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DESCH-SCHAPPACHER PERTURBATION OF ONE-PARAMETER

SEMIGROUPS ON LOCALLY CONVEX SPACES

BIRGIT JACOBa,1, SVEN-AKE WEGNERb AND JENS WINTERMAYRb

Abstract. We prove a Desch-Schappacher type perturbation theorem for strongly continuous and

locally equicontinuous one-parameter semigroups which are defined on a sequentially complete lo-

cally convex space.

1. Introduction

Perturbation theory is an important and intensively studied topic in the context of strongly continuous
operator semigroups. In the literature there exists a vast amount of results covering various types
of perturbations on different classes of Banach and Hilbert spaces. For a sample we refer to the
textbooks of Engel, Nagel [9], Davies [6] or Pazy [16] and the references therein. In addition, there
exist important applications. Again we give only a small sample and refer to Tucsnak, Weiss [17] for
applications in systems theory (e.g. closed loop systems or output feedback systems) and to Farago,
Havasiy [10] for applications in numerical analysis (e.g. operator splitting).

Although there exists such a huge amount of results, there is no unifying theory since every type of
perturbation problem requires its own methods and techniques. Below we state as an example the
classical perturbation theorem of Desch, Schappacher [8], see Engel, Nagel [9, Corollary III.3.3].

Desch-Schappacher Theorem. Let A : D(A)→ X be the generator of the C0-semigroup (T (t))t>0

on a Banach space X. Let B : X → X−1 be linear and continuous. Assume that there exists t0 > 0
such that

(i) ∀ f ∈ C([0, t0], X) :

∫ t0

0

T−1(t0 − t)Bf(t)dt ∈ X,

(ii) ∃K ∈ (0, 1) ∀ f ∈ C([0, t0], X) :
∥∥∥∫ t0

0

T−1(t0 − t)Bf(t)dt
∥∥∥ 6 K supt∈[0,t0] |f(t)|

holds. Then the perturbed operator (A−1 +B)|X again generates a C0-semigroup on X.

Above, the space X−1 denotes the extrapolation space [9, Section II.5] associated with the semigroup
(T (t))t>0 and (T−1(t))t>0 denotes the extension of (T (t))t>0 to X−1. However, X−1 can also be

replaced by some more general superspace X ⊇ X as it was done by Desch and Schappacher in their
original version [8, Theorem on p. 330].

If we consider instead of the operator B : X → X−1 a perturbing operator B : X1 → X, where X1

denotes the interpolation space associated with the initial semigroup (T (t))t>0, then we end up with
another classical type of perturbation. We refer to [9, Section III.3] for corresponding results on so-
called Miyadera-Voigt perturbations [15, 18]. In addition to the well-studied case of Banach spaces,
the latter perturbations have also been considered for strongly continuous and locally equicontinuous
semigroups on locally convex spaces: In 1974, Dembart [7, Section 4] proved a locally convex version
of the Miyadera-Voigt perturbation theorem, see [9, Corollary III.3.16]. In this article we close the
gap and prove also a Desch-Schappacher perturbation theorem for strongly continuous and locally
equicontinuous semigroups on locally convex spaces.
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For the theory of locally convex spaces we refer to Meise, Vogt [13] or Jarchow [11]. For the theory
of semigroups on Banach spaces we refer to Engel, Nagel [9]. Equicontinuous and exponentially
equicontinuous semigroups were treated by Miyadera [14], Yosida [20], Choe [5] and recently by
Albanese, Bonet, Ricker [1, 2, 3]. Locally exponentially semigroups were studied by Kōmura [12],
Dembart [7] and recently by Albanese, Kühnemund [4].

2. Result

For the whole article let X be a locally convex space. By a C0-semigroup on X we understand a
family (T (t))t>0 of linear and continuous operators T (t) : X → X for t > 0 such that T (0) = idX ,
T (t + s) = T (t)T (s) for t, s > 0 and limt→t0 T (t)x = T (t0)x for x ∈ X and t0 > 0 holds. The
C0-semigroup (T (t))t>0 is said to be locally equicontinuous if for some or, equivalently, for all t0 > 0
the set {T (t) ; t ∈ [0, t0]} is an equicontinuous subset of the space of linear and continuous maps from
X to itself, i.e.,

∀ p ∈ Γ ∃ q ∈ Γ,M > 0 ∀ x ∈ X, t ∈ [0, t0] : p(T (t)x) 6Mq(x)

holds for some or, equivalently, for every fundamental system Γ ⊆ cs(X). If (T (t))t>0 is a locally
equicontinuous C0-semigroup, its generator is the linear operator A : D(A)→ X given by

Ax = lim
t↘0

T (t)x− x
t

for x ∈ D(A) =

{
x ∈ X ; lim

t↘0

T (t)x− x
t

exists

}
.

We refer to Kōmura [12, Section 1] and Albanese, Kühnemund [4, Section 2] for the basic properties
of A : D(A) → X and to Dembart [7, Section 3] for characterizations of those operators A which
appear as the generators of locally equicontinuous C0-semigroups; one of his results we restate later
in Theorem 3.

Theorem 1. Let A : D(A)→ X be the generator of a locally equicontinuous C0-semigroup (T (t))t>0

on a sequentially complete locally convex space X. Let X be a sequentially complete locally convex
space such that

(a) X ⊆ X is dense and the inclusion map is continuous,

(b) A generates a locally equicontinuous C0-semigroup (T (t))t>0 on X such that T (t)|X = T (t)

holds for all t > 0 and with domain D(A) = X.

Let B : X → X be a linear and continuous operator and t0 > 0 be a number such that

(c) ∀ f ∈ C([0, t0], X) :

∫ t0

0

T (t0 − t)Bf(t)ds ∈ X,

(d) ∀ p ∈ Γ ∃K ∈ (0, 1) ∀ f ∈ C([0, t0], X) : p
(∫ t0

0

T (t0 − t)Bf(t)dt
)
6 K sup

t∈[0,t0]

p(f(t)).

Then the operator C : D(C)→ X defined by

Cf = (A+B)x for x ∈ D(C) =
{
x ∈ X ; (A+B)x ∈ X

}
generates a locally equicontinuous C0-semigroup on X if and only if D(C) ⊆ X is dense.

Before we give the proof in Section 3, we state the following comments on the above results.

Remark 2. (i) In the case of Banach spaces, the prototype of a space X with the properties
assumed in Theorem 1 is the extrapolation space X−1, see Engel, Nagel [9, Section II.5]. The
latter is the natural framework for the classical perturbation theorem of Desch, Schappacher
[8], see [9, Section III.3.a]. For exponentially equicontinuous C0-semigroups (T (t))t>0 on
locally convex spaces, i.e., C0-semigroups satisfying

∀ p ∈ Γ ∃ q ∈ Γ, M > 1 ∀ t > 0, x ∈ X : p(T (t)x) 6Meωtq(x)

for some or, equivalently, for every fundamental system of seminorms Γ ⊆ cs(X), extrapola-
tion spaces have been constructed and studied by Wegner [19, Section 3].
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(ii) The strategy used in [9, Theorem III.3.1] for the Banach space proof of the Desch-Schappacher
theorem is to write down explicitly a candidate for the perturbed semigroup and then to verify
that its generator equals the perturbed generator of the initial semigroup. This strategy can
be adapted for the locally convex case under the additional assumption that (T (t))t>0 is
exponentially equicontinuous, since then Laplace transform methods are applicable. This
proof is straight forward though technical and has the disadvantage that it a priori covers
only a strictly smaller class of semigroups. However, in contrast to our proof below, this
alternative strategy would establish en passant the variation of parameters formula

S(t) = T (t) +

∫ t

0

T (t− s)BS(s)ds

for the semigroup (S(t))t>0 generated by C : D(A)→ X.

(iii) Our proof of Theorem 1 is inspired by the techniques developed by Dembart [7] who proved
the generation result which we restate in Theorem 3. Dembart used this result in order
to establish a theory on Miyadera-Voigt type perturbations for locally equicontinuous C0-
semigroups on sequentially complete spaces.

3. Proof

For the proof of Theorem 1 we need the following notation, compare [7, Section 2]. Let X be a
sequentially complete locally convex space and t0 > 0. We denote by C([0, t0], X) the corresponding
vector valued space of continuous functions. On the latter we consider the topology τ∞ of uniform
convergence given by the fundamental system Γ∞ = (p∞)p∈Γ where

p∞(f) = sup
t∈[0,t0]

p(f(t))

for p ∈ Γ and f ∈ C([0, t0], X) whenever Γ is a fundamental system for the topology of X. In addition,
we consider the topology τ1 of L1-convergence given by the fundamental system Γ1 = (p1)p∈Γ where

p1(f) =

∫ 1

0

p(f(t))dt

for p ∈ Γ and f ∈ C([0, t0], X) where again Γ is a fundamental system for the topology of X. We
put X = {f ∈ C([0, t0], X) ; f(0) = 0} and denote by X∞ resp. X1 the space X endowed with the
topology induced by (C([0, t0], X), τ∞) resp. (C([0, t0], X), τ1). The spaces (C([0, t0], X), τ∞) and
X∞ are sequentially complete. We denote by C1([0, t0], X) the space of continuously differentiable
vector valued functions and use

Df = f ′ for f ∈ D(D) = {f ∈ X ∩ C1([0, t0], X) ; f ′(0) = 0}

to denote the differentiation operator D : D(D) → X. The operator D is closed if we consider it on
the space X∞. Let A : D(A)→ X be a linear operator, D(A) ⊆ X. Then we denote by A : D(A)→ X

the operator defined via

(Af)(t) = Af(t) for f ∈ D(A) = {f ∈ X ; f([0, t0]) ⊆ D(A) and t 7→ Af(t) is continuous}.

For C : D(C)→ X as in Theorem 1 we define C : D(C)→ X analogously and get

(Cf)(t) = Af(t) +Bf(t) for f ∈ D(C),

D(C) = {f ∈ X ; ∀ t ∈ [0, t0] : Af(t) +Bf(t) ∈ X and t 7→ Af(t) +Bf(t) is continuous}.

In the sequel we will need most of the spaces and operators defined above for X also for the space X
as considered in Theorem 1. In order to distinguish the corresponding objects we will write X, A, D
etc. in the latter case. For B : X → X we define

B : X→ X via (Bf)(t) = Bf(t).
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Now we are prepared to state Dembart’s generation result for locally equicontinuous C0-semigroups,
which will be the essential tool for our proof of Theorem 1. Note that we modify the formulation of
Dembart’s result according to his comments in [7] and with respect to our purposes later on.

Theorem 3. (Dembart [7, Theorem 3.1]) Let X be a sequentially complete locally convex space and
D(A) ⊆ X a linear subspace. A linear operator A : D(A) → X is the generator of a locally equicon-
tinuous C0-semigroup if and only if

1. A is closed and densely defined,

2. For some or, equivalently, for every t0 > 0 there exists a linear operator R : X1 → X∞, called
the generalized resolvent and being continuous by (iv) below, such that

(i) R(D−A)f = f holds for all f ∈ D(D) ∩D(A),

(ii) Rf ∈ D(D) and DRf = RDf holds for all f ∈ D(D),

(iii) Rf ∈ D(A) and ARf = RAf holds for all f ∈ D(A),

(iv) for each p ∈ Γ there exist q ∈ Γ and M > 0 such that p∞(Rf) 6 Mq1(f) holds for all
f ∈ X.

The operator R is uniquely determined by the conditions (i)–(iv) and independent of t0 > 0; see [7,
p. 132] for details. If A : D(A)→ X generates the locally equicontinuous C0-semigroup (T (t))t>0 and
t0 > 0 is arbitrary, then the formula

(Rf)(t) =

∫ t

0

T (t− s)f(s)ds

holds for f ∈ X1, t ∈ [0, t0]. �

Proof of Theorem 1. We check the conditions in Theorem 3 for the operator C : D(C) → X. To
prevent confusion we denote the generalized resolvent for C by RC , whereas the generalized resolvents
for A and A will be denoted by R and R, respectively. To start with, we select t0 > 0 and B : X → X
as in Theorem 1.

1. The operator C is densely defined by our assumptions. Let (xα)α ⊆ D(C) be a net with xα → x ∈ X
and Cxα = Axα + Bxα → y ∈ X. Since A, B : X → X are continuous, we have Axα → Ax and
Bxα → Bx in X and thus Ax+Bx = y ∈ X and therefore x ∈ D(C). Consequently, C : D(C)→ X
is closed.

2. Since A : D(A) → X is a generator, we can select R as in Theorem 3. In addition, A : X → X is

also a generator, thus we also find R : X
1 → X

∞
with the corresponding properties. According to the

last part of Theorem 3 we have

(Rf)(t) =

∫ t

0

T (t− s)f(s)ds =

∫ t

0

T (t− s)f(s)ds = (Rf)(t) (1)

for f ∈ X and t ∈ [0, t0]. We define

RC : X1 → X∞ via RCf =

∞∑
n=0

(RB)nRf (2)

and check that the latter is well-defined. To start with, we show that RB : X→ X is well-defined. Let
f ∈ X. We claim that (RBf)(t) ∈ X holds for every t ∈ (0, t0] and that [0, t0]→ X, t 7→ (RBf)(t) is
continuous. We fix t ∈ (0, t0] and define

ft : [0, t0]→ X, ft(s) =

{
0 for 0 6 s 6 t0 − t,

f(s+ t− t0) for t0 − t 6 s 6 t0.
(3)

The function ft is continuous and since ft(0) = 0 holds, it belongs to X. We compute

(RBf)(t) =

∫ t

0

T (t− s)Bf(s)ds =

∫ t0

t0−t
T (t− s)Bf(s+ t− t0)ds =

∫ t0

0

T (t0 − s)Bft(s)ds (4)
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which belongs to X in view of Theorem 1(c). It remains to check the continuity. Let t, r ∈ [0, t0] and
p ∈ Γ. Then

p
(
(RBf)(t)− (RBf)(r)

)
= p
(∫ t0

0

T (t0 − s)B
(
ft(s)− fr(s)

)
ds
)
6 Kp∞(ft − fr)

holds where the equality follows from (4) and the estimate follows from Theorem 1(d). In view of
the definition of ft and fr the continuity follows by taking into account that the right shift on X∞

is strongly continuous. This establishes our claim and RB : X→ X is well-defined. We have to show
that the series in (2) converges. For this we need an appropriate estimate for p∞((RB)nRf). We
claim

∀ p ∈ Γ ∃ q ∈ Γ, M > 0, K ∈ (0, 1) ∀ g ∈ X, n ∈ N : p∞
(
(RB)nRg

)
6 KnM q1(g). (5)

Firstly, we prove

∀ p ∈ Γ ∃K ∈ (0, 1) ∀ n ∈ N, f ∈ X : p∞
(
(RB)nf

)
6 Kn p∞(f). (6)

Let p ∈ Γ be given. According to Theorem 1(d) we select K ∈ (0, 1). Now we show by induction that

[n] ∀ f ∈ X : p∞
(
(RB)nf

)
6 Kn p∞(f)

is true for every n ∈ N. For n = 0 the statement is trivial. For n > 0 we show [n] ⇒ [n + 1]. Let
f ∈ X be given. For t > 0 let ft ∈ X be defined by the formula in (3). Using (4) and the estimate in
Theorem 1(d) we get

p
(
(RBf)(t)

)
= p
(∫ t0

0

T (t0 − s)Bft(s)ds
)
6 Kp∞(f)

for every t > 0 and taking the induction hypothesis into account we get

p∞
(
(RB)n+1f

)
= p∞

(
(RB)n(RBf)

)
6 Knp∞(RBf) = Kn sup

t∈[0,t0]

p
(
(RBf)(t)

)
6 Kn+1p∞(f)

which finishes the induction and yields the condition in (6). Now we can start our proof of (5). Let
p ∈ Γ be given. Select q ∈ Γ and M > 0 as in Theorem 3.2(iv). Select K ∈ (0, 1) as in (6). Let g ∈ X

and n ∈ N be given. Then the estimates in (6), with f = Rg ∈ X, and Theorem 3.2(iv) yield

p∞
(
(RB)nRg

)
6 Knp∞(Rg) 6 KnM q1(g)

which is the estimate in (5) and thus establishes the claim. Now we turn back to the series in (2).
We fix f ∈ X and abbreviate the partial sums of the series in (2) by

Sjf =

j∑
n=0

(RB)nRf.

Using (5), we get

∀p ∈ Γ ∃ q ∈ ΓM > 0, K ∈ (0, 1) ∀ j > i : p∞(Sjf −Sif) 6
j∑

n=i+1

p∞
(
(RB)nRf

)
6Mq1(f)

j∑
n=i+1

Kn

which shows that (Sjf)j∈N ⊆ X∞ is a Cauchy sequence. Since X∞ is sequentially complete, (Sjf)j∈N
is convergent and thus RC is well-defined.

In order to complete the proof we have to verify the conditions in Theorem 3.2(i)–(iv) with A replaced
with C and R replaced with RC .
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(iv) Let p ∈ Γ be given. Select q ∈ Γ, M > 0 and K ∈ (0, 1) as in (5). Let g ∈ X be given. For N ∈ N
we have

p∞
( N∑
n=0

(RB)nRAg
)
6

N∑
n=0

p∞
(
(RB)nRAg

)
6Mq1(g)

N∑
n=0

Kn 6M
1

1−K
q1(g)

which proves condition (iv).

(i) Let f ∈ D(D) ∩D(C). Thus, (D− C)f ∈ X holds by the definitions of D(C) and D(D). We have

RC(D− C)f =

∞∑
n=0

(RB)nR(D− (A + B))f =

∞∑
n=0

(RB)nR((D−A)f −Bf)

by the definition of RC and since R|X = R holds in view of (1). We claim

RC(D− C)f =

∞∑
n=0

(RB)nR(D−A)f −
∞∑
n=0

(RB)nRBf (7)

where both series belong to X∞ and are convergent in this space—we notice that we a priori only
know that the series both belong to X. Let us start with the second series. On p. 3 we proved that
RB : X→ X is well-defined. Therefore, the second series in (1) is indeed a series in X. We denote the
corresponding partial sums by Tjf and deduce

∀ p ∈ Γ ∃K ∈ (0, 1) ∀ j > i : p∞(Tjf − Tif) 6
j∑

n=i+1

p∞
(
(RB)nf

)
6 p∞(f)

j∑
n=i+1

Kn

from (6). This shows that (Tj)j∈N is Cauchy and hence convergent in X∞. Now we observe that

R(D−A)f = R(D−A)f = f (8)

holds. The first equality is valid since D|D(D) = D and D(D) ⊆ D(D) follow from the continuity of

the inclusion map X ⊆ X. The second is the condition in Theorem 3.2(i) for the generator A. It
follows that the first series of (7) belongs to X∞ and that it there is covergent. This establishes the
claim and enables us to derive

RC(D− C)f =

∞∑
n=0

(RB)nf −
∞∑
n=1

(RB)nf = f

from (7) and (8), which consequently proves condition (i).

(ii) For 0 < h < t0, t ∈ [0, t0 − h] and f ∈ D(D) we compute∫ t

0

T (t− s)B 1

h
(f(s+ h)− f(s))ds =

1

h

(
(RBf)(t+ h)− (RBf)(t)

)
− 1

h

∫ h

0

T (t+ h− s)Bf(s)ds.

Using Theorem 1(d) and f ∈ D(D) we get that the left hand side converges as h → 0 in X to

(RBDf)(t). Again using Theorem 1(d), f ∈ D(D), in particular the fact that f(0) = f ′(0) = 0,
implies that

1

h

∫ h

0

T (t+ h− s)Bf(s)ds→ 0 in X as h→ 0.

Thus we obtain that RBf ∈ D(D) and RBDf = DRBf . Furthermore for all f ∈ D(D)

D

m∑
n=0

(RB)nRf =

m∑
n=0

(RB)nRDf

6



holds and as D is a closed operator we conclude

RCDf = DRCf

for all f ∈ D(D).

(iii) We start this last part by showing that

∀ f ∈ D(D) ∩D(C) : RCf ∈ D(C) and RCCf = CRCf (9)

holds. Let thus f ∈ D(D) ∩ D(C). We apply condition (i), which we proved already, and get that
RCCf = RCDf − f holds. By (ii), which we also already showed, we can commute RC and D in the

latter equation. By adding a zero and since D = D|X and R = R|X hold we get

RCCf = RCDf − f = DRCf −DRf + DRf − f = D(RC − R)f + DRf − f. (10)

We compute

(RC − R)f =

∞∑
n=0

(RB)nRf − Rf =

∞∑
n=1

(RB)nRAf = RB

∞∑
n=0

(RB)nRf = RBRCf (11)

and obtain from (10) that

RCCf = D(RC − R)f + DRf − f = DRBRCf + DRf − f (12)

holds. Next we claim

∀ g ∈ D(D) : Rg ∈ D(A) and DRg = ARg + g. (13)

For g ∈ D(D) and h > 0 we compute

1

h
[T (h)− I]

(
(Rg)(t)

)
=

1

h

(
(Rg)(t+ h)− (Rg)(t)

)
− 1

h

∫ h

0

T (s)g(t+ h− s)ds

and let h↘ 0. By Theorem 3.2(ii), applied for A, we get Rg ∈ D(D). Therefore, the first summand

on the left hand side converges to (DRg)(t) in X. The second summand converges in X to g(t) since
(T (t))t>0 is locally equicontinuous on X. Consequently, the limit for h ↘ 0 of the left hand side

exists in X, i.e., (Rg)(t) ∈ D(A) and t 7→ A((Rg)(t)
)

= (DRg)(t) − g(t) is continuous since DRg,

g ∈ X. This yields Rg ∈ D(A) and ARg = DRg − g which establishes (13).

Now we apply (13) to (12), for the second summand with g = f ∈ D(D) ⊆ D(D) and for the first

summand with g = BRCf . The latter belongs to D(D) since RC ∈ D(D) by (ii), which we showed
already, and since B : X → X is continuous. We obtain

RCCf = D(RC − R)f + DRf − f = DRBRCf + ARf = ARBRCf + BRCf + ARf. (14)

Finally we use (11) again to get

RCCf = ARBRCf + BRCf + ARf = A(RBRC + R)f + BRCf = ARCf + BRCf = CRCf

from (14), which establishes (9).

For the final step of the proof we need the following density statement. We consider the right shift on
the space X∞, where it defines an equicontinuous C0-semigroup with generator D : D(D) → X. We
put D := D(D) ∩D(C). We observe that D(C) as well as D(D) are invariant unter the right shift.
Consequently the same is true for D. By part 1 of this proof and [7, Proposition 2.2] it follows that
D ⊆ X∞ is dense. By [4, Proposition 7] we get that D ⊆ (D(D), τD(D)) is dense where τD(D) denotes
the graph topology given by the fundamental system of seminorms ΓD(D) = {p∞(·)+p∞(D(·)); p ∈ Γ}.
Now we are ready to prove the condition in Theorem 3.2(iii) for C and RC . Let f ∈ D(C). Due to
the last paragraph we can select a net (fα)α ⊆ D with fα → f with respect to τD(D). Since the

canonical maps (D(D), τD(D))→ X∞ → X1 are continuous, fα → f also holds in X1. By (iv), which
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we proved already, it follows that RCfα → RCf converges in X∞. From (9) it follows RCfα ∈ D(C)
and together with (ii), which we also proved already, we get

CRCfα = RCCfα = RCDfα − fα

for every α. Since the maps

(D(D), τD(D))
D−→ X∞

I−→ X1 RC−→ X∞

are all continuous, we conclude that CRCfα → g ∈ X converges in the topology of X∞. By [7,
Proposition 2.3] the operator C is closed with respect to the topology of X∞ and consequently RCf ∈
D(C) and

CRCfα = RCCfα

is valid. �

4. Example

The following example is a typical application of Desch-Schappacher perturbation results to boundary
perturbations [9, Example III.3.5] but in this case considered on the Fréchet space Lploc(−∞, b] for
b > 0.

Example 4. Let b > 0, 1 < p < ∞, X = Lploc(−∞, b] with fundamental system Γ = {pn ; n ∈ N}
where pn(x) = (

∫ b
−n |x(t)|pdt)1/p for n ∈ N and x ∈ X. We define the operator C : D(C)→ X as the

derivative

Cx = x′ for x ∈ D(C) =
{
x ∈W 1,p

loc (−∞, b] ; x(b) = Φ(x)
}

where Φ ∈ X ′. In particular, there exists a number K > 0 s.th. |Φ(x)| 6 Kp1(x) holds for all x ∈ X.
Now we show that the operator C generates an exponentially equicontinuous C0-semigroup on X.
Therefore we consider C as a perturbation of the operator

Ax = x′ for x ∈ D(A) =
{
x ∈W 1,p

loc (−∞, b] ; x(b) = 0
}
.

First we show that A is a generator of the left shift semigroup (T (t))t>0 defined by (T (t)x)(s) = x(s+t)
for t + s 6 b and (T (t)x)(s) = 0 for s + t > b. Clearly (T (t))t>0 satisfies the evolution property.
We know that (Lp[−n, b], pn) is a Banach space for every n ∈ N and the restriction of (T (t))t>0 to
Lp[−n, b] is a C0-semigroup with generator A|Lp[−n,b] and so (T (t))t>0 is strongly continuous at zero.
Furthermore we have

pn(T (t)x)p =

∫ b−t

−n
|x(t+ s)|pds+

∫ b

b−t
|0|pds =

∫ b

−n+t

|x(s)|pds 6
∫ b

−n
|x(s)|pds = pn(x)p

for all n ∈ N, t > 0 and x ∈ X. Therefore, (T (t))t>0 is even equicontinuous.

Now we define the perturbation B : X → X−1 via Bx = −Φ(x)A−11 where 1 = 1(−∞,b] denotes the
characteristic function of (−∞, b] and X−1 denotes the extrapolation space associated with X and
(T (t))t>0, see [19, Section 3]. We get

(A−1 +B)x = A−1x− Φ(x)A−11 = A−1(x− Φ(x)1) = Cx

for every x ∈ X and thus (A−1 + B)|X = C where A−1 is the generator of the extended semigroup
(T−1)t>0 on X−1.

If we show that for the perturbation B and some t0 > 0 the conditions in Theorem 1 are fulfilled, it
follows that C is a generator of an exponentially equicontinuous C0-semigroup.

Let f ∈ Lp([0, b], X). Then we have∫ b

0

T−1(b− s)Bf(s)ds =

∫ b

0

T−1(b− s)(−1)Φ(f(s))A−11ds = −A−1

∫ b

0

T (b− s)Φ(f(s))1ds
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which belongs to X if and only if∫ b

0

T (b− s)(Φ(f(s))1ds ∈ D(A).

We define the function

g(·) =

∫ b

0

T (b− s)(Φ(f(s))1ds =

∫ b

0

(Φ(f(s))1(·+ b− s)ds

and in view of the definition of the characteristic function we see

g(t) =

{∫ b
t

Φ(f(s))ds for t ∈ [0, b],∫ b
0

Φ(f(s))ds for t ∈ (−∞, 0).
(15)

As Φ ∈ X ′ and f ∈ Lp([0, b], X) it follows Φ ◦ f ∈ Lp([0, b]) and therefore g ∈ W 1,p((−∞, b]) with
g(b) = 0. This shows g ∈ D(A).

Now let f ∈ C([0, t0], X) for some t0 ∈ (0, b). We define f̃ ∈ Lp([0, b], X) via

f̃(s) =

{
0 for 0 6 s 6 b− t0,

f(s+ t0 − b) for b− t0 6 s 6 b.

Then we get
∫ t0

0
T−1(t0 − s)Bf(s)ds =

∫ b
0
T−1(b− s)Bf̃(s)ds ∈ X and we define the function

h(t) =

∫ t0

0

T−1(t0 − s)Bf(s)ds =

∫ b

0

T−1(b− s)Bf̃(s)ds.

From (15) we see

h(t) = −A

{ ∫ b
t

Φ(f̃(s))ds for t ∈ [0, b]∫ b
0

Φ(f̃(s))ds for t ∈ (−∞, 0)

}
=

{
Φ(f(t0 − b+ t)) for t ∈ [b− t0, b]

0 for t ∈ (−∞, b− t0)

}
.

It follows

pn(h)p =

∫ b

b−t0
|Φ(f(t0 − b+ t))|pdt 6

∫ b

b−t0
Kpp1(f(t0 − b+ t))pdt 6 t0K

pp∞1 (f)p

and thus

pn

(∫ b

0

T−1(b− s)Bf(s)ds
)

= pn(h) 6 t1/p0 Kp∞1 (f) ≤ t1/p0 Kp∞n (f).

Finally it is enough to select at the beginning t0 > 0 such that t
1/p
0 K ∈ (0, 1) holds.
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4. A. A. Albanese and F. Kühnemund, Trotter-Kato approximation theorems for locally equicontinuous semigroups,

Riv. Mat. Univ. Parma (7) 1 (2002), 19–53.

5. Y. H. Choe, C0-semigroups on a locally convex space, J. Math. Anal. Appl. 106 (1985), no. 2, 293–320.
6. E. B. Davies, One-parameter semigroups, vol. 15, Academic Press, Inc., London-New York, 1980.

7. B. Dembart, On the theory of semigroups of operators on locally convex spaces, J. Functional Analysis 16 (1974),
123–160.

8. W. Desch and W. Schappacher, On relatively bounded perturbations of linear C0-semigroups, Ann. Scuola Norm.

Sup. Pisa Cl. Sci. (4) 11 (1984), no. 2, 327–341.

9



9. K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, New York,

2000.

10. I. Farago and A. Havasiy, Operator splittings and their applications, Nova Science Publishers, Inc., New York,
1981.

11. H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
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18. J. Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann. 229 (1977), no. 2, 163–171.

19. S.-A. Wegner, Universal extrapolation spaces for C0-semigroups, to appear, DOI: 10.1007/s11565-013-0189-5, 2013.

20. K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1995, Reprint of the sixth (1980) edition.

10


