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Fichera Theory and its Application in Finance

Zuzana Bučková, Matthias Ehrhardt and Michael Günther

Abstract The Fichera theory was first proposed in 1960 by Gaetano Fichera and

later developed by Olejnik and Radkevič in 1973. It turned out to be very useful

for establishing the well-posedness of initial boundary value problems for parabolic

partial differential equations degenerating to hyperbolic ones at the boundary.

In this paper we outline the application of the Fichera theory to interest rates mod-

els of Cox-Ingersoll-Ross (CIR) and Chan-Karolyi-Longstaff-Sanders (CKLS) type.

For the one-factor CIR model the obtained results are consistent with the corre-

sponding Feller condition.

1 Introduction

The Fichera theory focus on the question of appropriate boundary conditions (BCs)

for parabolic partial differential equations (PDEs) degenerating at the boundary.

According to the sign of the Fichera function one can separate the outflow or inflow

part of the solution at the boundary. Thus, this classical theory indicates whether

one has to supply a BC at the degenerating boundary.

In this paper we illustrate the application of the Fichera theory to the Cox-

Ingersoll-Ross (CIR) interest rate model and its generalisation, the Chan-Karolyi-

Longstaff-Sanders (CKLS) model [2]. Here, at the left boundary the interest rate

tends to zero and thus the parabolic PDE degenerates to a hyperbolic one. For fur-

ther applications of Fichera theory to other current models in financial mathematics

we refer the interested reader to [4].
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2 The Boundary Value Problem for the Elliptic PDE

We consider an elliptic second order linear differential operator

Lu = ai j

∂ 2u

∂xi∂x j

+bi

∂u

∂xi

+ cu, x ∈ Ω ⊂ R
n, (1)

where A = (ai j) ∈ R
n×n is symmetric and induces a semi-definite quadratic form

ξ⊤Aξ ≥ 0 for all ξ ∈ R
n. Σ denotes a piecewise smooth boundary of the domain

Ω . The subset of Σ where the quadratic form vanishes, ξ⊤Aξ = 0, will be denoted

as Σh (hyperbolic part) and the set of points of Σ where the quadratic form remains

positive, ξ⊤Aξ > 0, is denoted as a Σp (parabolic) part. For Σh, the hyperbolic part

of the boundary Σh, we introduce the Fichera function

b =
n

∑
i=1

(

bi −
n

∑
k=1

∂aik

∂xk

)

νi, (2)

where νi is the direction cosine of the inner normal to Σ , i.e. it is νi = cos(xi,ni),
where ni is the inward normal vector at the boundary.

On the hyperbolic part of the boundary Σh we define according to the sign of the

Fichera function the three subsets Σ0 (b = 0 tangential flow), Σ+ (b > 0, outflow)

and Σ− (b < 0, inflow), i.e. the boundary Σ = Σp∪Σh can be written as a unification

of four boundary parts: Σ = Σp ∪Σ0 ∪Σ+∪Σ−.

Olejnik and Radkevič [7, Lemma 1.1.1] showed that the sign of the Fichera func-

tion b at the single points Σh does not change under smooth nondegenerate changes

of independent variables in a given elliptic operator (1). In [7, Theorem 1.1.1] it

is stated that the subsets Σ0, Σ+, Σ− remain invariant under a smooth nonsingular

changes of independent variables in the elliptic operator (1).

The parabolic boundary Σp can be rewritten as a unification of two sets Σ D
p

(Dirichlet BC) and Σ N
p (Neumann BC). Let us state one simple example.

Example 1 ( [6]). The boundary value problem for an elliptic PDE reads

Lu = f on Ω ⊂ R
n,

u = g on Σ−∪Σ D
p

ai j

∂u

∂xi

n j = h on Σ N
p

If Σ N
p is an empty set, we obtain a Dirichlet problem; if Σ D

p is an empty set, a

Neumann problem; if Σ D
p and Σ N

p are not empty, the problem is of mixed Dirichlet-

Neumann type. Recall that for hyperbolic PDEs one must not supply BCs for out-

flow boundaries (Σ+) or boundaries where the characteristics are tangential to the

boundary (Σ0), since this may violate the information that is transported from the

interior of the domain.
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3 Application to one-factor interest rate Models of CKLS type

We start with an interest rate model in the form of a stochastic differential equation

dr = κ(θ − r)dt +σrγ dW, (3)

where κ , θ are positive constants, and γ non-negative. This CKLS model [2] is a

mean-reversion process with non-constant volatility σrγ . Using the Itô formula for

a duplicating portfolio in a risk neutral world one can derive a PDE for the zero-

coupon bond price P(r,τ):

∂P

∂τ
= α(r,τ)

∂ 2P

∂ r2
+β (r,τ)

∂P

∂ r
− rP, r > 0, τ > 0, (4)

where α(r,τ) = 1
2
σ2r2γ , β (r,τ) = κ(θ − r). A closed form formula for this model

can be given in special cases, cf. [1]:

a) if γ = 0, this is the classical Vašı́ček model with constant volatility.

b) for γ = 0.5, we get the Cox-Ingersoll-Ross (CIR) model (CIR), [3].

For general γ (CKLS model) there is no closed form formula for the bond price

P(r,τ) and the PDE (4) has to be solved numerically.

The volatility term in (4), for a short rate r tending to zero, is α(0,τ) = 0. Thus

the parabolic PDE (4) reduces at r = 0 to the hyperbolic PDE

∂P

∂τ
= κθ

∂P

∂ r
, τ > 0. (5)

Next, the Fichera function (2) for our model reads

b(r) = β (r,τ)− ∂α(r,τ)

∂ r
, (6)

and we check the sign of (6) for r → 0+:

• if lim
r→0+

b(r)≥ 0 (outflow boundary) we must not supply any BCs at r = 0.

• if lim
r→0+

b(r)< 0 (inflow boundary) we have to define BCs at r = 0.

Especially for the proposed model we get b(r) = κ(θ − r)−σ2γr2γ−1 and we

we can distinguish the following situations:

a) for γ = 0.5 (CIR model) ⇒ if κθ −σ2/2 ≥ 0, we do not need any BCs.

b) for γ > 0.5 ⇒ if κθ ≥ 0, we do not need any BCs.

c) for γ ∈ (0,0.5)⇒ if lim
r→0+

b(r) =−∞, we need BCs.

Remark 1 (Feller condition). The Feller condition guaranteeing a positive interest

rate defined by (3) for the one-factor CIR model is 2κθ > σ2 and is equivalent with

the condition derived from the Fichera theory. If the Feller condition holds, then the

Fichera theory states that one must not supply any BC at r = 0.
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4 A two-factor interest rate Model

We consider a general two-factor model given by the set of two SDEs

dx1 = (a1 +a2x1 +a3x2)dt +σ1x
γ1
1 dW1, (7)

dx2 = (b1 +b2x1 +b3x2)dt +σ2x
γ2
2 dW2, (8)

Cov[dW1,dW2] = ρ dt, (9)

containing as special cases the Vašı́ček model (γ1 = γ2 = 0) and the CIR model (γ1 =
γ2 = 0.5). The drift functions are defined as linear functions of the two variables x1

and x2. Choosing a1 = b1 = b2 = 0 we get two-factor convergence model of CKLS

type (in case of general γ1, γ2 ≥ 0). The variable x1 models the interest rate of a small

country (e.g. Slovakia) before entering the monetary EURO union and the variable

x2 represents the interest rate of the union of the countries (such as the EU).

Applying the standard Itô formula one can easily derive a parabolic PDE

∂P

∂τ
= ã11

∂ 2P

∂x2
1

+ ã22
∂ 2P

∂x2
2

+ ã12
∂ 2P

∂x1∂x2
+ ã21

∂ 2P

∂x2∂x1
+ b̃1

∂P

∂x1
+ b̃2

∂P

∂x2
+ c̃P, (10)

where P(x,y,τ) represents the bond price at time τ for interest rates x and y, and

ã11 =
σ2

1 x
2γ1
1

2
, ã22 =

σ2
2 x

2γ2
2

2
, ã12 = ã21 =

1

2
ρσ1x

γ1
1 σ2x

γ2
2

b̃1 = a1 +a2x1 +a3x2, b̃2 = b1 +b2x1 +b3x2, c̃ =−x1,

for x1,x2 ≥ 0, τ ∈ (0,T ), with initial condition P(x1,x2,0) = 1 for x1, x2 6= 0.

Now, the Fichera function (2) in general reads

b(x1,x2) =

[

a1 +a2x1 +a3x2 −
(

σ2
1 γ1x

2γ1−1
1 +

1

2
ρσ1x

γ1
1 σ2γ2x

γ2−1
2

)

]

x1
√

1+ x2
1

+

[

b1 +b2x1 +b3x2 −
(1

2
ρσ1γ1x

γ1−1
1 σ2x

γ2
2 +σ2

2 γ2x
2γ2−1
2

)

]

x2
√

1+ x2
2

.

Depending on γ1 and γ2, we get the following results:

• For γ1 = γ2 = 0 (classical Vašı́ček model), the Fichera function simplifies to

b(x1,x2) = (a1 +b1)+(a2 +b2)x1 +(a3 +b3)x2,

and boundary conditions must be supplied, if











x1 ≤− a1+b1+(a3+b3)x2

a2+b2
for a2 +b2 6= 0

x2 ≤− a1+b1
a3+b3

for a2 +b2 = 0,a3 +b3 6= 0

a1 +b1 ≤ 0 for a2 +b2 = 0,a3 +b3 = 0

.
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• For γ1 = γ2 = 0.5 (CIR model), the Fichera function simplifies to

b(x1,x2) =

[

a1 +a2x1 +a3x2 −
(

σ2
1 γ1 +

1

4
ρσ1σ2

√

x1

x2

)]

x1
√

1+ x2
1

+

[

b1 +b2x1 +b3x2 −
(

1

4
ρσ1σ2

√

x2

x1
+σ2

2 γ2

)]

x2
√

1+ x2
2

We must supply boundary conditions for ρ > 0, and must not for ρ < 0. For

ρ = 0, BCs at x2 = 0 must be posed if x1 ≤σ2
1 γ1/(2a2)−a1/a2 (assuming a2 > 0,

and for x1 = 0, if x2 ≤ σ2
2 γ2/(2b2)−b1/b2 (assuming b2 > 0), otherwise not.

• For the general case γ1, γ2 > 0, we discuss the boundary x2 = 0,x1 > 0; due to

symmetry, the case x2 = 0,x1 > 0 follows then by changing the roles of x1 and

x2, as well as γ1 and γ2. For x2 = 0 the Fichera function simplifies to

lim
x2→0+

b(x1,x2) =

[

a1 +a2x1 −σ2
1 γ1x

2γ1−1
1 − 1

2
ρσ1x

γ1
1 σ2γ20γ2−1

]

x1
√

1+ x2
1

=































[

a1 +a2x1 −σ2
1 γ1x

2γ1−1
1

]

x1√
1+x2

1

ρ = 0

−∞ 0 < γ2 < 1,ρ 6= 0
[

a1 +a2x1 −σ2
1 γ1x

2γ1−1
1 − 1

2
ρσ1x

γ1
1 σ2

]

x1√
1+x2

1

γ2 = 1,ρ 6= 0
[

a1 +a2x1 −σ2
1 γ1x

2γ1−1
1

]

x1√
1+x2

1

γ2 > 1,ρ 6= 0

For 0 < γ2 < 1 and ρ 6= 0, BCs are needed, if ρ is positive, and BCs must not be

posed, if ρ is negative. In all other cases, the sign of b, which defines whether

BCs must be supplied or not, depends on a1, a2, σ1, σ2 and γ1, see Fig. 1.

Fig. 1 Boundary decomposition in two-factor CIR model.
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5 Numerical Results

Choosing set of parameters κ = 0.5, θ = 0.05, σ = 0.1, γ = 0.5 (CIR), we get at

r = 0 a positive Fichera function b = κθ −σ2/2 = 0.02 > 0. This is equivalent with

the statement that the Feller condition is satisfied. According to the Fichera theory,

as soon as it is outflow part of boundary, we must not supply BCs. In this example

in Fig. 2 and Fig. 4 and Table 1, we intentionally supplied BCs in an ’outflow’ situ-

ation when we should not in order to illustrate what might happen if one disregards

the Fichera theory. In the evolution of the solution we can observe a peak and os-

cillations close to the boundary. In Fig. 4 we plot with the relative error, which is

reported also in the Table 1.
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Fig. 2 Numerical solution, Dirichlet BC
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Fig. 3 Numerical solution, without BC
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Fig. 4 Relative error, case wit Dirichlet BC

0
40

80
120

0
2

4
6

0

0.005

0.01

0.015

time [days]
interest

rate [%]

re
la

tiv
 e

rr
or

Fig. 5 Relative error, case without BC

Table 1 Relative error, case with BC

time[days] relative error

1 0.0147

40 0.0079

80 0.0029

120 (maturity) 0

Table 2 Relative error, case without BC

time[days] relative error

1 0.0039

40 0.0029

80 0.0015

120 (maturity) 0

In our example we used the same parameters, but with or without defining Dirich-

let BC. Here, “without BC” means that we used for the numerical BC the limit of

the interior PDE for r → 0. The corresponding results are shown on the right hand

side, in Fig. 3, Fig. 5 and the relative errors are recorded in Table 1.
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For the numerical solution we used the implicit finite difference method from [5].

The reference solution is obtained either as the analytic solution for the CIR model

(γ = 0.5, if Feller condition is satisfied), cf. [1] or in all other cases using a very fine

resolution (and suitable BCs). The conditions at outflow boundaries are obtained by

studying the limiting behaviour of the interior PDE or simply by horizontal extrap-

olation of appropriate order. Recall that negative values of the Fichera function (i.e.

an inflow boundary) corresponds to a not satisfied Feller condition and may destroy

the uniqueness of solutions to the PDE.

6 Conclusion

We discussed one and two factor interest rate models and applied the classical

Fichera theory to the resulting degenerate parabolic PDEs. This theory provides

highly relevant information how to supply BCs in these applications.

As a next step, we will investigate multi-factor models, which are coupled only

via the correlation of the Brownian motion:

dxi = (ai +bixi)dt +σix
γi

i dWi,

Cov[dWi,dWj] = ρi j dt, i, j = 1, . . . ,n.
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