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Proper Orthogonal Decomposition in Option

Pricing: Basket Options and Heston Model

J.P. Silva, E.J.W. ter Maten, M. Günther, M. Ehrhardt

Abstract The finance world, relying more and more on mathematical models, also

expects them to be fast, robust and cheap, specially for calibration purposes. The

recent revolution in Graphical Processing Units (GPU) and Field-Programmable

Gate Array (FPGA) has helped to reduce time and costs but it is the algorithms

that ultimately prevail. In this respect, Model Order Reduction (MOR) seems to

be specially suited to financial problems as it can reduce extremely computational

costs [1]. We present how and when MOR can be extremely useful and how Proper

Orthogonal Decomposition (POD) stands out as a valid MOR technique in finance

[11]. We show the validity of its application to pricing of basket options, as well as

to stochastic volatility models [7], through the solution of a reduced Black-Scholes

PDE. Finally, its computational efficiency when compared with some extensively

used numerical methods, as well as some of its limitations, are discussed.

1 Introduction

Model Order Reduction (MOR) emerged at the end of the twentieth century as an

answer to the increasing complexity of models being developed. Higher and higher

resolution schemes leads to bigger problems which, in turn, lead to the development

of new accurate schemes (non-uniform and refined grids, higher-order schemes,

sparse schemes, parallelization, problem-specific hardware, etc.). The goal of MOR

is to generate smaller models, faster to solve and, if not with similar, with high

enough precision with respect to the original Full Order Model (FOM). The Re-

duced Order Model (ROM) is then a cheaper and faster proxy of the FOM, making

it ideal for multi-query problems: parameter studies, parameter optimization, in-

verse problems, control problems. In finance, and particularly option pricing, inverse
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problems arise when calibrating model parameters to market data, with volatility be-

ing one of the parameters, for example.

Among the different MOR techniques, Proper Orthogonal Decomposition (POD)

stands out as a fairly robust technique as it is one of the few techniques able to tackle

general non-linear problems. Due to its data-driven approach, it generates ROM in

a tailored way.

The first FOM we want to reduce is an European-type basket option. Assuming

a financial contract with n underlyings following geometrical Brownian motions

(GBM) we obtain its price V as the solution of the PDE

∂V

∂ t
(t,s)+

n

∑
i

rsi

∂V

∂ si

(t,s)+
1

2
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i, j

ρ⋆
i jσiσ jsis j

∂ 2V

∂ si∂ s j

(t,s)− rV (t,s) = 0 (1)

with si ∈ [0,∞), t ∈ [0,T ],ρ⋆
i j = 2ρi j, i 6= j. ρi j is the correlation between stochastic

processes Si and S j and σi is the annualized standard deviation of logarithmic returns

of Si.

As this parabolic PDE is, most of the time, supplied with a terminal condition at

t = T , we will integrate it backwards in time. Depending on the characteristics of the

financial contract, we supply (1) with appropriate boundary and terminal conditions.

The second model comes as a result of GBM being a very restrictive model in

what concerns the paths of the underlying. Introducing a square root variance model

with a mean reverting process for variance we obtain the Heston PDE
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− rS
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(t,ν ,S)−κ(θ −ν)

∂V

∂ν
+ rV (t,ν ,S),

with ρ the correlation between Wiener processes, κ the rate of convergence of the

volatility to its long-term mean, θ the long-term mean of variance and σ2 the vari-

ance of variance.

2 Proper Orthogonal Decomposition

In practice, most reduced models are generated in a two step approach. In a first step,

information from the full order model is retrieved and with that information a basis

of a subspace is generated. In a second step, the original model is projected onto

the same (different) subspace space spanned by this new basis, a procedure called

Galerkin projection (Petrov-Galerkin projection). In that sense, POD is no different,

the big difference being the basis generation, as it is generated solely from data.

The POD is a mathematical procedure that, given an ensemble of data, constructs

a basis for the ensemble that is optimal in the following sense. Let X be a real Hilbert



POD in Option Pricing: Basket Options and Heston Model 3

space, with inner product (·, ·)X , and Y =
[

y1 y2 . . . yn

]
an ensemble of n snapshots

yi ∈ X . Then, a POD basis is an orthonormal basis ψ j such that the square error

between the elements yi and its l-partial sum of the decomposition of yi in the space

spanned by ψ j, is minimized, i.e.

min
{ψk}

l
k=1

J (ψ) = min
{ψk}

l
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n
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∥
∥
∥
∥
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ψ j

∥
∥
∥
∥
∥

2

X

, (3)

subject to (ψi,ψ j)X
= δi j. It can be proved that the above minimization problem is

equivalent to the eigenvalue problem

YY⊤ψ = λψ.

If we factorize Y using a Singular Value decomposition (SVD), we can see that

the resulting left-singular vectors form a POD basis, where λ = σ2, with σ the

singular values of Y . For the POD basis, J (ψ) = ∑
n
i=l+1 λi = ∑

n
i=l+1 σ2

i . The size

of the basis l necessary for a good approximation is problem dependent, although

the following rule of thumb is usually very efficient [2]

E (l) =
∑

l
i=1 σ2

i

∑
n
i=1 σ2

i

. (4)

As the singular values are ordered and reflect the relevance of each dimension in the

state space, it is sometimes called relative information measure.

The second step in constructing a ROM is to project the PDE onto the space

spanned by the POD basis. Rewriting our PDEs as

∂

∂ t
V = LV, (5)

where L is a linear operator, we project in a Galerkin fashion, i.e.

(

ψi,
∂V

∂ t

)

X

= (ψi,LV )X , i = 1, . . . , l.

Substituting V by its representation in the POD basis of size l , V = ∑
l
j a j (t)ψ j (s)

and bearing in mind the orthogonality of the basis, we obtain the explicit system of

ODEs

ȧi =
l

∑
j=1

a j (t)(ψi,L ψl)X i = 1, . . . , l.

The inner product exhibits two roles in the construction of the ROM. First by

defining the POD basis optimality and secondly in the projection step of the PDE.

Besides, there are two ways in which we can treat our projection step, before or after

semi-discretizing our original, continuous PDE. In our numerical results we will use

the former, where we use the method of lines (MOL) to discretize our PDE in space.
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3 Numerical Results

We used the MOL to discretize equations (1) (for n = 2) and (2) obtaining a system

of ODEs, with second order approximations for both first and second derivatives.

We took ni discretization points in direction xi, resulting in a grid of size N = ∏i ni.

Our PDE became then a system of ODEs with size equal to the total number of

(interior) discretization points Nint = ∏i (ni −2), which can easily be written in a

state-space formulation, common to most MOR techniques,

v̇ = Av+b v,b ∈ R
Nint , A ∈ R

Nint×Nint (6)

where A has a sparse structure.

In this setting, we have X = R
Nint with the euclidean inner product, (x1,x2)X =

xT
1 x2. Setting v = ψa and projecting the equation we obtained the reduced ODE

system

IN
︸︷︷︸

ψT ψ

ȧ = Ã
︸︷︷︸

ψT Aψ

a+ b̃
︸︷︷︸

ψT b

(7)

We first solve (6), whose solution we will call truth solution, and then proceed to

solve (7) using the same integration scheme as in (6). There is no need to ensure we

use the same integration scheme however that will be generally the case either in

third party software or for ease of implementation.

3.1 2D Basket Option

First we solved (1) for two underlyings (2D PDE) in a uniform grid with n1 points

in S1-direction and n2 points in S2-direction for the spatial domain Ω = [0,6K]×
[0,6K], with a put option payoff as terminal condition, i.e.

V (T,S1,S2) = φ (S1,S2) = max(K −ω1S1 −ω2S2,0) , ω1 +ω2 = 1,ωi > 0

and following boundary conditions (V ∗ is a 1D put option with a rescaled strike

price, K∗ = K/ω1)

V (t,S1min = 0,S2) = ω2V ⋆ (t,S2) V (t,S1max = 6K,S2) = 0

V (t,S1,S2min = 0) = ω1V ⋆ (t,S1) V (t,S1,S2max = 6K) = 0.

We used the following set of parameters

ρ σ1 σ2 r K T ω1 n1 n2

0.5 0.1 0.2 0.025 100 1 0.25 20 40

Table 1 2D Parameters
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We proceeded to solve the FOM with a trapezoidal integration in time with 100

time steps, retrieve our snapshots, generate the basis, project and solve the ROM

with the same trapezoidal integration in time. We used all equally time spaced snap-

shots available to generate our basis. In Figure 1, we display the maximum absolute

error between the FOM and the ROM at t = 0 for increasing number of basis ele-

ments and the corresponding squared singular values, σ2.

First of all, we can observe an exponential decay in the singular values, a con-

dition necessary for our FOM to possess the so-called sparse representation prop-

erty [4]. Secondly, we can observe that only 20 basis vectors are enough to achieve

a 10−12 precision.
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Fig. 1 Absolute Error ‖VFOM(0,S1,S2)−VROM(0,S1,S2)‖∞ at time t = 0 for reduced 2D Basket

Option

3.2 Heston Model

In our second case, following [8], we applied an ADI-type scheme, modified Craig-

Sneyd (MCS), to solve the ODE system resulting from the spatial discretization of

(2). Contrary to the Basket Option case, we used a non-uniform spatial grid based

on the hyperbolic sine with focus around ν = 0 and S =K. We used a spatial domain

Ω = [0,15]× [0,30K] with a discretization consisting of 25 points in ν direction and

50 in S direction. All the following results are for nt = 1000.

To supply our PDE with the appropriate conditions, we define for our terminal

condition as a call option payoff φ (ν ,S) = max(S−K,0) and for the boundary
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conditions

V (t,15,S) = Se−r f t , V (t,ν ,0) = 0,
∂V

∂S
(t,ν ,30K) = e−r f t .

Note that we do not impose any boundary condition at ν = 0, a degenerate point

of our PDE, as numerically we just use the degenerate PDE along ν = 0, cf. [5]. As

in [8], we tested our reduced models with four different set of parameters, originally

taken from [3].

ρ σ rd r f θ κ K T

Case 1 -0.13 0.49 0.02 0.04 0.02 6.02 100 0.25

Case 2 -0.67 0.62 0.01 0.02 0.02 1.50 100 1

Case 3 -0.55 1.26 0.01 0.06 0.09 0.38 100 4

Case 4 0.78 0.15 0.1 0.02 0.06 0.3 100 5

Table 2 Heston Model parameters [8]

Figure 1 presents the results for the absolute error for the solution at time t = 0

for each of the four cases. Note that we decided to evaluate the error in a region

of interest [0,1]× [0,6K] instead of the original grid span [0,15]× [0,30K] as those

range of values would be of little or no use in practice. Even though we are in the

realm of numerical analysis, we should note one thing about applying these methods

in finance. With some exceptions (American-type options), we are mostly interested

in the solution of our PDE at the initial time t = 0 or at a few selected times. This

provides an opportunity to optimize our choice of snapshots in order to minimize

the error at these selected times, procedure that was not taken into account in this

case.
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(a) Case 1
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(b) Case 2
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(c) Case 3
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(d) Case 4

Fig. 1 Absolute Error ‖VFOM(0,ν ,S)−VROM(0,ν ,S)‖∞ at time t = 0 for reduced Heston Model

and (ν ,S) ∈ [0,1]× [0,6K]

Comparing these results with the FOM in [8], we can see that we have a very

good approximation with an error of similar magnitude to the temporal discretiza-

tion error in the FOM. We also would like to observe that in cases 1,2 and 4, the

maximum error is attained near the focus of the grid while on case 3 it happens at

the corner of the analysis domain, (1,6K). The error of case 3 might then be even

smaller if a more slim region of interest is considered.

3.3 ADI and MOR for higher-dimensional problems

Splitting methods, and ADI in particular, have recently been used in finance [6] as

it lightens the weight of the curse of dimensionality by having to solve, at each time

step, only tridiagonal systems implicitly, some of them time-independent. Follow-

ing conventions in [10], we evaluate and compare the computational cost of using an

ADI MCS scheme to solve a full model and the same cost for of solving a reduced

one. In what follows, we take d as the number of dimensions in our problem, nt the

number of time-steps in our time-stepping scheme and nd the number of discretiza-

tion points in each direction. We will assume nd is the same in all dimensions just

to simplify the exposition as the general case just involves more calculations.

The MCS scheme consists at each time step of

• two explicit integrations of the mixed derivative terms

• two implicit integrations on each direction/dimension

Dealing with PDE of up to second order and with second order approximation for

the derivative operators will result in tridiagonal systems for each A j. For the mixed

derivatives, the PDE may contain up to
d(d−1)

2
mixed derivatives and each mixed

derivative discretization will take 4 new points. So in total, we have 2d (d −1) diag-

onals in A0. This situation occurs in financial PDEs as unless the correlation between
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each stochastic process is zero, we will always have all mixed derivatives terms. As-

suming time independence of our matrices, the computational cost will then be:

1. Only once

d
32nd

d

2

as for the LU decomposition for the tridiagonal matrices A j

2. At each time step

a. 2 Explicit steps

2(2d (d −1))nd
d = 4d (d −1)nd

d

b. 2 Implicit steps per dimension

2d5nd
d = 10dnd

d

So the total cost is

f (·) = d
32nd

d

2
+nt

(

4d (d −1)nd
d +10dnd

d

)

=
9

2
dnd

d +
(
4d2 +6d

)
ntn

d
d +dnd

d

(
9

2
+6nt +4dnt

)

(8)

We now represent graphically the computational cost of ADI vs a reduced model

generated with basis of different sizes
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Fig. 2 Computational Advantage of MOR

We can see that we can achieve significant reduction in the number of operations

(speed-up) already for a two-dimensional problem even in the 50 modes case. Due

to the exponential dependence on dimension for the ADI method and the respective

independence for the reduced model, we can theoretically obtain better and better

results the higher the dimension of the problem. Although higher dimensional ADI



POD in Option Pricing: Basket Options and Heston Model 9

methods still lack some rigorous proof of its properties (stability, consistency), in

practice they have been applied with success [6] and so, at least for up to 4 dimen-

sional problems, we can regard figure 2 as showing realistic cases of application.

4 Conclusion

We generated reduced models using POD for two of the most common mathematical

models in finance: Basket Options and Heston Model. In both cases it was shown

that 25 basis elements at most are needed to obtain the best approximation. We

also showed that even for numerical schemes regarded as computationally efficient

(ADI) we can obtain significant gains already on 3 and 4 dimensional problems [6].

The advantage is even more clear in a multi-query problem as the cost of SVD is

dilluted over each online calculation. We expect that to be the case in parametric

ROM, which will be subject to future work.
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