ

2
√

π
τ−

1
2

︸ ︷︷ ︸

=g4(τ)

, (31)

I3 =
∫ r

0
− ∂

∂τ

[

ψz(r− τ)e−σ(r−τ)
]

g3(τ)dτ

=
∫ r

0
ψz(r− τ)e−σ(r−τ)g′3(τ)dτ − ψz(r− τ)e−σ(r−τ)g3(τ)

∣
∣
∣

τ=r

τ=0
︸ ︷︷ ︸

=0 (with ψz(0)=0)

, (32)

ψ(r)e−σr =C̃

∫ r

0
ψz(r− τ)e−σ(r−τ)

[
g1(τ)+g′3(τ)

]
dτ

+C̃

∫ r

0
− ∂

∂ r

[

ψz(r− τ)e−σ(r−τ)
]

g4(τ)dτ

=C̃

∫ r

0
ψz(r− τ)e−σ(r−τ)

[
g1(τ)+g′3(τ)

]
dτ

+C̃

∫ r

0

[

ψzr(r− τ)e−σ(r−τ)−σψz(r− τ)e−σ(r−τ)
]

g4(τ)dτ,

(33)

i.e.

ψ(r) = C̃

[∫ r

0
ψz(r− τ)eστ g̃(τ)dτ +

∫ r

0
ψzr(r− τ)eστ g4(τ)dτ

]

, (34)

where

g̃(τ) :=
[
g1(τ)+g′3(τ)−σg4(τ)

]
. (35)

We calculate

g′3(τ) =
1

2
√

π

[

−3

2
(1− eγτ)τ−

5
2 − γ eγτ τ−

3
2 − γ

2
τ−

3
2

]

=
1

4
√

π

[

−3(1− eγτ)τ−
5
2 −2γ( 1

2
+ eγτ)τ−

3
2

]

,

(36)

and

σg4(τ) =
σγ

2
√

π
τ−

1
2 =

1

4
√

π

k2
0

2
(N2

p −1)(N2
p −N2

s )τ−
1
2 , (37)

i.e. (35) gives finally
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g̃(τ) =
1

4
√

π

[

ik0N2
p

(
1− eγτ

)
τ−

3
2 + k2

0

(
N2

p − 1
2
N2

s

)2
τ−

1
2 −3

(
1− eγτ

)
τ−

5
2

+ik0

(
N2

p −N2
s

)(
1
2
+ eγτ

)
τ−

3
2 − k2

0

2

(
N2

p −1
)(

N2
p −N2

s

)
τ−

1
2

]

=
1

4
√

π

[
k2

0

2

(
N4

p −N2
pN2

s +
1
2
N4

s +N2
p −N2

s

)
τ−

1
2

+i
k0

2

(
3N2

p −N2
s −2N2

s eγτ
)

τ−
3
2 −3

(
1− eγτ

)
τ−

5
2

]

= O(τ−
1
2 ), τ → ∞.

(38)

Finally, we define ϕ , ω , by setting γ =: iϕ , σ =: iω and

g(τ) = 4
√

π g̃(τ), C =
C̃

4
√

π
. (39)

This completes the calculation of (16).

Conclusion and Outlook

First, we will make first numerical investigations for these new TBCs and investigate

their superiority compared to using their formulation in transformed space. Next,

instead of using an ad-hoc discretization of the analytic transparent BC we will

construct discrete TBCs of the fully discretized half-space problem in the spirit of

[4].

Appendix: Laplace–Transformations

L
−1

{√
s− γ −

√
s
}
=

1

2
√

π
(1− eγt) t−

3
2 , (40)

L
−1

{
1√
s

}

=
1√
π

t−
1
2 , (41)

L
−1 {ψ̂(s+σ)}= ψ(t)e−σt , (42)

L
−1 {s ψ̂(s+σ)}= d

dt

{
ψ(t)e−σt

}
if ψ(0) = 0. (43)
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