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Christian Hendricks, Matthias Ehrhardt and Michael Günther

Abstract Since the start of the liberalization of energy markets the energy
sector has undergone major changes. Energy companies now provide electri-
city at variable prices and are faced to a competitive market environment.
Their trading is subject to risks and uncertainty about future price develop-
ments. In this work we introduce a regularized regression approach to forecast
Phelix Peak prices in the German electricity market. Additionally we inves-
tigate the influence of fundamental price drivers on the forecasting accuracy.
Since the problem complexity grows exponentially with the dimension of the
feature space, the regression problem suffers from the curse of dimensionality.
To cope with this problem we apply the combination technique. It is based
on a linear combination of coarse grids to the so called sparse grid solution,
which enables us to reduce the complexity while keeping a high approxima-
tion accuracy.

1 Introduction

During the last two decades the energy sector has undergone major changes.
Energy companies now provide electricity at variable prices and are faced
to a competitive market environment. Their trading is subject to risks and
uncertainty about future price developments. These risks are mainly asso-
ciated with the volatile nature of input costs, like coal and gas prices, but
also other factors influence energy markets. The global concern regarding
the climate change has led to the introduction of an emission trading sys-
tem in the European Union (EU). Today energy suppliers have to surrender
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European Emission Allowances (EUA) to offset their emission of greenhouse
gases. As a conventional power plant has to burn fuel and emit CO2 to pro-
duce electricity, these allowances can be interpreted as additional input costs.
In Germany the energy transition along with the installation of renewables
has accelerated. In 2012 renewable energy sources covered 22% of the total
energy production in Germany [1]. In [17], [19], [13] cost savings in conven-
tional capacity due to wind generation are analyzed. There a price decline
in the German market between three to eleven e / MWh is reported. But
beside a price decline also an increase of the spot price’s volatility can be
seen, which can be attributed to the fluctuating wind in-feed [11].

The vastly changing market environment has attracted lots of researchers
to develop forecasting models for electricity markets on different time frames.
They range from ARMA to neural network approaches or models known from
game theory. Regarding energy markets in continental Europe mainly the
Spanish and German market have been focused. [3] tried to predict prices
in Spain using an autoregressive neural network model. [14] additionally in-
cluded the demand for electricity into their time series model. [5] investigated
if a multivariate model of electricity, carbon, fuel prices and wind forecasts
can improve the forecasting accuracy compared to univariate models. In the
papers considering the German market (European Energy Exchange) the
price series itself has been taken as an input variable. [15], [9] tested the
performance of neural networks, while [4] used ARMA models to forecast
electricity spot prices.

In this work we present a non-linear approach to forecast electricity spot
prices in the German electricity market. Additionally the influence of funda-
mental price drivers on the spot price and the forecasting accuracy shall be
investigated. The arising high dimensional approximation problems will be
solved with the combination technique on sparse grids [10], [16], [18], [2], [6].
This technique is an efficient way to cope with the exponentially growing
complexity of high dimensional problems - the so called curse of dimen-

sionality. The performance of the model will be compared to benchmark
ARMA/VARMA models.

2 The Data Set

The data set consists of electricity spot prices (Phelix Peak) and time series
of coal (ARA coal future 1), gas (GASPOOL Spot), European Emission Al-
lowances and day-ahead forecasts of wind and solar supplies2. All time series
range from 2011 to 2012. The coal time series is quoted in USD per t and
has been converted to EUR per t.

1 front month with nearest expiry
2 provided by www.transparency.eex.com
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It is well known that electricity prices show changing price profiles during
weekdays, weekends, public holidays and working days. To avoid any per-
turbation caused by this changing market behavior, we remove all weekends
and public holidays from our time series. The time series, including only
“business-as-usual” days is checked for mean and variance stationarity. With
the help of the Augmented Dickey-Fuller test (ADF) we check for a unit root
in each of the time series. Table 1 shows the test results: the electricity, coal,
gas and emission allowance time series exhibit a unit root at the common
confidence level of 5%. Therefore we differentiate the time series to eliminate
the stochastic trends. To achieve variance stationarity the logarithm of all
price series is taken.

Electricity Coal Gas EUA Wind supply Solar supply
p-value 0.1008 0.0973 0.8590 0.1370 0.0010 0.0018

Table 1 Augmented Dickey-Fuller test results

3 The Modelling Framework

In order to forecast electricity prices we apply two approaches. The first
model is a regularized regression approach, which is able to capture non-
linear relationships between the input variables and the desired output. Like
neuronal networks, these kind of models are very versatile in approximating
complex relationships, but might suffer from over-fitting. Therefore we want
to compare the quality of the out-of-sample forecasting results with univariate
and multivariate ARMA models. They are the standard approaches in times
series analysis and work as a benchmark.

3.1 Regularized Regression

In this section we formulate the forecasting problem as a regularized least
square regression. These kind of models have already proven to be useful in
data mining [8], foreign exchange [7] and wind time series forecasting [12].
Compared to autoregressive models, we want to investigate if the prediction
accuracy can be increased significantly in the case of further knowledge about
key drivers in the market: This might be price shifts in inputs costs, such as
coal and gas, as well as production forecasts of wind generators and solar
modules.

Let Ω ⊆ R
d denote a d dimensional feature space, then it is the goal to

find a function f : Ω → R, which maps the model’s input xi ∈ R
d to the
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desired output yi ∈ R for i = 1, ...,n observations. The unknown function f

belongs to some function space V , which we will specify later on. The resulting
regularization problem can be written as

inf
f∈V

(

1

n

n
∑

i=1

L(f(xi),yi)+λ‖Pf‖2
L2(Ω)

)

, (1)

where L is a loss function, which ensures that f is close to the output yi. In
the sequel we will consider L(a,b) = (a − b)2. The second term is a penalty
term for non-smooth f . The parameter λ > 0 determines the balance between
the accuracy of the fitted function and its smoothness. P is a regularization
operator, for example one can use P = ∇ or P = ∆. In the sequel we use
P = ∇.

In order to estimate f , a function space is needed to be specified. We will
restrict ourselves to a finite dimensional space Vm ⊆ V and express f with
the help of basis functions {φi(x)}i=1,...s,m by

f(x) =

m
∑

i=1

αiφi(x). (2)

Plugging (2) into (1) the approximation reduces to a minimization problem,
which can be rewritten as a linear equation system

inf
f∈V

(

λC +B BT
)

α = By,

with matrices Cj,k = n〈∇φj ,∇φk〉L2(Ω), j,k = 1, ...,m, Bj,i = φj(xi), j =
1, ...,m, i = 1, ...,n and the m dimensional vector α. The vector α contains
the degrees of freedom and represents a unique solution if the minimization
problem is well-posed.

The dimension of the feature space is determined by the number of used
variables. If additional time series are introduced to describe y, the dimension
of the feature space increases. Hence the system that has to be solved grows
and the curse of dimensionality shows its effects quickly. On a uniform grid
with mesh size hN = 2−N , and level N ∈ N, in each coordinate direction this
would lead to O(h−d

N ) degrees of freedom and an exponentially increasing
complexity. To cope with this problem we use the sparse grid combination
technique to reduce the complexity. [10], [16] [18] have shown that the num-
ber of grid points can be lowered to an order of O(h−1

N log(h−1
N ))d−1). In

the following we will briefly recall the fundamentals of this technique. For a
detailed introduction to sparse grids we refer to [2], [6].

The combination technique is based on linearly combining a sequence
of functions. Let Ω := [0,1]d be the d dimensional unit cube and let l =
(l1, ..., ld) ∈ N

d, i = (i1, ..., id) ∈ N
d denote multi-indices, then we can de-

fine a family of grids {Ωl}l∈N on Ω with mesh sizes hl = (hl1
, ...,hld

) =
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(2−l1 , ...,2−ld). Each grid consists of the points xl,i = (xl1,i1
, ...,xld,id

) with

xlt,it
= ithkt

, it = 0, ...,2lt , t = 1, ...,d. The d dimension basis functions φl,i

are given by the tensor product of piecewise linear one dimensional basis
functions φlt,it

for x ∈ Ω

φl,i(x) =
d
∏

t=1

φlt,it
(xt).

The one dimensional basis function φlt,it
is given by a hat function, centered

on grid point xt = xlt,it

φlt,it
(xt) =

{

1−|
xt−ithlt

hlt

| if xt ∈ [(it −1)hlt
,(it +1)hlt

]∩ [0,1]

0 otherwise.

Since each basis function φlt,it
has support [(it −1)hlt

,(it +1)hlt
]∩ [0,1], the

d dimensional function φl,i is one at grid point xl,i and zero at all other
grid points of grid Ωl. With the help of these basis functions the function
space Vl = span{φl,i(x), it = 1, ...,2lt , t = 1, ...,d} on grid Ωl can be defined.
The function fl on Ωl is represented by

fl(x) =

2l

1
∑

i1=1

...

2l

d
∑

id=1

αl,iφl,i(x).

If we combine linearly the solution fl from different grids Ωl according to the
formula

fN (x) =
d−1
∑

q=0

(−1)q

(

d−1

q

)

∑

|l|1=N−q

fl(x),

we obtain the function fN , which lives in the sparse grid space with
O(h−1

N (log(h−1
N ))d−1) grid points, compared to O(h−d

N ) grid points of the
full grid solution. Provided that f fulfills certain smoothness conditions, it is
shown in [2], that the approximation error is

‖f −fN ‖ = O(h2
N log(h−1

N )d−1).

We have considered only the case of the d dimensional unit cube here. Please
note, that this is no restriction since we can linearly transform all data to the
unit cube.
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3.2 Multivariate ARMA

In order to evaluate the performance quality of the fitted function of the
previous section, we want to apply ARMA/VARMA models as a benchmark.
In the case of no additional input variables an univariate ARMA model will
be used, while for additional external inputs multivariate ARMA (Vector-
ARMA) models will be tested. They can be understood as the multivariate
counterpart of univariate ARMA models. The general model is of the form

φ(B)yt = θ(B)et +ω(B)ut,

where B is the back shift operator. yt and et are p dimensional vectors of
observed output variables and unobserved residuals, Gaussian white noise,
respectively. The m dimensional vector ut contains the input variables. The
coefficient functions are polynomials, which take the lag operator B as a
variable. The model order is chosen with the help of the Akaike Information
Criterion (AIC). The appropriate model parameters are calibrated with the
help of the R software package DSE3.

4 Forecasting Methodology and Results

In this section we want to investigate the forecasting accuracy of our function
for Phelix day-ahead prices. The accuracy is quantified with the help of the
following measures, where ŷi is the prediction and yi the true electricity spot
price for values i = 1, ...,n:

1. Mean Absolute Error (MAE)

MAE =
1

n

n
∑

i=1

|yi − ŷi|

2. Mean Absolute Percentage Error (MAPE)

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

3. Root Mean Squared Error (RMSE)

MSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)
2

3 Dynamic System Estimation (DSE): available at www.cran.r-project.org
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The first two criterions measure the deviation from the forecast to the true
price. The latter one is the second moment of the error and incorporates the
variance of the estimator. To build up our forecasting model, we use half of
our data as a training set. The first half of 2012 works as a validation set to
select the model parameters; the smoothing parameter λ and the level N (see
Section 3.1). Based on the selected model, we compute day-ahead forecasts
for the second half of the year 2012 to test the out-of-sample behavior of
our fitted models. To make both approaches as comparable as possible, we
will always use the same feature space, training, validation and test set to
evaluate their performance.

4.1 Forecasting Results

The easiest feature space one can think of consists of the time series itself.
Since the electricity price series exhibits a unit root (see Section 2), we take
the differentiated time series into considerations. With the help of the vali-
dation set, we experimentally answer the question how many delayed values
should be included. Experiments turn out that two values are appropriate.
Thinking in terms of autoregressive models (AR) this would correspond to an
order of two. The training procedure of the regularized regression approach
is therefore proposed to find a function f , which matches

yt −yt−1 = f1(yt−1 −yt−2,yt−2 −yt−3)

for all t in the training set. In Table 2 we compare the results of the regu-
larized regression approach and an ARMA model. In the validation set the
parameters λ = 0.01 and L = 2 showed the best performance and have there-
fore been chosen. The out-of-sample accuracy is slightly worse than in the
validation set. However it can beat the ARMA model in all three accuracy
measures.

RegRegvalidation RegRegout-of-sample ARMA

MAE 4.8914 4.9398 5.0255
MAPE [%] 9.8921 9.7868 9.8946
RMSE 6.3562 6.9317 7.0979

Table 2 Forecast results

We now extend the feature space by coal and gas time series. Since coal
and gas fired power plants have a share of more than one half in the German
energy mix [1], we want to evaluate if the forecasting results can be improved.
Hence we include the last two differentiated values. The six dimensional re-
gression problem is of the form
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yt −yt−1 = f2(yt−1 −yt−2,yt−2 −yt−3,

ct−1 − ct−2, ct−2 − ct−3,gt−1 −gt−2,gt−2 −gt−3),

where ct is the coal price and gt the gas price at time t in the training
set. Table 3 shows the forecasting results. Compared to the previous feature
space, which only consisted of lagged electricity spot prices, the introduction
of both fuel price series seem to have an adverse influence on the accuracy.

RegRegvalidation RegRegout-of-sample ARMA

MAE 4.9617 5.0884 5.0950
MAPE [%] 9.9802 10.0623 10.1035
RMSE 6.4023 7.1392 7.1341

Table 3 Forecast results including fuel prices

Since the start of the European Union Emission Trading Scheme (EU
ETS) energy companies have to surrender EUAs to offset their emission of
greenhouse gases. In order to check, whether historical prices of EUAs can
enhance the accuracy, we add them to the feature space and obtain a four
dimensional problem

yt −yt−1 = f3(yt−1 −yt−2,yt−2 −yt−3,et−1 −et−2,et−2 −et−3).

In Table 4 we compare the forecasting quality of both models. The regression
approach slightly outperforms its benchmark. We see that an addition of
EUAs to the feature space does not improve the forecasting results.

RegRegvalidation RegRegout-of-sample ARMA

MAE 4.9617 5.0884 5.1013
MAPE [%] 9.9802 10.0436 10.1038
RMSE 6.4023 7.0247 7.1263

Table 4 Forecast results including EUAs

Along with coal and gas fired power plants, renewable energy sources play
an important role in the German electricity market. In 2012 about 22% of
the total electricity was produced by sustainable generators [1]. Since the
preferred use of green to conventional energy is guaranteed by the Renewable

Energy Act (EEG), there is a deep impact of production capacities provided
by wind and solar generators on the spot price for electricity. The influence
of wind power has already been analyzed in [17], [19], [13], [11]. Here the
variable wt denotes the wind production forecast at time t, while st is the
solar production forecast. These are published by the transmission system

operators4 (TSO) and we assume that these information is available at time

4 50Hertz, Amprion, APG, TenneT, TransnetBW
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level t−1. The fitting problem reads

yt −yt−1 = f4(yt−1 −yt−2,yt−2 −yt−3,wt −wt−1,st −st−1).

Table 5 shows the great improvement to the previous feature spaces. The
error in terms of the MAE, MAPE and RMSE can be lowered by 28.20%,
32.07% and 27.15% compared to the first model. This increase in accuracy
underlines the strong price effects of solar and wind supplies on the spot price
for electricity, the so called merit order effect [17].

RegRegvalidation RegRegout-of-sample ARMA

MAE 3.9290 3.5466 5.5231
MAPE [%] 7.5325 6.6547 6.9041
RMSE 5.7464 5.0532 5.1876

Table 5 Forecast results including wind and solar production forecasts

f1 f2 f3 f4

N 2 0 0 4
λ 0.01 0.001 0.001 0.001

Table 6 Selected model parameters

In Table 6 the selected model parameters are stated. The level N deter-
mines the amount of grid points in our spare grid (see Section 3.1). It is clear
that a finer grid has better in-sample-properties, but might suffer from over-
fitting if it is tested for out-of-sample data. The forecasting results underline,
that a small level is sufficient and leads to stable results in the validation-
and out-of-sample set.

5 Conclusion

In this paper we investigated the potential of a non-linear regression ap-
proach in the prediction of day-ahead electricity prices in Germany. The out-
of-sample tests show that this model performs better than its benchmark
ARMA/VARMA model. The strength of our technique lies in its ability to
capture a big variety of relationships up to a high order of dimension. Within
this work we considered problems up to dimension 6, but also higher dimen-
sions are conceivable, e.g. adding further time series or more lagged values.
In four different tests we evaluated the benefit of important impact factors
on the prediction accuracy. The inclusion of fuel prices and CO2 allowance
prices turned out to introduce more noise. Thus leading to worse forecast-
ing results. If wind and solar production forecasts are added to the feature
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space, the accuracy is greatly improved. These results underline the strong
price effects of renewable energy sources in the German electricity market.
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