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Abstract

Correlation plays an essential role in many problems of finance and economics, such
as pricing financial products and hedging strategies, since it models the degree of
relationship between, e.g., financial products and financial institutions. However,
usually for simplicity the correlation coefficient is assumed to be a constant in many
models, although financial quantities are correlated in a strongly nonlinear way in
the real market.
This work provides a new time-dependent correlation function, which can be easily
used to construct dynamically (time-dependent) correlated Brownian motions and
flexibly incorporated in many financial models. The aim by using our time-dependent
correlation function is to reasonably choose additional parameters to increase the
fitting quality on the one hand but also add an economic concept on the other hand.
As examples, we illustrate the applications of dynamic correlation in the Heston
model. From our numerical results we conclude that the Heston model extended by
incorporating time-dependent correlations can provide a better volatility smile than
the pure Heston model.

Keywords Correlation Risk, Dynamic Correlation, Ornstein-Uhlenbeck process,
Heston model, Stochastic Correlation Process, Affine Process.
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1 Introduction

Correlation is a well established concept for quantifying interdependence. It plays an
essential role in several problems of finance and economics, such as pricing financial
products and hedging strategies. For example, in [3] the arbitrage pricing model is
based on correlation as a measure for the dependence of assets as well as in portfolio
credit models, the default correlation is one fundamental factor of risk evaluation,
see [1], [2] and [12].

In most of the financial models, the correlation has been considered as a constant.
However, this is not a realistic assumption due to the well-known fact that the
correlation is hardly a fixed constant, see e.g. [7] and [13]. For example, in many
situations the pure Heston model [9] can not provide enough skews or smiles in the
implied volatility surface as market requires, especially for a short maturity. A reason
for this might be that deterministically correlated Brownian motions (BMs) of the
price process and the variance process is used, as the correlation affects mainly the
slope of implied volatility smile. If the correlation is modelled with a time-dependent
dynamic function, better skews or smiles will be provided in the implied volatility
surface by reasonably choosing additional parameters. Furthermore, compared with
the way to extend a model by using time-dependent parameter, e.g., [6, 10] for
the Heston model, a time-dependent correlation function adds an economic concept
(nonlinear relationship) and its application will be considerably simple.

The key of modelling correlation as a time-dependent function is able to ensure
that the boundaries −1 and 1 of the correlation function are not attractive and
unattainable for any time. In this work, we build up a reasonable and appropriate
time-dependent correlation function, so that one can reasonably choose additional
parameters to increase the fitting quality on the one hand but also add an economic
concept on the other hand. Thus many problems of finance and economics can be
treated under dynamic correlation which is much more realistic than with a constant
correlation to model real world phenomena.

The outline of the remaining part is as follows. Section 2 is devoted to a specific dy-
namic correlation function and its (analytical) computation. In Section 3, we present
the concept of dynamically (time-dependent) correlated Brownian motions and its
construction. The incorporation of our new dynamic correlation model in the Heston
model is illustrated in Section 4. Finally, in Section 5 we conclude this work.
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2 The Dynamic Correlation Function

In this section we introduce an appropriate and reasonable dynamic correlation func-
tion. Actually, it is in high demand to find such a correlation function which must
satisfy the correlation properties: it provides only the values in the interval (−1, 1)
for any time; it converges for increasing time. We find the following simple idea: we
denote the dynamic correlation with ρ̄ and propose simply using

ρ̄t := E [tanh(Xt)] , t > 0 (1)

for the dynamic correlation function, where Xt is any mean-reverting process with
positive and negative values. For a fixed parameter of Xt, the correlation function
ρ̄t : [0, t] → (−1, 1) depends only on t. We observe that the dynamic correlation
model (1) satisfies the wished properties: first, it is obvious that ρ̄t takes values only
in (−1, 1) for all t. Besides, it converges to a value for increasing time due to the
mean reversion of the used process Xt.

Xt in (1) could be any mean-reverting process with positive and negative values. As
an example, let Xt be the Ornstein-Uhlenbeck process [14]

dXt = κ(µ−Xt)dt+ σdWt, t ≥ 0. (2)

We are interested in computing E[ρt] for the known parameters in (2). We compute
ρ̄t = E[tanh(Xt)] as

ρ̄t = E[tanh(Xt)] = E

[
1− e−Xt · 2

e−Xt + eXt

]
= 1− E

[
e−Xt · 1

cosh(Xt)

]
. (3)

We set g(Xt) = 1/ cosh(Xt). Applying the results by Chen and Joslin [4], the expec-
tation in (3) can be found in closed-form expression (up to an integral) as

1

2π

∫ ∞
−∞

ĝ(u) · E[e−XteiuXt ] du, (4)

where i =
√
−1 denotes the imaginary unit and ĝ is the Fourier transform of g,

which is known analytically by ĝ(u) = π/ cosh(πu
2

). Denoting CF (t, u|X0, κ, µ, σ)
as the characteristic function of Xt, the expectation in (4) can be presented by
CF (t, i+ u|X0, κ, µ, σ). Thus, we obtain the closed-form expression for ρ̄t :

ρ̄t = 1− 1

2

∫ ∞
−∞

1

cosh(πu
2

)
· CF (t, i+ u|X0, κ, µ, σ)du. (5)
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The next step is to calculate the expression of CF (t, i + u|X0, κ, µ, σ). Xt is the
Ornstein-Uhlenbeck process and its characteristic function CF (t, u|X0, κ, µ, σ) can
be obtained analytically, e.g. using the framework of the affine process, see [5]. Then,
we only need to substitute u+ i for u in the characteristic function of Xt to calculate
CF (t, i+ u|X0, κ, µ, σ) which is given by

CF (t, i+ u|X0, κ, µ, σ) = e−A−
B
2

+iu(A+B)+u2 B
2 , (6)

with

A = e−κtX0 + µ(1− e−κt), B = −σ
2

2κ
(1− e−2κt) (7)

Finally, the dynamic correlation function ρ̄t can be computed by

ρ̄t = 1− e−A−
B
2

2

∫ ∞
−∞

1

cosh(πu
2

)
· eiu(A+B)+u2 B

2 du, (8)

where A and B are defined in (7). In fact, X0 in A is artanh(ρ̄0).

To illustrate the role of each parameter in (8), we plot ρ̄t for a couple of parameters.
First in Figure 1, we let κ = 2 and σ = 0.5 and display ρ̄t with different values of µ,
which is set to be 0.5, 0 and −0.5, respectively. Obviously, µ determines the limit of
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Figure 1: Dynamic correlation ρ̄t for varying µ (κ = 2 and σ = 0.5).

ρ̄t for a long time t. However, µ is not the exact limiting value. Considering Figure
1(a) where the initial value of the correlation function is 0, we see that ρ̄t is increasing
to a value around µ = 0.5 and decreasing to a value around µ = 0.5 as t goes on,
when µ = 0.5 and − 0.5, respectively. Besides, for µ = ρ̄0 = 0 we observe that
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the correlation function ρ̄t yields always 0 which is the same as constant correlation
ρ = 0. We change ρ̄0 to be 0.3 and keep the value of all other parameters, the curves
of ρ̄t can be found in Figure 1(b).

Next, we fix κ = 2 and µ = 0.5 and show ρ̄t for the varying σ = 0.5, 1 and 2 in Figure
2. Obviously, σ shows the magnitude of variation from the value around µ = 0.5. In
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Figure 2: Dynamic correlation ρ̄t for varying σ (κ = 2 and µ = 0.5).

Figure 2(a) we see, the larger the value of σ is, the stronger the deviations of ρ̄t is from
the value around µ = 0.5. More interesting is that ρ̄t first decreases until t ≈ 0.25,
then increases and tends to a value, see Figure 2(b) where ρ̄0 = 0.3 and σ = 2.

Again, in order to illustrate the role of κ, we set µ = 0.5, σ = 2 and vary the value of
κ, see Figure 3. From Figure 3(a) it is easy to observe that κ represents the speed of
ρ̄t tending to its limit. Especially, as we have seen in Figure 2(b), the curve is more
unstable for κ = 2 and σ = 2 in Figure 3(b). However, if σ remains with the same
value while the value of κ is increased, we can see that curves of ρ̄t become more
stable and tend straightly to its limit. If one incorporates the dynamic correlation
function (8) to a financial model, the parameter ρ̄0, κ, µ, and σ could be estimated
by fitting the model to market data.

3 Dynamically correlated Brownian motions

We fix a probability space (Ω,F ,P) and an information filtration (Ft)t∈R+ , satisfying
the usual conditions, see e.g. [11]. At a time t > 0, the correlation coefficient of two
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Figure 3: Dynamic correlation ρ̄t for varying κ (µ = 0.5 and σ = 2).

Brownian motions (BMs) W 1
t and W 2

t is defined as

ρ1,2
t =

E [W 1
t W

2
t ]

t
. (9)

If we assume that ρ1,2
t is constant, ρ1,2

t = ρ1,2 for all t > 0, say W 1
t and W 2

t are
correlated with the constant ρ1,2.

3.1 Definition of dynamically correlated Brownian Motions

In the following, we show how to define the dynamically correlated Brownian motions,
where the correlation is not same for each instant of time. Let (∆n)n∈N := {0 =
t0 < t1 < · · · < tn−1 < tn = t} be a partition of [0, t] with the mesh ‖(∆n)‖ :=
max
1≤i≤n

(ti − ti−1), we calculate

E
[
W 1
t W

2
t

]
= E

[(
(W 1

tn −W
1
tn−1

) + (W 1
tn−1
−W 1

tn−2
) + · · ·+ (W 1

t1
−W 1

t0
)
)
·
(
(W 2

tn −W
2
tn−1

)

+ (W 2
tn−1
−W 2

tn−2
) + · · ·+ (W 2

t1
−W 2

t0
)
)]

= E

[
n∑
i=1

(W 1
ti
−W 1

ti−1
)(W 2

ti
−W 2

ti−1
)

]

= E

[
n∑
i=1

ρ1,2
ti−ti−1

(ti − ti−1)

]
‖∆n‖→0
n→∞= E

[∫ t

0

ρ1,2
s ds

]
. (10)

Therefore, we give the definition of dynamically correlated BMs.
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Definition 3.1. Two Brownian motions W 1
t and W 2

t are called dynamically corre-
lated with correlation function ρt, if they satisfy

E
[
W 1
t W

2
t

]
=

∫ t

0

ρsds, (11)

where ρt : [0, t] → [−1, 1]. The average correlation of W 1
t and W 2

t , ρAv, is given by
ρAv := 1

t

∫ t
0
ρsds.

3.2 Construction of dynamically correlated Brownian Mo-
tions

We consider first the two-dimensional case and let ρt be a correlation function. For
two independent BMs W 1

t and W 3
t we define

W 2
t =

∫ t

0

ρsdW
1
s +

∫ t

0

√
1− ρ2

s dW
3
s , (12)

with the symbolic expression

dW 2
t = ρtdW

1
t +

√
1− ρ2

t dW
3
t . (13)

It can be easily verified that W 2
t is a BM and correlated with W 1

t dynamically by ρt.
Besides, the covariance matrix and the average correlation matrix of Wt = (W 1

t ,W
2
t )

can be determined, given by(
t

∫ t
0
ρsds∫ t

0
ρsds t

)
and

(
1 1

t

∫ t
0
ρsds

1
t

∫ t
0
ρsds 1

)
,

respectively.

The construction above could be also generalized to n-dimensions. We denote a stan-
dard n-dimensional BM by Zt = (Z1,t, ..., Zn,t) and the matrix of dynamic correlations
Rt = (ρi,jt )1<i,j<n which has the Cholesky decomposition for each time t, Rt = AtA>t
with At = (ai,jt )1<i,j<n. We define a new n-dimensional process Wt = (W1,t, ...,Wn,t)
by

Wi,t =
n∑
j=1

aijt dZj,t, i = 1, · · · , n. (14)

We can easily verify that Wt statisfies the following properties:

7
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• W0 = 0 and the paths are continuous with probability 1.

• The increments Wt1 −Wt0 and Wt2 −Wt1 are independent for 0 ≤ t0 < t1 <
t2 < t.

• For 0 ≤ s < t, the increment Wt −Ws is multivariate normally distributed
with mean zero and covariance matrix Σ : Wt −Ws ∼ N(0,Σ) with

Σ =


t− s

∫ t
s
ρ1,2
u du · · ·

∫ t
s
ρ1,n
u du∫ t

s
ρ2,1
u du t− s · · ·

∫ t
s
ρ2,n
u du

...
...

. . .
...∫ t

s
ρn,1u du

∫ t
s
ρn,2u du · · · t− s

 .

We call the process (Wt)t≥0 a n-dimensional dynamically correlated Brownian mo-
tion, with the matrix Rt.

4 Dynamic Correlation in the Heston Model

As mentioned before, in many situations the pure Heston model has a limitation
on presenting properly a volatility smile. For this problem, several time-dependent
Heston models have been proposed for a good fitting to implied volatilities, e.g. [10]
and [6]. In this section, we show how to incorporate our time-dependent correlation
function into the Heston model.

4.1 Incorporating dynamic correlations

Heston’s stochastic volatility model is specified as

dSt = µSStdt+
√
νt St dW

S
t , (15)

dνt = κν(µν − νt)dt+ σν
√
νt dW

ν
t , (16)

where (15) is the price of the spot asset, (16) is the volatility (variance) and
W S
t and W ν

t are correlated with a constant ρSν . To incorporate the time-dependent
correlations, we assume that dSt and dνt are correlated by the time-dependent cor-
relation function ρ̄t instead of the constant correlation ρSν . The extended Heston
model with dynamic correlation ρ̄ is specified as

dSt = µSStdt+
√
νt St dW

1
t , (17)

dνt = κν(µν − νt)dt+ σν
√
νt(ρ̄t dW

1
t +

√
1− ρ̄2

t dW
2
t ), (18)

8
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where W 1
t and W 2

t are independent. Applying Itô’s lemma and no-arbitrage argu-
ments yields [9]

1

2
ν2S2∂

2U

∂S2
+ ρ̄tσννS

∂2U

∂S∂ν
+

1

2
σ2
νν
∂2U

∂ν2
+ rS

∂U

∂S

+ [κν(µν − ν)− λ̃(S, ν, ρ̄, t)ν]
∂U

∂ν
− rU +

∂U

∂t
= 0,

(19)

where ρ̄t is defined in (8) but with the parameter ρ̄0, κρ, µρ, and νρ. It is worth
mentioning that the market price of volatility risk depends also on the dynamic cor-
relation, which could be written as λ̃(S, ν, ρ̄t, t). This means, the price of correlation
risk embedding in the price of volatility risk has been considered.

We consider e.g. a European call option with strike price K and maturity T in the
Heston model

C(S, ν, t, ρ̄t) = SP1 −KP (t, T )P2, τ = T − t, (20)

where P (t, T ) is the discount factor and both probabilities P1, P2 must satisfy the
PDE (19) as well as their characteristic functions, f1(S, ν, ρ̄t, φ, t) and f2(S, ν, ρ̄t, φ, t)

fj(S, ν, ρ̄t, φ, t) = eCj(τ,φ)+Dj(τ,φ)ν+iφ lnS, j = 1, 2. (21)

By substituting this functional form (21) into the PDE (19) we can obtain the fol-
lowing ordinary differential equations (ODEs) for the unknown functions C and D :

−1

2
φ2 + ρ̄tσνφiDj +

1

2
σ2
νD

2
j + ujφi− bjDj +

∂Dj

∂t
= 0, (22)

rφi+ κνµνDj +
∂Cj
∂t

= 0, (23)

with the initial conditions Cj(0, φ) = Dj(0, φ) = 0

u1 = 0.5, u2 = −0.5, b1 = κν + λ− ρ̄tσν and b2 = κν + λ, (24)

where

ρ̄t = 1− e−A(t)−B(t)
2

2

∫ ∞
−∞

1

cosh(πu
2

)
· eiu(A(t)+B(t))+u2 B(t)

2︸ ︷︷ ︸
:=g(u)

du, (25)

with A(t) = e−κρtartanh(ρ̄0) + µρ(1− e−κρt), B(t) = − σ2
ρ

2κρ
(1− e−2κρt).

Obviously, (22)-(23) can not be solved analytically. Therefore, we need to find an
efficient way to compute the option price numerically. We firstly generate the dynamic

9
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correlations using (25). We observe that g(u) is a symmetric function about u = 0
and vanishes (approaches zero) for a sufficiently large absolute value of u, see Figure
4. For these two reasons, the numerical integration in (25) can be done rapidly.
Next we use an explicit Runge-Kutta method, the matlab routine ode45, to obtain

u
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)
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(a) t = 0.1
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(b) t = 10

Figure 4: g(u) under ρ0 = 0.3, κρ = 2, µρ = −0.8, σρ = 0.1.

C and D in (22)-(23) and thus also the characteristic functions (21). Finally, we
employ the COS method [8] to obtain the option price C(S, ν, t, ρ̄) in (20). Thanks
to the COS method, although we solved that ODE system numerically, the time for
obtaining European option prices is less than 0.1 seconds so that a calibration can
be performed.

4.2 Calibration of the Heston Model under dynamic corre-
lation

In this section we calibrate the Heston model extended by our time-dependent cor-
relation function to the real market data (Nikk300 index Call-options on July 16,
2012) and compare these to the pure Heston model [9] and the time-dependent He-
ston model [10].

We consider a set of N maturities Ti, i = 1, . . . , N and a set of M strikes Kj, j =
1, . . . ,M. Then for each combination of maturity and strike we have a market price
V M(Ti, Kj) = V M

ij and a corresponding model price V (Ti, Kj; Θ) = V Θ
ij generated

by using (20). We choose the relative mean error sum of squares (RMSE) for the

10
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loss function 1
M×N

∑
i,j

(VMij −V Θ
ij )2

VMij
, which can be minimized to obtain the parameter

estimates

Θ̂ = arg min
1

M ×N
∑
i,j

(V M
ij − V Θ

ij )2

V M
ij

. (26)

For the optimization we restrict ρ̄0 to the interval (−1, 1) but not the value of µρ.
Since it is not directly the limit of the correlation function but the mean reversion of
the Ornstein-Uhlenbeck process, thus, it could take any value in R. Our experiments
showed us, that it is enough and appropriate to restrict µρ to the interval [−4, 4].

We state our estimated parameters and the estimation error for the pure Heston
model (abbr. PH), the Heston model under our time-dependent correlations (CH),
the time-dependent Heston model by Mikhailov and Ngel [10] (MN) in Table 1, 2 and
3, respectively. We see that the estimation error using the CH model is distinctly less

The pure Heston model

ν̂0 κ̂ν µ̂ν σ̂ν ρ̂ Estimation Error
0.029 4.746 0.053 1.108 −0.355 1.10× 10−3

Table 1: The estimated parameters for the pure Heston model using Call-options on
the Nikk300 index on July 16, 2012.

The extended Heston model by using our time-dependent correlation function

ν̂0 κ̂ν µ̂ν σ̂ν ˆ̄ρ0 κ̂ρ µ̂ρ σ̂ρ Estimation Error
0.027 5.542 0.055 1.224 −0.165 5.333 −0.752 0.434 2.38× 10−4

Table 2: The estimated parameters for the Heston model under time-dependent cor-
relations using Call-options on the Nikk300 index on July 16, 2012.

The time-dependent Heston model by Mikhailov and Ngel

Maturity ν̂0 κ̂ν µ̂ν σ̂ν ρ̂ Estimation Error
1/12 0.025 2.749 0.095 1.172 −0.201 1.78× 10−4

1/4 0.012 2.936 0.076 0.524 −0.411 2.45× 10−5

1/2 0.011 2.890 0.058 0.592 −0.430 1.14× 10−5

1 0.001 2.911 0.051 0.558 −0.389 4.28× 10−6

Table 3: The estimated parameters for the time-dependent Heston model by
Mikhailov and Ngel using Call-options on the Nikk300 index on July 16, 2012.
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Figure 5: The comparison of implied volatilities for all the models to the market
volatilities of the Call-options on the Nikk300 index on July 16, 2012, where the spot
price is 150.9.

than the error using the PH model and almost the same to the error (sum of errors for
each maturity) under the MN model. To illustrate more clearly, for each maturity we
compare the implied volatilities for all the models to the market volatilities in Figure
5. We can observe that the implied volatilities for the CH model are much more closer
to the market volatilities than the implied volatilities for the PH model, especially
has the better volatility smile for the short maturity T = 1/12. Comparing to the MN
model, the implied volatilities for our model are almost the same to them, however,
our CH model has an economic interpretation, namely the correlation is nonlinear and
time-dependent as market required. We conclude that the Heston model extended
by incorporating our time-dependent correlations can provide better volatility smiles
compared to the pure Heston model. The time-dependent correlation function can
be easily and directly introduced into the financial models.
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5 Conclusion

In this work, we first investigated the dynamically (time-dependent) correlated Brow-
nian motions and its construction. Furthermore, we proposed a new dynamic correla-
tion function which can be easily incorporated into another financial model. The aim
by using our dynamic correlation function is to reasonably choose additional param-
eters to increase the fitting quality on the one hand side but also add an economic
concept on the other hand side.

As an example for the application, we incorporated our time-dependent correlation
function into the Heston model. An experiment on estimation of the models using
real market data has been provided. The numerical results show that the Heston
model extended by using our time-dependent correlation function provides better
volatility smiles compared to the pure Heston model. Besides, this time-dependent
correlation function could be easily and directly imposed to the financial models and
thus it is preferred to use instead of a constant correlation.
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