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Abstract

We provide a detailed analysis of the classical and quantized theory of a multiplet of inhomogeneous
Klein–Gordon fields, which couple to the spacetime metric and also to an external source term; thus the
solutions form an affine space. Following the formulation of affine field theories in terms of presymplectic
vector spaces as proposed in [Annales Henri Poincaré 15, 171 (2014)], we determine the relative Cauchy
evolution induced by metric as well as source term perturbations and compute the automorphism group
of natural isomorphisms of the presymplectic vector space functor. Two pathological features of this
formulation are revealed: the automorphism group contains elements that cannot be interpreted as global
gauge transformations of the theory; moreover, the presymplectic formulation does not respect a natural
requirement on composition of subsystems. We therefore propose a systematic strategy to improve the
original description of affine field theories at the classical and quantized level, first passing to a Poisson
algebra description in the classical case. The idea is to consider state spaces on the classical and quantum
algebras suggested by the physics of the theory (in the classical case, we use the affine solution space). The
state spaces are not separating for the algebras, indicating a redundancy in the description. Removing this
redundancy by a quotient, a functorial theory is obtained that is free of the above mentioned pathologies.
These techniques are applicable to general affine field theories and Abelian gauge theories. The resulting
quantized theory is shown to be dynamically local.

Keywords: locally covariant quantum field theory, relative Cauchy evolution, quantum field theory on
curved spacetimes, affine quantum field theory

MSC 2010: 81T20, 81T05

1 Introduction

Our understanding of quantum field theories on Lorentzian manifolds has made tremendous developments
since the principle of general local covariance was introduced in [BFV03]. Its underlying physical idea,
which roughly speaking says that any reasonable quantum field theory should be defined coherently on all
spacetimes instead of focusing on formulations in individual spacetimes, is expressed mathematically in
terms of category theory. The basic structure of interest is that of a covariant functor from a category of
spacetimes (possibly with extra data such as fibre bundles) to a category of algebras, which is supposed to
describe the association of observable algebras to spacetimes. The benefits from this new perspective on
quantum field theory are substantial: On the one hand, many structural problems have been addressed and
solved, for example the generalization of the famous spin-statistics theorem to curved spacetimes [Ver01]
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and the perturbative renormalization of quantum field theories, see e.g. [BDF09, HW01, HW02] for general
developments and [FR13, BFR13] for perturbative gauge and gravity theories. On the other hand, the locally
covariant framework also has had an impact on applications of quantum field theory to e.g. quantum energy
inequalities [FP06, Few07] and cosmology [Ver12, PS13a, PS13b].

Another new and interesting aspect arising in the locally covariant framework is that internal symmetries
of (quantum) field theories can be promoted to the functorial level. It has been proposed recently by one
of us [Few13] that the automorphism group (of natural isomorphisms) of a locally covariant quantum field
theory functor is a suitable generalization to curved spacetimes of the global gauge group in Minkowski space
algebraic quantum field theory. Besides clarifying general properties of such automorphism groups, it has
been shown in [Few13] that this concept indeed captures the usual orthogonal symmetries of the quantum
theory of a multiplet of Klein–Gordon fields with equal masses.

In this paper we investigate how some of the above features are modified when the basic category is
enriched from a category of spacetimes to include additional external sources. This particularly influences the
relative Cauchy evolution [BFV03], which measures sensitivity of a theory to perturbations of the background
structure, and plays a key role in the classification of the automorphism group [Few13] and also in defining
the notion of a dynamically local theory [FV12a]. External sources provide additional degrees of freedom for
the relative Cauchy evolution to exploit, leading to a richer framework.

Our investigation is conducted in the context of an example, namely the theory of a multiplet of inhomo-
geneous Klein–Gordon fields interacting with an external source, with underlying Lagrangian

L =
√
|g|
(

1

2
〈∇aφ,∇aφ〉 −

1

2
m2 〈φ, φ〉 − λ 〈J , φ〉

)
, (1.1)

where J ∈ C∞(M,Rp) is a classical and non-dynamical source term. The interest in this model comes from
two directions. Physically, it represents an approximation to a model in which φ is coupled both to gravity
and to other fields, but with the simplifying assumption that not only the metric but also the other fields
have been ‘frozen’ as background structure represented by the external source; this would be an appropriate
approximation in situations where the back-reaction of φ on both the metric and other fields can be neglected.
Mathematically, interest arises because, in contrast to the homogeneous theory with J = 0, the equation of
motion corresponding to this Lagrangian is not linear, but affine, and as a consequence the space of solutions
is not a vector space, but rather an affine space. On the one hand, replacing linear structures by affine ones
leads to the simplest ‘non-linear’ models of quantum field theories, which still can be treated exactly without
the need for perturbative expansions [BDS12]. On the other hand, these affine structures are unavoidable in
gauge theories [BDS13, BDHS13] as the space of connections on a principal bundle is intrinsically an affine
space. Hence, inhomogeneous theories such as (1.1) can be regarded as toy-models for gauge theories, which
reflect parts of their geometric structure. For these reasons, a general study of affine field theories was recently
undertaken in [BDS12].

Formulating the (classical and quantum) inhomogeneous Klein–Gordon theory according to [BDS12],
however, we have found that the resulting functors have two serious pathologies. First, their automorphism
groups do not reflect the expected symmetries of this model: From the Lagrangian (1.1) one expects that
the usual orthogonal symmetries are broken due to the presence of the (arbitrary) source terms J , so that
only a translation symmetry φ 7→ φ + µ, µ ∈ Rp, remains in the massless case m = 0. By contrast, the
functor constructed in [BDS12] always has a Z2 (sub)group of automorphisms, which has no corresponding
interpretation at the level of the Lagrangian. Second, the functors of [BDS12] provide a description of a
multiplet of p (mutually noninteracting) fields that is inequivalent to what it would provide for the composition
of p copies of a single field. These defects convince us that there is a flaw in this earlier description of affine
field theories and that the corresponding functor has to be modified.

A second theme of this paper, then, is to propose a systematic way to improve the construction of the
classical and quantum theory of the inhomogeneous multiplet of Klein–Gordon fields. The essential ingredient
is the use of suitable state spaces (in the classical theory given by the solution space) and the characterization
of the vanishing ideals induced by these state spaces in the abstract algebras considered in [BDS12]. These
ideals reflect redundancies in that description, and we therefore quotient by the vanishing ideals to obtain
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improved functors. Our construction is free of the pathologies of [BDS12]: the functors have the expected
automorphism groups and satisfy a natural composition property with respect to the size of the multiplet. This
provides the foundation for a broader discussion of the properties of these models. It is worth emphasizing
that our improved classical theory is not formulated in terms of presymplectic vector spaces, but in terms of
Poisson algebras.1 Similarly, the improved quantum theory is not given by CCR-algebras, but by quotients of
such algebras. Finally, we would like to mention that the techniques developed in this work are important for
and can be applied to generic affine field theories [BDS12] and, with slight modifications due to the presence
of gauge invariance, also to Abelian gauge theories [BDS13, BDHS13].

The outline of this paper is as follows: In Section 2 we shall review briefly the techniques required
for studying affine field theories [BDS12], focusing for simplicity on the explicit example given by the
inhomogeneous multiplet of Klein–Gordon fields. The relative Cauchy evolution for this model is discussed
in detail in Section 3; as a new feature compared to earlier studies, we study perturbations of both the metric
g and the external source J . The derivative of the relative Cauchy evolution along metric perturbations is
calculated and it is shown how to identify it with the stress-energy tensor corresponding to the action given
by (1.1). Furthermore, the derivative of the relative Cauchy evolution along external source perturbations
is determined and identified with the J-variation of the action given by (1.1). In Section 4 we compute the
automorphism group of the functor describing the presymplectic vector spaces of the classical theory of a
multiplet of inhomogeneous Klein–Gordon fields. We find that all endomorphisms of this functor (embeddings
of the theory as a subtheory of itself) are in fact automorphisms (global gauge transformations), and that the
automorphism group is isomorphic to Z2 in the massive case and to Z2 × Rp for m = 0. The nontrivial Z2

automorphism does not describe a symmetry of the Lagrangian (1.1), suggesting that inhomogeneous field
theories are not appropriately described by the presymplectic vector space functor developed in [BDS12].
This suggestion is strengthened in Section 5, where we study a composition property: Any pair (M ,J)
consisting of a spacetime M with source term J ∈ C∞(M,Rp) may be split in a functorial way into two
pairs

(
(M ,Jq), (M ,Jp−q)

)
, where the source J is split into the first q and last p− q components. Treating

the two pairs individually by the presymplectic vector space functor of [BDS12], we get a separate description
of the first q and last p − q components of the inhomogeneous Klein–Gordon field. We observe that the
direct sum of these two presymplectic vector spaces is not isomorphic to the original presymplectic vector
space, and as a consequence the theory obtained in the direct way is not naturally isomorphic to the one
obtained after splitting. As the individual components of the inhomogeneous Klein–Gordon field have no
mutual interactions, this behavior is pathological and strengthens our claim that the presymplectic vector
space functor is not a satisfactory description of the inhomogeneous theory of a multiplet of Klein–Gordon
fields.

In Section 6 we show how to resolve these issues by passing from the category of presymplectic vector
spaces to that of Poisson algebras. The presymplectic vector space of [BDS12] has a canonical corresponding
(abstract) Poisson algebra which can be represented naturally as an algebra of functionals on the affine space
of solutions to the inhomogeneous Klein–Gordon equation. In this representation there arises a kernel, which
has no corresponding analog at the level of the presymplectic vector spaces. We show that these kernels are
natural Poisson ideals and hence we can modify our Poisson algebra functor by quotienting them out. The
resulting improved Poisson algebra functor is shown to have the expected automorphism group (i.e. the trivial
group for m 6= 0 and Rp for m = 0) and to satisfy the composition property. Hence, it is a better description
of the classical theory of a multiplet of inhomogeneous Klein–Gordon fields. We extend these constructions
to the quantum level in Section 7. The main idea is to characterize suitable state spaces for the CCR-algebras
obtained by canonical quantization of our presymplectic vector spaces, which reflect the fact that the latter
describe affine functionals on the solution space of the inhomogeneous theory. Quotienting by the intersection
of the kernels of corresponding GNS representations, we obtain our improved (functorial) quantized theory,
which has the correct automorphism group and satisfies the composition property. Furthermore, we prove that
our improved theory satisfies the dynamical locality property introduced in [FV12a, FV12b]. The somewhat
special case of the massless multiplet of inhomogeneous Klein–Gordon fields and its interpretation as a rather
simple kind of gauge theory is discussed in Section 8. In Section 9 we add some concluding remarks, which

1In Appendix B, however, we explain a formulation using pointed presymplectic spaces.
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should show that the techniques developed in this paper can be readily applied to generic affine field theories
in the sense of [BDS12] and also to Abelian gauge theories [BDS13, BDHS13]. Furthermore, we compare
our improved algebras with the algebras for inhomogeneous theories constructed (in a slightly ad-hoc way)
by Hollands and Wald [HW05] and show that they are naturally isomorphic. Appendix A includes details
on how to take the derivative of the relative Cauchy evolution and the stress-energy tensor. In Appendix
B we give an alternative solution to the problems arising with the presymplectic vector space functor by
introducing a category of pointed presymplectic spaces. Finally, Appendix C treats the quantization of our
model by deformation methods. It turns out that our improved classical Poisson algebra is amenable to direct
deformation quantization; alternatively, one may also apply an algebraic version of Fedosov’s method – both
lead to the improved quantum theory discussed in the text. We comment on the relationship between our
approach and that of the recent paper [SDH12].

2 Preliminaries

2.1 Basics and notations

The model we study throughout this work is given by a multiplet of p ∈ N real scalar fields (with the same
mass), which are minimally coupled to the Lorentzian metric and in addition coupled to an external source.
We shall exclusively work in a category theoretical setting, which is an extension of the framework of locally
covariant quantum field theory developed in [BFV03], see also [FV12a]. The basic category entering our
construction is given by the following

Definition 2.1. The category LocSrcp consists of the following objects and morphisms:

• The objects in LocSrcp are pairs (M ,J), where M = (M, o, g, t) is any oriented and time-oriented
globally hyperbolic Lorentzian manifold (of signature (+,−, · · · ,−) and with finitely many connected
components) and J ∈ C∞(M,Rp).

• The morphisms f : (M1,J1)→ (M2,J2) in LocSrcp are orientation and time-orientation preserving
isometric embeddings f : M1 →M2, such that f [M1] ⊆M2 is causally compatible and open and such
that f∗(J2) = J1, where f∗ denotes the pull-back.

Any morphism whose image contains a Cauchy surface of the codomain will be called a Cauchy morphism;
any functor from LocSrcp to some other category is said to obey the time-slice axiom if it maps every Cauchy
morphism to an isomorphism.

The configuration space of a multiplet of p ∈ N real scalar fields is given by the following contravariant
functor C∞p : LocSrcp → Vec to the category of real vector spaces: To any object (M ,J) in LocSrcp we
associate C∞p (M ,J) := C∞(M,Rp) and to any morphism f : (M1,J1) → (M2,J2) in LocSrcp we
associate the pull-back C∞p (f) := f∗ : C∞p (M2,J2)→ C∞p (M1,J1).

We model the equations of motion for our theory, given by inhomogeneous Klein–Gordon equations, by a
certain natural transformation. As a first step, remember that the homogeneous Klein–Gordon equation is
described by the natural transformation KG = {KGM} : C∞p ⇒ C∞p given by the Klein–Gordon operators

KGM : C∞p (M ,J)→ C∞p (M ,J) , φ 7→ KGM (φ) = �M (φ) +m2φ . (2.1)

Here �M is the d’Alembert operator corresponding to M and m ≥ 0 is a fixed mass. In order to couple the
theory to the sources J , which are part of the data of the category LocSrcp, we have to relax the condition
that morphisms in Vec are linear. Let us therefore introduce the category Aff of affine spaces over real vector
spaces with affine maps as morphisms and the obvious forgetful functor Forget : Vec→ Aff. We compose
C∞p with the functor Forget and obtain as result a contravariant functor A∞p := Forget ◦C∞p : LocSrcp → Aff.
The inhomogeneous Klein–Gordon operators are then described by the natural transformation P = {P(M ,J)} :
A∞p ⇒ A∞p given by

P(M ,J) : A∞p (M ,J)→ A∞p (M ,J) , φ 7→ P(M ,J)(φ) = �M (φ) +m2φ+ J . (2.2)
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The solution spaces for these equations can be given a functorial form. Note that we do not assume that the
solutions have spacelike compact support (there is no assumption on the support of J ).

Definition 2.2. The contravariant functor Solp : LocSrcp → Aff is defined as follows: To any object (M ,J)
in LocSrcp it associates the solution space

Solp(M ,J) := {φ ∈ C∞(M,Rp) : P(M ,J)(φ) = KGM (φ) + J = 0} , (2.3)

which is an affine space over the vector space Sollinp (M) := {φ ∈ C∞(M,Rp) : KGM (φ) = 0}. To any
morphism f : (M1,J1)→ (M2,J2) in LocSrcp, Solp associates the Aff-morphism given by the pull-back
Solp(f) := f∗ : Solp(M2,J2)→ Solp(M1,J1).

2.2 The presymplectic vector space functor

We follow the prescription of [BDS12] in order to construct a covariant functor PSp : LocSrcp → PreSymp
associating presymplectic vector spaces to objects in LocSrcp, whose role is to label certain affine functionals
on Solp(M ,J), i.e. observables of the theory.2 Here PreSymp denotes the category of real presymplectic
vector spaces, with all morphisms being assumed to be injective. The aim is to have sufficiently many
observables to separate the solutions, while also removing redundancy by identifying observables that vanish
on all solutions. Accordingly, to any object (M ,J) in LocSrcp we associate the object PSp(M ,J) in
PreSymp given by the following construction: As a vector space,

PSp(M ,J) :=
(
C∞0 (M,Rp)⊕ R

)
/P∗(M ,J)[C

∞
0 (M,Rp)] , (2.4)

where, for all h ∈ C∞0 (M,Rp),

P∗(M ,J)(h) =

(
KGM (h),

∫
M
〈J , h〉 volM

)
∈ C∞0 (M,Rp)⊕ R . (2.5)

(One may also understand this construction as follows: PSp(M ,J) is (isomorphic to) the vector space

of compactly supported sections of the vector dual bundle of our configuration bundle M × Rp pr1→ M
(in the category of affine bundles) modulo two quotients, which identify those elements corresponding to
functionals which act trivial on all solutions. This viewpoint, which also leads naturally to the definitions of
the presymplectic structure and morphisms given below, is spelled out in more detail in [BDS12].)

The presymplectic structure in PSp(M ,J) is defined by, for all [(ϕ, α)], [(ψ, β)] ∈ PSp(M ,J),

σ(M ,J)

(
[(ϕ, α)], [(ψ, β)]

)
:=

∫
M
〈ϕ,EM (ψ)〉 volM , (2.6)

where EM = E−M − E+
M is the advanced-minus-retarded Green’s operator for KGM , and the Green’s

operators obey supp(E±M (ϕ)) ⊆ J±M (supp(ϕ)).

To any morphism f : (M1,J1) → (M2,J2) in LocSrcp the functor PSp associates the morphism
PSp(f) : PSp(M1,J1)→ PSp(M2,J2) in PreSymp that is canonically induced by the push-forward,

PSp(f)
(
[(ϕ, α)]

)
:= [(f∗(ϕ), α)] , (2.7)

for any [(ϕ, α)] ∈ PSp(M1,J1), which is well-defined because(
f∗
(
KGM1(h)

)
,

∫
M1

〈J1, h〉 volM1

)
= P∗(M2,J2)

(
f∗(h)

)
. (2.8)

2 In [BDS12] this functor was denoted by PhSp and it was called the “phase space functor”. We avoid this notation in our present
work, since the presymplectic vector spaces obtained by PhSp are just labeling spaces for functionals and not what one typically
calls the phase space (i.e. the space of initial data or the space of solutions).
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As mentioned, the role of the covariant functor PSp is to label affine functionals on the contravariant functor
Solp. This manifests itself in a natural dual pairing: For each object (M ,J) in LocSrcp the evaluation map

〈〈 · , · 〉〉(M ,J) : PSp(M ,J)×Solp(M ,J)→ R ,
(
[(ϕ, α)], φ

)
7→
(∫

M
〈ϕ, φ〉 volM

)
+ α (2.9)

is well-defined and linear in the left and affine in the right entry. Naturality means that the following diagram
commutes for any morphism f : (M1,J1)→ (M2,J2) in LocSrcp

PSp(M1,J1)×Solp(M2,J2)

PSp(f)×idSolp(M2,J2)

��

idPSp(M1,J1)
×Solp(f)

// PSp(M1,J1)×Solp(M1,J1)

〈〈 · , · 〉〉(M1,J1)

��

PSp(M2,J2)×Solp(M2,J2)
〈〈 · , · 〉〉(M2,J2) // R

(2.10)

Furthermore, the presymplectic structure in PSp(M ,J) coincides precisely with the Peierls bracket [Pei52]
for the theory (1.1), on regarding elements of PSp(M ,J) as observables in this way.

We summarize the main properties of the covariant functor PSp defined by (2.4), (2.6) and (2.7), which
follow immediately from the general treatment of affine field theories in [BDS12].

Proposition 2.3. a) Let (M ,J) be any object in LocSrcp. Then the null space Np(M ,J) of the presym-
plectic structure in PSp(M ,J) is isomorphic to R.

b) The null space is functorial, i.e. Np : LocSrcp → Vec is a covariant functor.

c) The covariant functor PSp : LocSrcp → PreSymp satisfies the causality property and the time-slice
axiom.

Proof. The proof of a) follows from [BDS12, Corollary 4.5.] and b) follows from [BDS12, Lemma 7.3.].
Item c) is a consequence of [BDS12, Theorem 5.5. and Theorem 5.6.].

We note that item c) of the proposition above means that PSp is a locally covariant classical field theory.
Due to the nontrivial null space of the presymplectic structure (cf. item a)) this theory has distinct features
which are not present in the homogeneous Klein–Gordon theory, where the null space is trivial.

2.3 Quantization

The theory PSp : LocSrcp → PreSymp may be quantized by composing it with the canonical commutation
relation (CCR) functor (either in Weyl or polynomial form). Since these quantization functors preserve
locality, causality and the time-slice axiom, we obtain a locally covariant quantum field theory in the sense
of [BFV03, FV12a], with the small difference that our underlying geometric category is enhanced from Loc
to LocSrcp. For more details on the Weyl quantization functors for presymplectic vector spaces (and more
general also presymplectic Abelian groups) we refer to the Appendix of [BDHS13]. The quantized theory of
a multiplet of p ∈ N inhomogeneous Klein–Gordon fields is studied in detail in Section 7.

3 Relative Cauchy evolution of the functor PSp

Relative Cauchy evolution encodes the sensitivity of a theory to variations in the background structures; in this
it closely resembles the action. Apart from its intrinsic interest, understanding the relative Cauchy evolution is
also an integral step in characterizing the automorphism groups of our functors in Section 4. We base our
analysis on the refined construction given in [FV12a], which we now review and adapt to our present setting.

Given any object (M ,J) in LocSrcp, we can consider its perturbation by elements (h, j) ∈ Γ∞0 (T ∗M ∨
T ∗M)× C∞0 (M,Rp), where Γ∞0 (T ∗M ∨ T ∗M) denotes the vector space of compactly supported sections
of the symmetric tensor product of the cotangent bundle (i.e. symmetric tensor fields). Explicitly, given
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(h, j) ∈ Γ∞0 (T ∗M ∨ T ∗M)× C∞0 (M,Rp) such that g + h is time-orientable, we define (M [h],J [j]) :=(
(M, o, g + h, th),J + j

)
, where th is the unique time-orientation for g + h, such that th = t outside the

support of h. If (M [h],J [j]) is an object in LocSrcp, i.e. if M [h] is globally hyperbolic, we say that (h, j)
is a globally hyperbolic perturbation and write (h, j) ∈ H(M ,J). Evidently H(M ,J) contains an open
neighborhood of {0} × C∞0 (M,Rp) in the usual test-section topology.

For any object (M ,J) in LocSrcp and any (h, j) ∈ H(M ,J) we define the sets

M± := M \ J∓M
(
supp(h) ∪ supp(j)

)
, (3.1)

which are causally compatible, open and globally hyperbolic subsets of M and M [h]. We define M±[h, j] :=
M |M± = M [h]|M± and J±[h, j] := J |M± = (J + j)|M± . Notice that (M±[h, j],J±[h, j]) are objects
in LocSrcp and further that the canonical inclusions of underlying manifolds yield Cauchy morphisms

i±(M ,J)[h, j] :
(
M±[h, j],J±[h, j]

)
→
(
M ,J

)
, (3.2a)

j±(M ,J)[h, j] :
(
M±[h, j],J±[h, j]

)
→
(
M [h],J [j]

)
. (3.2b)

Since, by Proposition 2.3, PSp : LocSrcp → PreSymp satisfies the time-slice axiom, we can construct
isomorphisms τ±(M ,J)[h, j] : PSp(M ,J)→ PSp(M [h],J [j]) in PreSymp by

τ±(M ,J)[h, j] := PSp(j
±
(M ,J)[h, j]) ◦

(
PSp(i

±
(M ,J)[h, j])

)−1
. (3.3)

The relative Cauchy evolution of PSp induced by (h, j) ∈ H(M ,J) is defined as the automorphism

rce
(PSp)

(M ,J)[h, j] :=
(
τ−(M ,J)[h, j]

)−1 ◦ τ+
(M ,J)[h, j] ∈ Aut(PSp(M ,J)) , (3.4)

and may be computed as follows. Owing to the time-slice axiom, any element in PSp(M ,J) may be written
in the form3 [(ϕ, α)]

(M,J)
with ϕ supported in M+, whereupon

τ+
(M ,J)[h, j]([(ϕ, α)]

(M,J)
) = [(ϕ, α)]

(M [h],J[j])
. (3.5)

In turn, given a representative (ϕ′, α′) ∈ [(ϕ, α)]
(M [h],J[j])

so that ϕ′ has support in M−, the relative Cauchy
evolution of [(ϕ, α)]

(M,J)
is

rce
(PSp)

(M ,J)[h, j]
(
[(ϕ, α)]

(M,J)

)
=
(
τ−(M ,J)[h, j]

)−1
([(ϕ, α)]

(M [h],J[j])
) = [(ϕ′, α′)]

(M,J)
. (3.6)

Thus it remains to find a suitable representative (ϕ′, α′). By a standard argument, see e.g. [FV12b, Lemma
3.1.], we can find a smooth function χ ∈ C∞(M), such that ϕ′ = ϕ−KGM [h]

(
χE−M [h](ϕ)

)
has support

in M− and such that χE−M [h](ϕ) has compact support. Explicitly, we take any two Cauchy surfaces Σ± in
M−[h, j] such that Σ+ ∩ Σ− = ∅, Σ+ is in the future of Σ− and supp(ϕ) ∪ supp(h) ∪ supp(j) is in the
future of Σ+. Any χ such that χ|J+

M [h]
(Σ+) ≡ 1 and χ|J−

M [h]
(Σ−) ≡ 0 then leads by the formula above to a ϕ′

with the desired properties. Using (2.5) and now dropping the labels on equivalence classes (which from now
on are all taken with respect to (M ,J)) we obtain for the relative Cauchy evolution

rce
(PSp)

(M ,J)[h, j]
(
[(ϕ, α)]

)
=
[(
ϕ−KGM [h]

(
χE−M [h](ϕ)

)
, α−

∫
M

〈
J + j, χE−M [h](ϕ)

〉
volM [h]

)]
.

(3.7)

As χE−M [h](ϕ) is compactly supported, we may use the equivalence relation with respect to (M ,J) to obtain(
rce

(PSp)

(M ,J)[h, j]− idPSp(M ,J)

)(
[(ϕ, α)]

)
=
[(

(KGM −KGM [h])
(
χE−M [h](ϕ)

)
,

∫
M

〈
(1− ρh)J − ρh j, χE−M [h](ϕ)

〉
volM

)]
, (3.8)

3For clarity, in this discussion we shall indicate the LocSrcp object with respect to which the equivalence relation is understood.
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in which we have also written ρh ∈ C∞0 (M) for the unique function such that volM [h] = ρh volM , explicitly
ρh =

√
|g + h|/

√
|g|. Noting that χ = 1 and E+

M [h](ϕ) = 0 on supp(j) ∪ supp(h), we may replace both
occurrences of χE−M [h](ϕ) by EM [h](ϕ), obtaining

(
rce

(PSp)

(M ,J)[h, j]− idPSp(M ,J)

)(
[(ϕ, α)]

)
=
[(

(KGM−KGM [h])
(
EM [h](ϕ)

)
,

∫
M

( 〈
−j,EM [h](ϕ)

〉
+
〈
(1− ρh)(J + j),EM [h](ϕ)

〉 )
volM

)]
,

(3.9)

after a further slight rearrangement. Note that (3.9) applies only for representatives where ϕ is supported in
M+. In this form, it is easy to see what the functional derivative of the relative Cauchy evolution with respect
to h and j ought to be, simply by expanding to first order in these quantities. This procedure gives

d

ds
rce

(PSp)

(M ,J)[sh, sj]
(
[(ϕ, α)]

)∣∣∣∣
s=0

=: −
(
T(M ,J)[h] + J(M ,J)[j]

) (
[(ϕ, α)]

)
, (3.10)

where

T(M ,J)[h]
(
[(ϕ, α)]

)
=
[(

KG′M [h]

(
EM (ϕ)

)
,

∫
M

1

2
gab hab 〈J ,EM (ϕ)〉 volM

)]
, (3.11a)

J(M ,J)[j]
(
[(ϕ, α)]

)
=
[(

0,

∫
M
〈j,EM (ϕ)〉 volM

)]
, (3.11b)

and KG′M [h] = d
dsKGM [sh]

∣∣
s=0

.4 Formulae (3.11a) and (3.11b) hold for arbitrary representatives (ϕ, α).
Note that elements in PSp(M ,J) which are of the form [(0, α)], α ∈ R, are left unchanged under the
relative Cauchy evolution. In Appendix A, we shall show how (3.10) holds rigorously in the weak-∗ topology
induced by the pairing (2.9). Moreover, we obtain the formula

〈〈
T(M ,J)[h]

(
[(ϕ, α)]

)
, φ
〉〉

(M ,J)
=

1

2

d

ds

∫
M
hab T

ab
(M ,J)[φ+ sEM (ϕ)] volM

∣∣∣∣
s=0

, (3.12)

where the stress-energy tensor is5

T ab(M ,J)[φ] := − 2√
|g|

δS

δgab(x)
=
〈
∇aφ,∇bφ

〉
− 1

2
gab 〈∇cφ,∇cφ〉+

1

2
m2gab 〈φ, φ〉+ gab 〈J , φ〉 ,

(3.13)

and S is the classical action obtained from the Lagrangian (1.1) (with λ = 1). Similarly, it is clear from
(3.11b) that

〈〈
J(M ,J)[j]

(
[(ϕ, α)]

)
, φ
〉〉

(M ,J)
=

d

ds

∫
M
〈j, φ+ sEM (ϕ)〉 volM

∣∣∣∣
s=0

. (3.14)

These formulae establish a close link between the relative Cauchy evolution and the action; indeed,

d

ds

〈〈
rce

(PSp)

(M ,J)[sh, sj]
(
[(ϕ, α)]

)
, φ
〉〉

(M ,J)

∣∣∣∣
s=0

=
δ2S

δφδg
(EM (ϕ)⊗ h) +

δ2S

δφδJ
(EM (ϕ)⊗ j) , (3.15)

where the functional derivatives are evaluated at φ ∈ Solp(M ,J), and on the background (M ,J), and we
differentiate with respect to the covariant metric tensor.

4Note that the derivative of the relative Cauchy evolution involves minus the derivative of the Klein–Gordon operator. The BFV
paper [BFV03] contains an error [or unconventional terminology] on p.61, where an advanced solution is given support in the causal
future of the source, leading to the opposite overall sign in the analogous expression for the derivative on p.62 and hence in their
Theorem 4.3.

5The minus sign before the functional derivative appears because we differentiate with respect to the covariant form of the metric.
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At this point the following remark is in order: The stress-energy tensor (3.13) is not covariantly conserved
for generic (M ,J) and generic solutions φ of the inhomogeneous Klein–Gordon equation, since

∇aT ab(M ,J)[φ] =
〈
∇bJ , φ

〉
. (3.16)

Modifying T ab(M ,J) by adding a constant functional, which would not change the derivative of the relative
Cauchy evolution given in (3.12), does not change this fact. Repeating the arguments given in [BFV03, §4],
the non-conservation law (3.16) (up to constant functionals) can also be derived directly from the relative
Cauchy evolution. This perhaps unpleasant feature can be understood as follows: diffeomorphism invariance
of the action derived from (1.1) (with λ = 1) entails the identity

δS

δg
(£Xg) +

δS

δJ
(£XJ) +

δS

δφ
(£Xφ) = 0 (3.17)

for all compactly supported vector fields X . When φ is on-shell, the last term vanishes and the identity implies
(3.16). We cannot expect conservation of the stress-energy tensor in our theory, because J is non-dynamical;
indeed (3.16) is the correct generalized conservation law in this case. (Were we to modify the theory, so that J
became dynamical, the additional Euler–Lagrange equation φ = 0 would rather trivially restore conservation
of the stress-energy tensor.)

4 Automorphism group of the functor PSp

Given any covariant functor from LocSrcp to PreSymp it is interesting to study its endomorphisms and
automorphisms [Few13]. The latter typically sheds light on possible symmetries of the theory at the functorial
level, which is comparable to the global gauge group of Minkowski algebraic quantum field theory. In
[Few13], the automorphism group of a theory describing a multiplet of p ∈ N classical real scalar fields
satisfying the minimally coupled Klein–Gordon equation was found to be the orthogonal group O(p) if all
masses coincide and are nonzero, or O(p) n Rp if they all vanish. As mentioned in the Introduction, we
expect the source terms in the inhomogeneous Klein–Gordon theory to break (at least for the massive case
m 6= 0) all the symmetries of the homogeneous Klein–Gordon theory. It therefore comes as a surprise that the
functor PSp turns out to have a nontrivial automorphism group for any mass m.

We shall briefly fix some notation. Given any covariant functor F : LocSrcp → PreSymp, an endomor-
phism of F is a natural transformation η : F ⇒ F, i.e. a collection of morphisms η(M ,J) : F(M ,J) →
F(M ,J) in PreSymp, such that for any morphism f : (M1,J1) → (M2,J2) in LocSrcp the following
diagram commutes

F(M1,J1)

η(M1,J1)

��

F(f)
// F(M2,J2)

η(M2,J2)

��

F(M1,J1)
F(f)

// F(M2,J2)

(4.1)

We denote the collection of all endomorphisms of F by End(F). An automorphism of F is an endomorphism
η ∈ End(F), such that all η(M ,J) are isomorphisms. Under composition, the automorphisms of F form a
group denoted by Aut(F).

The goal of this section is to characterize the automorphism group of the functor PSp : LocSrcp →
PreSymp introduced in Section 2. Due to the following general statement, Aut(PSp) is nontrivial.

Proposition 4.1. Let F : LocSrcp → PreSymp be any covariant functor. Then there exists a faithful
homomorphism η : Z2 → Aut(F) given by η(σ) = {σ idF(M ,J)}, where σ ∈ Z2 = {−1,+1}.

Proof. Injectivity of η and the group law η(σ) ◦ η(σ′) = η(σ σ′) are obvious. All η(σ)(M ,J) are clearly
linear automorphisms and since σ2 = 1 they preserve the presymplectic structure in F(M ,J) (this follows
from bilinearity of any presymplectic structure). For any morphism f in LocSrcp, η(σ) satisfies the diagram
in (4.1), since F(f) are in particular linear maps and hence commute with the multiplication by σ.
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The previous proposition in particular shows that Aut(PSp) contains a Z2 subgroup for all values of m.
In the massless case we can say more.

Proposition 4.2. If m = 0 there exists a faithful homomorphism η : Z2 × Rp → Aut(PSp) given by
η(σ, µ) = {η(σ, µ)(M ,J)}, where, for all [(ϕ, α)] ∈ PSp(M ,J),

η(σ, µ)(M ,J)

(
[(ϕ, α)]

)
=

[(
σ ϕ, σ α+ σ

∫
M
〈ϕ, µ〉 volM

)]
. (4.2)

Here we have identified µ ∈ Rp with the corresponding constant function in C∞(M,Rp).

Proof. The main burden is to show that (4.2) does define a natural η(σ, µ) ∈ End(PSp) for each (σ, µ) ∈
Z2 × Rp, because injectivity of η is obvious and it is easy to establish the group law η(σ, µ) ◦ η(σ′, µ′) =
η(σ σ′, µ+ µ′), whereupon it is clear that each η(σ, µ) is a linear automorphism. We notice that η(σ, µ)(M ,J)

is compatible with the quotient in PSp(M ,J), since, for all h ∈ C∞0 (M,Rp),

η(σ, µ)(M ,J)

(
P∗(M ,J)(h)

)
= η(σ, µ)(M ,J)

(
KGM (h),

∫
M
〈J , h〉 volM

)
=

(
σKGM (h), σ

∫
M
〈J , h〉 volM + σ

∫
M
〈KGM (h), µ〉 volM

)
= P∗(M ,J)(σ h) , (4.3)

where in the last equality we have used that
∫
M 〈KGM (h), µ〉 volM =

∫
M 〈h,KGM (µ)〉 volM = 0

for the massless Klein–Gordon operator. It is easily seen that the linear map η(σ, µ)(M ,J) preserves the
presymplectic structure in PSp(M ,J) and that it is injective (indeed, invertible, as already mentioned).
Thus η(σ, µ)(M ,J) ∈ Aut(PSp(M ,J)).

Now suppose that f : (M1,J1) → (M2,J2) is a morphism in LocSrcp. Then, for all [(ϕ, α)] ∈
PSp(M1,J1),

η(σ, µ)(M2,J2) ◦PSp(f)
([

(ϕ, α)
])

=

[(
σ f∗(ϕ), σ α+ σ

∫
M2

〈f∗(ϕ), µ〉 volM2

)]
= PSp(f) ◦ η(σ, µ)(M1,J1)

([
(ϕ, α)

])
, (4.4)

because
∫
M2
〈f∗(ϕ), µ〉 volM2 =

∫
M1
〈ϕ, f∗(µ)〉 volM1 =

∫
M1
〈ϕ, µ〉 volM1 . Hence, naturality is proved.

Our aim is now to prove that we actually have an isomorphism Aut(PSp) ' Z2 in the massive case and
an isomorphism Aut(PSp) ' Z2 × Rp for m = 0. For this endeavor we generalize the results of [Few13,
§2.2.], which shall allow us to prove that every endomorphism η ∈ End(PSp) is uniquely determined by its
component η(M ,J) on any given object (M ,J) in LocSrcp.

We start by collecting some useful lemmas, which were obtained in [Few13, §2.2.] for the category Loc.

Lemma 4.3. Let η ∈ End(PSp) be any endomorphism and (M ,J) any object in LocSrcp. Then for all
globally hyperbolic perturbations (h, j) ∈ H(M ,J) we have that

rce
(PSp)

(M ,J)[h, j] ◦ η(M ,J) = η(M ,J) ◦ rce
(PSp)

(M ,J)[h, j] . (4.5)

Proof. The essential idea is naturality of η. The detailed steps can be found in [FV12a, Proposition 3.8.].

Lemma 4.4. Let η, η′ ∈ End(PSp) and suppose that η(M ,J) = η′(M ,J) for some object (M ,J) in LocSrcp.
Then the following hold true:

(i) If f : (L,JL)→ (M ,J) is a morphism in LocSrcp, then η(L,JL) = η′(L,JL).

(ii) If f : (M ,J)→ (N ,JN ) is a Cauchy morphism in LocSrcp, then η(N ,JN ) = η′(N ,JN ).
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(iii) η(L,JL) = η′(L,JL) for any object (L,JL) in LocSrcp, such that the Cauchy surfaces of L are oriented
diffeomorphic to those of M |O, for someO ∈ O(M). Here O(M) is the set of all causally compatible,
open and globally hyperbolic subsets of M with finitely many connected components all of which are
mutually causally disjoint.

Proof. Item (i) and (ii) are simple consequences of naturality of η, η′ and the fact that PSp(f) is injective for
(i) and even an isomorphism for (ii), cf. [Few13, Proof of Lemma 2.2.]. Item (iii) follows from a generalization
of the “Cauchy wedge connectedness” property to the category LocSrcp that we shall discuss now in detail.
Forgetting the source terms, more precisely, applying the forgetful functor from LocSrcp to Loc, it was shown
in [FV12a, Proposition 2.4.] that under our hypotheses there is a chain of morphisms in Loc

L L′
coo c // L′′ L′′′

coo c //M |O
ιM ;O

//M , (4.6)

where ιM ;O denotes the canonical inclusion and by ‘c’ we indicate Cauchy morphisms. If we could construct
from this chain a chain of morphisms in LocSrcp of the form

(L,JL) (L′,JL′)
coo c // (L′′,JL′′) (L′′′,JL′′′)

coo c // (M |O,J |O)
ιM ;O

// (M ,J) , (4.7)

then the same argument as in [Few13, Proof of Lemma 2.2.] (combining results (i) and (ii)) would prove
(iii). Since the morphisms in (4.6) uniquely fix JL′ and JL′′′ via pulling back, respectively, JL and J |O, the
remaining step is to show that we can construct a JL′′ completing the chain (4.7). This is indeed possible if
we equip the spacetime L′′ constructed in [FV12a, Proof of Proposition 2.4.] with a JL′′ that is obtained by
gluing JL′ and JL′′′ via a suitable cutoff function (e.g. the one used to construct the metric in L′′).

We are now ready to prove the analog of [Few13, Theorem 2.6.] for our specific functor PSp : LocSrcp →
PreSymp. Since we are working with a specific model we can give a direct proof and we do not have to dwell
on the technicalities concerning abstract categorical unions and equalizers appearing in [Few13].

Theorem 4.5. Every η ∈ End(PSp) is uniquely determined by its component η(M ,J) on any object (M ,J)
in LocSrcp.

Proof. Suppose that η′ ∈ End(PSp) agrees with η on the object (M ,J) in LocSrcp, i.e. η(M ,J) = η′(M ,J).
Let (N ,JN ) be any object in LocSrcp and let D be any diamond in N . Then N |D has Cauchy surfaces
which are oriented diffeomorphic to any diamond in M . Then η(N |D,JN |D) = η′(N |D,JN |D) by Lemma 4.4
(iii). Using the canonical inclusion ιN ;D : (N |D,JN |D)→ (N ,JN ) we obtain by naturality

η(N ,JN ) ◦PSp(ιN ;D) = PSp(ιN ;D) ◦ η(N |D,JN |D) = PSp(ιN ;D) ◦ η′(N |D,JN |D)

= η′(N ,JN ) ◦PSp(ιN ;D) . (4.8)

This equation implies that η(N ,JN )

(
[(ϕ, α)]

)
= η′(N ,JN )

(
[(ϕ, α)]

)
, for all [(ϕ, α)] ∈ PSp(N ,JN ) for

which there exists a representative (ϕ, α) such that ϕ has compact support in D. We shall now prove
that η(N ,JN )

(
[(ϕ, α)]

)
= η′(N ,JN )

(
[(ϕ, α)]

)
, for all [(ϕ, α)] ∈ PSp(N ,JN ), and hence that η′ = η

since (N ,JN ) was arbitrary. This proof follows from a partition of unity argument: Given any [(ϕ, α)] ∈
PSp(N ,JN ) we take some representative (ϕ, α) ∈ C∞0 (N,Rp)⊕ R. Since supp(ϕ) is compact, the open
cover of N given by the set of all diamonds in N has a finite subcover of supp(ϕ), which we denote by
{Di}i=1,...,n. Using a partition of unity subordinated to {Di}i=1,...,n we can write (ϕ, α) =

∑n
i=1(ϕi, α/n),

where ϕi has compact support in Di. Hence,

η(N ,JN )

(
[(ϕ, α)]

)
=

n∑
i=1

η(N ,JN )

(
[(ϕi, α/n)]

)
=

n∑
i=1

η′(N ,JN )

(
[(ϕi, α/n)]

)
= η′(N ,JN )

(
[(ϕ, α)]

)
. (4.9)

We now come to the main statement of this section.
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Theorem 4.6. Every endomorphism of the functor PSp is an automorphism and

End(PSp) = Aut(PSp) '

{
Z2 , for m 6= 0 ,

Z2 × Rp , for m = 0 ,
(4.10)

where the action is given for m 6= 0 by Proposition 4.1, and for m = 0 by Proposition 4.2.

Proof. Due to Theorem 4.5, any η ∈ End(PSp) is uniquely determined by its component η(M0,0), where
M0 is Minkowski spacetime and we have chosen J0 = 0. The presymplectic vector space PSp(M0, 0) can
be expressed more conveniently using the following linear isomorphism for the underlying vector space(

C∞0 (M0,Rp)⊕ R
)
/P∗(M0,0)

[
C∞0 (M0,Rp)

]
=
(
C∞0 (M0,Rp)⊕ R

)
/
(
KGM0

[
C∞0 (M0,Rp)

]
⊕ {0}

)
=
(
C∞0 (M0,Rp)/KGM0

[
C∞0 (M0,Rp)

])
⊕ R

' Solsc(M0)⊕ R , (4.11)

where Solsc(M0) := {φ ∈ C∞sc (M0,Rp) : KGM0(φ) = 0} is the space of solutions of the Klein–Gordon
equation with spacelike compact support. The isomorphism in the last line of (4.11) is the usual one given by
the advanced-minus-retarded Green’s operator EM0 . The induced presymplectic structure on Solsc(M0)⊕R
is given by, for all (φ, α), (ψ, β) ∈ Solsc(M0)⊕ R,

σ(M0,0)

(
(φ, α), (ψ, β)

)
= σ̃M0(φ, ψ) , (4.12)

where σ̃M0 is the usual symplectic structure on Solsc(M0).

Via the isomorphism (4.11), η(M0,0) induces an endomorphism η̃ of Solsc(M0)⊕R which, by naturality,
commutes with the action of all Poincaré transformations. By Lemma 4.3, η̃ commutes with the relative
Cauchy evolution, and therefore with its derivatives given in (3.11a) and (3.11b). Taking into account the
isomorphism (4.11) and our specific choice of object (M0, 0) they read, for all (φ, α) ∈ Solsc(M0)⊕ R,

T(M0,0)[h](φ, α) =
(

EM0

(
KG′M0[h](φ)

)
, 0
)
, (4.13a)

J(M0,0)[j](φ, α) =
(

0,

∫
M0

〈j, φ〉 volM0

)
. (4.13b)

Since η̃ : Solsc(M0) ⊕ R → Solsc(M0) ⊕ R is a linear map, it decomposes into linear maps L11 :
Solsc(M0) → Solsc(M0), L12 : R → Solsc(M0), L21 : Solsc(M0) → R and L22 : R → R. As
η̃ commutes with the maps in (4.13), we obtain the following conditions on the Lij , for all (φ, α) ∈
Solsc(M0)⊕ R and (h, j) ∈ H(M0, 0),(

EM0

(
KG′M0[h]

(
L11(φ) + L12(α)

))
, 0
)

=
(
L11

(
EM0

(
KG′M [h](φ)

))
, L21

(
EM0

(
KG′M [h](φ)

)))
(4.14a)

and (
0,

∫
M0

〈j, L11(φ) + L12(α)〉 volM0

)
=
(
L12

(∫
M0

〈j, φ〉 volM0

)
, L22

(∫
M0

〈j, φ〉 volM0

))
.

(4.14b)

From the first component of (4.14b) we obtain that L12 = 0. Substituting into (4.14a) we obtain from
the first component the same condition that is present for multiplets of homogeneous Klein–Gordon fields.
The only solution of this condition (supplemented by additional conditions stemming from the Poincaré
invariance of Minkowski spacetime) is that L11 is an O(p) transformation acting in the obvious way on the
components of φ, cf. [Few13, Theorem 5.2.]. Using this information the second component of (4.14b) implies
that L11 = σ idSolsc(M0) and L22 = σ idR, with σ ∈ Z2 = {−1,+1}. Finally, the fact that endomorphisms
commute with the Poincaré transformations entails that L21 : Solsc(M0) → R is Poincaré invariant. By
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Lemma 4.7 below, we deduce that L21 = 0 for m 6= 0, or that L21( · ) = σ̃M0(µ, · ) for some µ ∈ Rp if
m = 0 (here µ denotes a constant solution). Combining these facts, we have

η̃(φ, α) =

{
(σ φ, σ α) , for m 6= 0 ,

(σ φ, σ (α+ σ̃M0(µ, φ))) , for m = 0 ,
(4.15)

for some σ ∈ Z2 (and µ ∈ Rp ifm = 0). Undoing the isomorphism (4.11), this means that form = 0 we have
η(M0,0) = η(σ, µ)(M0,0) and hence η = η(σ, µ) by Theorem 4.5. Similarly, η = η(σ) = {σ idPSp(M ,J)} if
m 6= 0. This proves the result.

It remains to prove the following

Lemma 4.7. Suppose L : Solsc(M0)→ R is linear and translationally invariant. If m 6= 0 then L = 0. If
m = 0 then there exists µ ∈ Rp such that L(φ) = σ̃M0(µ, φ).

Proof. We use the automatic continuity result of Meisters [Mei71] that the translationally invariant linear
functionals on C∞0 (Rk,Rp) are precisely the scalar multiples of the integral. Passing to Cauchy data on any
surface t = const., L decomposes into two linear functionals on C∞0 (Rk,Rp) that are each translationally
invariant, owing to spatial translational invariance of L. Hence, for each t there are αt, βt ∈ Rp such that, for
any φ ∈ Solsc(M0),

L(φ) =

∫
Rk

dkx

(
〈αt, φ(t,x)〉+

〈
βt,

∂φ

∂t
(t,x)

〉)
. (4.16)

By time-translational invariance of L, αt ≡ α and βt ≡ β are independent of t. Further, differentiating with
respect to t, using the Klein–Gordon equation and Gauss’ theorem, we obtain, for all φ ∈ Solsc(M0),

0 =

∫
Rk

dkx

(〈
α,
∂φ

∂t
(t,x)

〉
−
〈
βm2, φ(t,x)

〉)
(4.17)

and hence that α = 0, βm2 = 0. The result follows (with µ = β).

The results of this section reveal that the functor PSp has a larger automorphism group than one would
expect for the global gauge group of the inhomogeneous theory. To close the section, we mention that the
Z2 factor of Aut(PSp) can be removed if we change the category in which PSp takes values to reflect the
fact that the underlying vector space of PSp(M ,J) is a linear subspace of the affine dual of the space of
solutions Solp(M ,J). Were we to restrict to morphisms arising as restrictions of duals to affine maps, we
would be left with a trivial automorphism group for m 6= 0 and Rp for m = 0. We do not develop this line
of thought in detail, because the next section shows that PSp has further pathologies, which would not be
eliminated by this device. Nevertheless, it is worth noting that the unexpected symmetries appear because we
have discarded information about the action of the observables in PSp(M ,J) on the solution space.

5 Violation of the composition property of the functor PSp

The theory we aim to construct consists of p inhomogeneous Klein–Gordon fields without mutual interactions.
One would expect that an equivalent formulation would be produced if the multiplet were decomposed into
independent submultiplets of 0 < q < p and p− q fields, which are treated separately according to the general
prescription and then recombined. In this section, we describe how the splitting and recombination may be
formalized and then show that the functor PSp fails to respect this composition property.

Let p ≥ 2 and let Πq : Rp → Rp , (a1, . . . , ap) 7→ (a1, . . . , aq, 0, . . . , 0) be the projection onto the
first q dimensions, where 0 < q < p. Given any object (M ,J) of LocSrcp, we can split J = Πq(J) +
(idRp − Πq)(J) =: Jq + Jp−q and identify Jq as an element in C∞(M,Rq) and Jp−q as an element in
C∞(M,Rp−q). Hence, we can associate to (M ,J) the object Splitp,q(M ,J) :=

(
(M ,Jq), (M ,Jp−q)

)
in the product category LocSrcq × LocSrcp−q. Moreover, given any morphism f : (M1,J1)→ (M2,J2) in
LocSrcp we associate a morphism in LocSrcq × LocSrcp−q via Splitp,q(f) := (f, f) : Splitp,q(M1,J1)→
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Splitp,q(M2,J2), where with a slight abuse of notation we have denoted the smooth map underlying the
morphism by the same symbol f : M1 →M2. In this way we obtain a covariant functor Splitp,q : LocSrcp →
LocSrcq × LocSrcp−q representing the decomposition into submultiplets.

Treating each submultiplet according to the prescription of Section 2.2, we compose Splitp,q with the
covariant functor PSq ×PSp−q to obtain

(
PSq ×PSp−q

)
◦Splitp,q : LocSrcp → PreSymp× PreSymp.

Finally, we recombine the resulting theories by composing with the covariant functor ⊕ : PreSymp ×
PreSymp → PreSymp that forms the direct sum of two presymplectic vector spaces – the monoidal struc-
ture in this category. Explicitly, for any object ((V, σV ), (W,σW )) in PreSymp × PreSymp we define
⊕
(
(V, σV ), (W,σW )

)
:= (V ⊕W,σV⊕W ), where V ⊕W is the direct sum of vector spaces and, for all

(v, w), (v′, w′) ∈ V ⊕W ,

σV⊕W
(
(v, w), (v′, w′)

)
:= σV (v, v′) + σW (w,w′) . (5.1)

On morphisms, ⊕(L,K) := L⊕K. The resulting covariant functor is

PSp,q := ⊕ ◦
(
PSq ×PSp−q

)
◦Splitp,q : LocSrcp → PreSymp . (5.2)

Since the covariant functor PSp : LocSrcp → PreSymp satisfies the causality property and the time-slice
axiom for all p ∈ N (cf. Proposition 2.3), it is not hard to see that the same holds true for the covariant functor
PSp,q : LocSrcp → PreSymp.

Proposition 5.1. The covariant functor PSp,q : LocSrcp → PreSymp satisfies the causality property and
the time-slice axiom for all 2 ≤ p ∈ N and 0 < q < p.

Proof. Causality holds owing to causality of PSp−q and PSq and the following property of the direct sum:
if PreSymp-morphisms Li : (Vi, σVi)→ (V, σV ), i = 1, 2, have symplectically orthogonal images, and so do
Ki : (Wi, σWi)→ (W,σW ), i = 1, 2, then L1 ⊕K1 and L2 ⊕K2 have symplectically orthogonal images in
(V ⊕W,σV⊕W ) because σV⊕W = σV ⊕ σW by (5.1). The time-slice axiom holds simply because the direct
sum of two presymplectic isomorphisms is itself a presymplectic isomorphism.

We shall now prove that the theories PSp,q and PSp are inequivalent for 0 < q < p; that is, the functors
are not naturally isomorphic. This will be a consequence of the following simple

Lemma 5.2. Let L : (V, σV ) → (W,σW ) be an isomorphism in PreSymp. Then L induces a linear
isomorphism between the null spaces N(V, σV ) and N(W,σW ).

Proof. The PreSymp-isomorphism L induces an injective linear map L : N(V, σV ) → W . The image
L[N(V, σV )] is contained in N(W,σW ), since for all v ∈ N(V, σV ) and w ∈W ,

σW
(
L(v), w

)
= σW

(
L(v), L(L−1(w))

)
= σV

(
v, L−1(w)

)
= 0 . (5.3)

Hence, L : N(V, σV )→ N(W,σW ) is an injective linear map which is invertible via L−1 : N(W,σW )→
N(V, σV ).

Proposition 5.3. For any 2 ≤ p ∈ N and 0 < q < p, the covariant functors PSp,q : LocSrcp → PreSymp
and PSp : LocSrcp → PreSymp are not naturally isomorphic. Indeed, there is no object (M ,J) in LocSrcp
for which the presymplectic vector spaces PSp,q(M ,J) and PSp(M ,J) are isomorphic.

Proof. We argue by contradiction. Suppose there were a PreSymp-isomorphism L : PSp,q(M ,J) →
PSp(M ,J) for some object (M ,J) in LocSrcp. Then L induces a linear isomorphism between the
null spaces of PSp,q(M ,J) and PSp(M ,J) by Lemma 5.2. However, the latter is isomorphic to R
(cf. Proposition 2.3), while the former is easily seen to be isomorphic to R2. Hence, no such isomorphism
exists and consequently the functors PSp,q and PSp are not naturally isomorphic.
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6 The Poisson algebra functor

In order to resolve the pathological composition property of the functor PSp obtained in Section 5, as well as
the mysterious automorphism group of Theorem 4.6 (cf. also the text below Lemma 4.7), we introduce further
structures. Naively speaking, we aim to make the theory given by PSp remember that it describes the affine
functionals on the affine space of solutions of the inhomogeneous Klein–Gordon equation. To realize this
idea, we first construct from PSp a functor describing canonical Poisson algebras of observables, which are
then represented non-faithfully on the solution space. The kernel of this representation is then identified and it
is shown that the quotients of the Poisson algebras by these kernels are described by a covariant functor which
has the desired automorphism group and the composition property. In Appendix B we present an alternative
strategy for improving the classical theory of the inhomogeneous multiplet of Klein–Gordon fields by using
pointed presymplectic spaces.

6.1 Canonical Poisson algebras

Let PoisAlg denote the category of unital Poisson algebras over R, with injective unit-preserving Poisson
algebra homomorphisms as morphisms. We first construct a covariant functor CanPois : PreSymp →
PoisAlg that associates canonical Poisson algebras to presymplectic vector spaces: Given any object (V, σV )
in PreSymp, let us consider the symmetric tensor algebra S(V ) :=

⊕∞
k=0 S

k(V ), where S0(V ) = R,
S1(V ) = V and Sk(V ) :=

∨k V , for k ≥ 2, is the k-th symmetric power of V . The product in S(V )
is denoted by juxtaposition and turns S(V ) into an associative and commutative algebra over R with unit
1 ∈ S0(V ) ⊂ S(V ). We define a Poisson bracket {·, ·}σV : S(V ) × S(V ) → S(V ) by, for all α ∈ S0(V )
and v1, . . . , vk, v

′
1, . . . , v

′
l ∈ V ,

{α, v1 · · · vk}σV = {v1 · · · vk, α}σV = 0 , (6.1a)

{v1 · · · vk, v′1 · · · v′l}σV =
k∑
i=1

l∑
j=1

v1 · · ·
i
∨. · · · vk v′1 · · ·

j
∨. · · · v′l σV (vi, v

′
j) . (6.1b)

The symbols
i
∨. mean the omission of the i-th element. We denote the resulting Poisson algebra by

CanPois(V, σV ) :=
(
S(V ), {·, ·}σV

)
. Given any morphism L : (V, σV ) → (W,σW ) in PreSymp we

associate a map CanPois(L) : CanPois(V, σV ) → CanPois(W,σW ) via CanPois(L)(α) = α, for all
α ∈ S0(V ), and CanPois(L)(v1 · · · vk) = L(v1) · · ·L(vk), for all v1, . . . , vk ∈ V . It is easy to see that
CanPois(L) is an injective Poisson algebra homomorphism. Thus, we have shown the following

Proposition 6.1. The association CanPois : PreSymp→ PoisAlg constructed above is a covariant functor.

Remark 6.2. Notice that for any object (V, σV ) in PreSymp the Poisson algebra CanPois(V, σV ) is N0-
graded. Furthermore, for any morphism L : (V, σV )→ (W,σW ) in PreSymp the morphism CanPois(L) :
CanPois(V, σV ) → CanPois(W,σW ) is a graded Poisson algebra morphism. Hence, CanPois is also a
covariant functor to the category of N0-graded Poisson algebras. As will become clear in the next subsection,
the latter category is too restrictive for our purposes, hence we shall usually disregard this natural grading.

We can compose our functor PSp : LocSrcp → PreSymp with CanPois : PreSymp → PoisAlg to
obtain the covariant functor CPAp := CanPois ◦PSp : LocSrcp → PoisAlg. The functor CPAp describes
the association of canonical Poisson algebras of observables for a multiplet of p ∈ N inhomogeneous
Klein–Gordon fields. We immediately observe the following

Proposition 6.3. The covariant functor CPAp : LocSrcp → PoisAlg satisfies the causality property and the
time-slice axiom. Moreover, Aut(CPAp) contains a Z2 subgroup for m 6= 0 and a Z2 × Rp subgroup for
m = 0.

Proof. By Proposition 2.3 c) the functor PSp satisfies these properties. Thus CanPois automatically obeys
the time-slice property because functors preserve isomorphisms. The causality property is seen as follows:
Given any two PreSymp-morphisms Li : (Vi, σVi)→ (V, σV ), i = 1, 2, such that σV

(
L1[V1], L2[V2]

)
= {0}
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in (V, σV ), then the explicit expression for the Poisson bracket (6.1) implies that {·, ·}σV acts trivially between
CanPois(L1)

[
CanPois(V1, σ1)

]
and CanPois(L2)

[
CanPois(V2, σ2)

]
. The statement on the automorphism

group follows from Theorem 4.6 and the fact that every automorphism η = {η(M ,J)} of PSp lifts to an
automorphism {CanPois(η(M ,J))} of CPAp.

Next, we shall show that the functor CPAp violates the analog of the composition property for PSp

discussed in Section 5, cf. Proposition 5.3. For 2 ≤ p ∈ N and 0 < q < p, we define the covariant functor

CPAp,q := ⊗ ◦
(
CPAq × CPAp−q

)
◦Splitp,q : LocSrcp → PoisAlg , (6.2)

where ⊗ : PoisAlg × PoisAlg → PoisAlg is the covariant functor that takes (algebraic) tensor products of
Poisson algebras. Explicitly, to any object (A,B) in PoisAlg × PoisAlg we associate the object ⊗(A,B) :=
A⊗ B in PoisAlg, which is the tensor product of the underlying commutative and associative unital algebras,
equipped with the Poisson bracket specified by linearity and, for all a, a′ ∈ A and b, b′ ∈ B,

{a⊗ b, a′ ⊗ b′}A⊗B := {a, a′}A ⊗ (b b′) + (a a′)⊗ {b, b′}B . (6.3)

To any morphism (κ, λ) : (A1,B1)→ (A2,B2) in PoisAlg×PoisAlg we associate the morphism ⊗(κ, λ) :=
κ⊗λ : A1⊗B1 → A2⊗B2 in PoisAlg specified by linearity and, for all a ∈ A1 and b ∈ B1, (κ⊗λ)

(
a⊗b

)
=

κ(a)⊗λ(b). To show that the covariant functors CPAp,q and CPAp are inequivalent, we require two lemmas.

Lemma 6.4. Let (V, σV ) and (W,σW ) be two objects in PreSymp. Then there exists an isomorphism
L : (V, σV ) → (W,σW ) in PreSymp if and only if there exists an isomorphism κ : CanPois(V, σV ) →
CanPois(W,σW ) in PoisAlg. Moreover, the isomorphisms κ and L are related by L = πS1(W ) ◦ κ|S1(V ),
where κ|S1(V ) is the restriction of κ to the vector subspace S1(V ) ⊆ CanPois(V, σV ) and πS1(W ) :
CanPois(W,σW ) → S1(W ) is the projection to the degree one vector subspace S1(W ). L is uniquely
determined by κ, but L does not determine κ.

Proof. The direction “⇒” is a consequence of functoriality, because CanPois preserves isomorphisms. To
show the reverse direction, suppose that κ : CanPois(V, σV )→ CanPois(W,σW ) is a PoisAlg-isomorphism.
In particular, κ is a unital algebra isomorphism κ : S(V )→ S(W ) between the symmetric tensor algebras of
V and W . This algebra isomorphism is uniquely specified by its action on arbitrary v ∈ S1(V ) = V , so let
us write κ(v) = κ0(v) + κ1(v) + κ≥2(v), where κ0 : V → R, κ1 : V → W and κ≥2 : V → S≥2(W ) are
the projections of κ|S1(V ) to the subspaces S0(W ), S1(W ) and S≥2(W ) :=

⊕∞
k=2 S

k(W ).

We now will show that, given any PoisAlg-isomorphism κ, there exists a PoisAlg-isomorphism κ̃ :
CanPois(V, σV ) → CanPois(W,σW ), with κ̃0 = 0 and κ̃1 = κ1. Consider the PoisAlg-automorphism
χ : CanPois(V, σV )→ CanPois(V, σV ) defined by, for all v ∈ V , χ(v) = v − κ0(v). Define κ̃ := κ ◦ χ :
CanPois(V, σV )→ CanPois(W,σW ), which is as a composition of PoisAlg-isomorphisms again a PoisAlg-
isomorphism and notice that κ̃(v) = κ1(v) + κ≥2(v), for any v ∈ V . As κ̃ is an algebra homomorphism,
it is therefore lower-triangular with respect to the gradings of CanPois(V, σV ) and CanPois(W,σW ): the
degree-k component of any κ̃(a) depends only on the components of awith degree k or less. Accordingly, κ̃−1

is also lower-triangular, and all diagonal entries πSk(W ) ◦ κ̃|Sk(V ) (k ∈ N0) are vector space isomorphisms.
In particular, κ1 : V → W is a vector space isomorphism. The claim that κ1 : (V, σV ) → (W,σW ) is a
PreSymp-isomorphism follows by evaluating both sides of the condition, for all v, v′ ∈ V , κ̃

(
{v, v′}σV

)
=

{κ̃(v), κ̃(v′)}σW .

We next show that the covariant functor CPAp,q defined in (6.2) is naturally isomorphic to the covariant
functor CanPois ◦PSp,q, where PSp,q is defined in (5.2). This follows from the more general

Lemma 6.5. The covariant functors CanPois ◦ ⊕ : PreSymp× PreSymp→ PoisAlg and ⊗ ◦ (CanPois×
CanPois) : PreSymp× PreSymp→ PoisAlg are naturally isomorphic. Specifically, the PoisAlg-morphisms

η((V,σV ),(W,σW )) : CanPois(V ⊕W,σV⊕W )→ CanPois(V, σV )⊗ CanPois(W,σW ) (6.4)

specified by, for all (v, w) ∈ V ⊕W , η((V,σV ),(W,σW ))(v, w) = v ⊗ 1 + 1⊗ w define a natural isomorphism
{η((V,σV ),(W,σW ))} : CanPois ◦ ⊕ ⇒ ⊗ ◦ (CanPois× CanPois).
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Proof. η := η((V,σV ),(W,σW )) is clearly a linear map (of N0-degree zero) and therefore induces a unital algebra
homomorphism S(V ⊕W )→ S(V )⊗ S(W ), which preserves the natural N0-gradings (with a slight abuse
of notation we use for the graded tensor product the same symbol ⊗). A simple computation shows that η
preserves the Poisson bracket of elements in S1(V ⊕W ) and is therefore a Poisson morphism by (6.1). The
inverse to η is given by η−1(v ⊗ 1) = (v, 0) and η−1(1 ⊗ w) = (0, w) on the generators v ⊗ 1 and 1 ⊗ w,
with v ∈ V and w ∈W , of S(V )⊗ S(W ), and extended as a unital algebra homomorphism.

It remains to show naturality. Let (L,K) : ((V1, σV1), (W1, σW1)) → ((V2, σV2), (W2, σW2)) be a
morphism in PreSymp× PreSymp. Let us denote η1 := η((V1,σV1 ),(W1,σW1

)) and η2 := η((V2,σV2 ),(W2,σW2
)).

Then, for all (v, w) ∈ V1 ⊕W1,

η2

(
L⊕K(v, w)

)
= η2(L(v),K(w)) = L(v)⊗ 1 + 1⊗K(w)

= (L⊗K)(v ⊗ 1) + (L⊗K)(1⊗ w) = (L⊗K)(η1(v, w)), (6.5)

which proves naturality since (v, w) ∈ V1 ⊕W1 are the generators of S(V1 ⊕W1).

We now can prove the violation of the composition property.

Proposition 6.6. For any 2 ≤ p ∈ N and 0 < q < p, the covariant functors CPAp,q : LocSrcp → PoisAlg
and CPAp : LocSrcp → PoisAlg are not naturally isomorphic. Indeed, there is no object (M ,J) in LocSrcp
for which the Poisson algebras CPAp,q(M ,J) and CPAp(M ,J) are isomorphic.

Proof. We argue by contradiction: suppose CPAp,q(M ,J) and CPAp(M ,J) are PoisAlg-isomorphic for
some (M ,J) in LocSrcp. Then CanPois(PSp(M ,J)) and CanPois

(
PSq(M ,Jq)⊕PSp−q(M ,Jp−q)

)
are also PoisAlg-isomorphic by Lemma 6.5, and hence PSp(M ,J) and PSq(M ,Jq)⊕PSp−q(M ,Jp−q)
are PreSymp-isomorphic by Lemma 6.4. But this is excluded by Proposition 5.3.

6.2 Improved Poisson algebras

In this subsection we will modify the canonical Poisson algebras constructed in Subsection 6.1 in order
to address the problems concerning the unexpectedly large automorphism group and the violation of the
composition property. As already mentioned, the key point is to represent the algebras given by the functor
CPAp as functionals on the affine space of solutions to the inhomogeneous Klein–Gordon equation. When
this is done, a degeneracy becomes apparent which was not visible in the description available in the category
of presymplectic vector spaces. However, we will show that the degeneracy may be described and also
removed in the category of Poisson algebras, thereby resolving the problems discussed above (cf. Subsections
6.4 and 6.5, and Appendix B for another approach).

The abstract Poisson algebras CPAp are represented as functionals on the solution spaces Solp :
LocSrcp → Aff by extending the pairing (2.9) of PSp and Solp as follows: For any object (M ,J) in
LocSrcp we extend 〈〈 · , · 〉〉(M ,J) to a map CPAp(M ,J)×Solp(M ,J)→ R (denoted with a slight abuse
of notation by the same symbol) in such a way that it is a unital algebra homomorphism in the left entry.
Explicitly, we set, for all φ ∈ Solp(M ,J) and α ∈ R,

〈〈α, φ〉〉(M ,J) = α , (6.6a)

and, for all φ ∈ Solp(M ,J) and [(ϕ1, α1)], . . . , [(ϕk, αk)] ∈ PSp(M ,J),

〈〈[(ϕ1, α1)] · · · [(ϕk, αk)], φ〉〉(M ,J) = 〈〈[(ϕ1, α1)], φ〉〉(M ,J) · · · 〈〈[(ϕk, αk)], φ〉〉(M ,J) . (6.6b)

It is useful to note that the pairing also induces a pairing 〈〈 · , · 〉〉linM : PSlin
p (M)×Sollinp (M)→ R between

the linearized (pre)symplectic vector space and solution space, which describe a multiplet of p ∈ N homo-
geneous Klein–Gordon fields. Explicitly, we have PSlin

p (M) :=
(
C∞0 (M,Rp)/KGM [C∞0 (M,Rp)], σlin

M

)
,

where, for all [ϕ]lin, [ψ]lin ∈ C∞0 (M,Rp)/KGM [C∞0 (M,Rp)], σlin
M ([ϕ]lin, [ψ]lin) :=

∫
M 〈ϕ,EM (ψ)〉 volM .

The linearized pairing is given by, for all [ϕ]lin ∈ PSlin
p (M) and φ ∈ Sollinp (M),〈〈

[ϕ]lin, φ
〉〉lin

M
=

∫
M

〈
ϕ, φ

〉
volM (6.7)
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and is related to 〈〈 · , · 〉〉(M ,J) via, for all [(ϕ, α)] ∈ PSp(M ,J), φ ∈ Solp(M ,J) and φ ∈ Sollinp (M),

〈〈
[(ϕ, α)], φ+ φ

〉〉
(M ,J)

= 〈〈[(ϕ, α)], φ〉〉(M ,J) +
〈〈

[ϕ]lin, φ
〉〉lin

M
. (6.8)

Notice that for the linearized setting the analog of the diagram in (2.10) holds true. Moreover, we can extend
〈〈 · , · 〉〉linM to a map CPAlin

p (M)×Sollinp (M)→ R, where CPAlin
p := CanPois ◦PSlin

p . These extended
pairings are also natural, i.e. the analog of the diagram in (2.10) holds true.

Remark 6.7. The pairing 〈〈 · , · 〉〉(M ,J) provides us with a representation of the canonical (abstract) Poisson
algebra CPAp(M ,J) as a polynomial algebra of functionals on the affine space Solp(M ,J). Analogously,
the pairing 〈〈 · , · 〉〉linM leads to a representation of CPAlin

p (M) as a polynomial algebra of functionals on the
vector space Sollinp (M). The Poisson bracket (6.1) can be expressed in this representation as follows, for all
a, b ∈ CPAp(M ,J) and φ ∈ Solp(M ,J),〈〈{

a, b
}
σ(M,J)

, φ
〉〉

(M ,J)
=

∫
M

〈〈〈
a(1), φ

〉〉
(M ,J)

,EM

(〈〈
b(1), φ

〉〉
(M ,J)

)〉
volM , (6.9)

where a(1) and b(1) are the first functional derivatives of a and b, respectively, defined uniquely so that∫
M

〈〈〈
a(1), φ

〉〉
(M ,J)

, φ

〉
volM :=

d

dε

〈〈
a, φ+ ε φ

〉〉
(M ,J)

|ε=0 , (6.10)

for all a ∈ CPAp(M ,J), φ ∈ Solp(M ,J) and φ ∈ Sollinp (M).

We notice that the pairing 〈〈 · , · 〉〉(M ,J) is non-degenerate when acting on PSp(M ,J). This means
that 〈〈[(ϕ, α)], φ〉〉(M ,J) = 0, for all φ ∈ Solp(M ,J), implies that [(ϕ, α)] = 0, and, vice versa, that
〈〈[(ϕ, α)], φ〉〉(M ,J) = 〈〈[(ϕ, α)], φ′〉〉(M ,J), for all [(ϕ, α)] ∈ PSp(M ,J), implies that φ = φ′. However,
the extended pairing on CPAp(M ,J) × Solp(M ,J) turns out to be degenerate in the left entry and
non-degenerate in the right entry. For example, taking [(0, α)] ∈ PSp(M ,J) with α ∈ R we obtain

〈〈[(0, α)]− α, φ〉〉(M ,J) =

(∫
M
〈0, φ〉 volM

)
+ α− α = 0 , (6.11)

for all φ ∈ Solp(M ,J). Hence, the extension of 〈〈 · , · 〉〉 from PSp to CPAp has introduced a new
degeneracy, which can not be seen at the level of presymplectic vector spaces as it mixes different N0-degrees
in CPAp. This degeneracy is removed precisely by taking the quotient via a suitable Poisson ideal, namely
the vanishing ideal

Ip(M ,J) :=
{
a ∈ CPAp(M ,J) : 〈〈a, φ〉〉(M ,J) = 0 , for all φ ∈ Solp(M ,J)

}
(6.12)

of the pairing 〈〈 · , · 〉〉 (we will check that it is indeed a Poisson ideal below). The corresponding theory will
turn out to have the correct automorphism group and composition property. At this point we would like to
note that the pairing 〈〈 · , · 〉〉linM is non-degenerate when acting on both PSlin

p (M) and CPAlin
p (M).

Lemma 6.8. For any object (M ,J) in LocSrcp the vanishing ideal Ip(M ,J) is a proper Poisson ideal of
CPAp(M ,J). Hence the quotient CPAp(M ,J)/Ip(M ,J) is a nontrivial unital Poisson algebra.

Proof. Given any element a ∈ Ip(M ,J) it is easy to see that all its functional derivatives vanish, in particular〈〈
a(1), φ

〉〉
(M ,J)

= 0 for all φ ∈ Solp(M ,J). Thus {a, b}σ(M,J)
∈ Ip(M ,J) for any b ∈ CPAp(M ,J)

by (6.9). Since Ip(M ,J) is certainly an ideal, it is a Poisson ideal, and (6.6a) shows that it is proper.

The quotient CPAp(M ,J)/Ip(M ,J) gives our improved Poisson algebra for the multiplet of p ∈ N
inhomogeneous Klein–Gordon fields. It is of course free of the redundancy discussed above. However, it is
sometimes cumbersome to do explicit calculations involving Ip(M ,J). In order to simplify the following
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constructions, we shall provide an equivalent characterization of Ip(M ,J) in terms of an algebraically
generated ideal. Let us define the following ideal (generated by a set) of CPAp(M ,J)

Ĩp(M ,J) :=
〈{

[(0, α)]− α ∈ CPAp(M ,J) : α ∈ R
}〉

. (6.13)

Since
{

[(0, α)] − α, a
}
σ(M,J)

= 0, for all α ∈ R and a ∈ CPAp(M ,J), the ideal Ĩp(M ,J) is a Poisson

ideal of CPAp(M ,J). Furthermore, (6.11) and (6.6b) implies that

Ĩp(M ,J) ⊆ Ip(M ,J) . (6.14)

We now prove that Ĩp(M ,J) = Ip(M ,J), which will allow us to work with the easy-to-use algebraically
generated ideal Ĩp(M ,J) whenever it is suitable.

Lemma 6.9. Let (M ,J) be any object in LocSrcp.

a) The Poisson algebra CPAp(M ,J)/Ĩp(M ,J) is (noncanonically) isomorphic to CPAlin
p (M).

b) Ĩp(M ,J) = Ip(M ,J).

Proof. Proof of a): Let us define a Poisson algebra homomorphism κ : CPAp(M ,J) → CPAlin
p (M) by

setting, for all [(ϕ, α)] ∈ CPAp(M ,J),

κ
(
[(ϕ, α)]

)
= 〈〈[(ϕ, α)], φ0〉〉(M ,J) + [ϕ]lin , (6.15)

where φ0 ∈ Solp(M ,J) is any fixed solution. As Ĩp(M ,J) clearly lies in the kernel of κ, we can
induce a Poisson algebra homomorphism (denoted by the same symbol) κ : CPAp(M ,J)/Ĩp(M ,J) →
CPAlin

p (M). To show that the induced κ is a PoisAlg-isomorphism, we notice that setting, for all [ϕ]lin ∈
CPAlin

p (M),

κ−1
(
[ϕ]lin

)
:=
[
[(ϕ, 0)]− 〈〈[(ϕ, 0)], φ0〉〉(M ,J)

]
∈ CPAp(M ,J)/Ĩp(M ,J) (6.16)

is well-defined and defines the inverse of κ.

Proof of b): By a), CPAp(M ,J)/Ĩp(M ,J) is a simple (and nontrivial) Poisson algebra. Hence
Ĩp(M ,J) is a maximal proper ideal. In view of (6.14), this shows that Ĩp(M ,J) = Ip(M ,J)

These results now allow us to construct our improved functor for the classical theory of a multiplet of
p ∈ N inhomogeneous Klein–Gordon fields.

Proposition 6.10. The following rules define a covariant functor PAp : LocSrcp → PoisAlg: To any object
(M ,J) in LocSrcp we associate the Poisson algebra PAp(M ,J) := CPAp(M ,J)/Ip(M ,J). To any
morphism f : (M1,J1) → (M2,J2) in LocSrcp we associate the map PAp(f) : PAp(M1,J1) →
PAp(M2,J2) that is canonically induced from CPAp(f) : CPAp(M1,J1)→ CPAp(M2,J2).

Proof. Lemma 6.8 has established that the quotients are nontrivial unital Poisson algebras. Next, let
f : (M1,J1) → (M2,J2) be any morphism in LocSrcp. Then CPAp(f) induces a Poisson algebra
homomorphism PAp(f) : PAp(M1,J1) → PAp(M2,J2) because it restricts to a map CPAp(f) :
Ip(M1,J1)→ Ip(M2,J2), as is obvious from Lemma 6.9 b), the explicit characterization of the algebraic
Poisson ideal (6.13) and the fact that CPAp(f)([(0, α)]− α) = [(0, α)]− α, for any α ∈ R. It is clear that
PAp(f) is unit-preserving, because CPAp(f) is; moreover, it is injective, since PAp(M1,J1) is simple
by Lemma 6.9 a), and hence it does not have any nontrivial proper Poisson ideals (and PAp(f) is a unit-
preserving map to a nontrivial unital Poisson algebra, so it is not the zero map). The composition and identity
properties of PAp are inherited from CPAp, hence PAp : LocSrcp → PoisAlg is a covariant functor.

The covariant functor PAp : LocSrcp → PoisAlg is a locally covariant classical field theory:
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Proposition 6.11. The covariant functor PAp : LocSrcp → PoisAlg satisfies the causality property and the
time-slice axiom.

Proof. By Proposition 6.3 the covariant functor CPAp satisfies these properties. The quotients by Poisson
ideals used in the definition of the functor PAp preserve these properties due to the following arguments:
For the time-slice axiom we just have to notice that any PoisAlg-isomorphism which preserves the Poisson
ideals induces a PoisAlg-isomorphism on the quotients (simply induce the morphism and its inverse to the
quotients). Causality holds because if two subalgebras of a Poisson algebra A Poisson-commute, then the
same is true of the corresponding subalgebras of any quotient of A by a Poisson ideal.

6.3 Relative Cauchy evolution of the functor PAp

The relative Cauchy evolution of the functor PSp : LocSrcp → PreSymp induces that of the functor
PAp : LocSrcp → PoisAlg as follows: Let (M ,J) be any object in LocSrcp and let (h, j) ∈ H(M ,J) be

any globally hyperbolic perturbation. From the explicit expression for rce
(PSp)

(M ,J)[h, j] ∈ Aut(PSp(M ,J))

given in (3.9) we observe that the relative Cauchy evolution rce
(PAp)

(M ,J)[h, j] ∈ Aut(PAp(M ,J)) of PAp is
uniquely specified by, for all [(ϕ, α)] ∈ PAp(M ,J),

rce
(PAp)

(M ,J)[h, j]
(
[(ϕ, α)]

)
=
[(
ϕ+ (KGM −KGM [h])

(
EM [h](ϕ)

)
, 0
)]

+ α

+

∫
M

(〈
−j,EM [h](ϕ)

〉
+
〈
(1− ρh) (J + j),EM [h](ϕ)

〉)
volM , (6.17)

where on the right hand side we have used the equivalence relation entering the definition of PAp(M ,J) (cf.
Proposition 6.10) and we have chosen as in (3.9) a representative ϕ with compact support in M+. With the
techniques presented in Appendix A one can differentiate this expression to yield

d

ds
rce

(PAp)

(M ,J)[sh, sj]
(
[(ϕ, α)]

)∣∣∣
s=0

= −
[(

KG′M [h]

(
EM (ϕ)

)
, 0
)]

−
∫
M

〈
1

2
gab hab J + j,EM (ϕ)

〉
volM

= −
{

1

2
T(M ,J)(h) + [(j, 0)], [(ϕ, α)]

}
σ(M,J)

, (6.18)

where T ab(M ,J) is the stress-energy tensor (3.13). Although (6.17) was derived under an assumption on the
support of the representative ϕ, the formulae in (6.18) do not require to choose a suitable representative as
they depend only on the equivalence class of (ϕ, α).

6.4 Automorphism group of the functor PAp

We study the automorphism group of the covariant functor PAp : LocSrcp → PoisAlg defined in Proposition
6.10. We shall obtain that it is, as expected, the trivial group for m 6= 0 and isomorphic to Rp for m = 0.

We first show that for m = 0 the automorphism group of PAp contains Rp as a subgroup.

Proposition 6.12. If m = 0 there exists a faithful homomorphism η : Rp → Aut(PAp) induced by the one
in Proposition 4.2 restricted to {+1} × Rp ⊆ Z2 × Rp. Explicitly, for any object (M ,J) in LocSrcp the
automorphism η(µ)(M ,J) is specified by, for all [(ϕ, α)] ∈ PAp(M ,J),

η(µ)(M ,J)

(
[(ϕ, α)]

)
=
[(
ϕ, α+

∫
M
〈ϕ, µ〉 volM

)]
. (6.19)

Proof. Applying the functor CanPois, the automorphism η(σ, µ) ∈ Aut(PSp) of Proposition 4.2 induces
an element in Aut(CPAp), which we denote with a slight abuse of notation by the same symbol η(σ, µ).
For σ = −1 this automorphism does not preserve the Poisson ideals Ip(M ,J): Indeed, for [(0, α)]− α ∈
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Ip(M ,J) we find η(−1, µ)(M ,J)([(0, α)] − α) = [(0,−α)] − α 6∈ Ip(M ,J). For σ = +1 and µ ∈ Rp
arbitrary the Poisson ideals are preserved, hence η(+1, µ) induces the automorphism η(µ) ∈ Aut(PAp)
given by (6.19). The group law η(µ) ◦ η(µ′) = η(µ + µ′) is a consequence of the group law for η(σ, µ),
cf. Proposition 4.2.

Remark 6.13. The above argument shows that the nontrivial Z2-automorphism in the massless case (cf. Propo-
sition 4.2) does not induce an automorphism of PAp. The same holds true for the nontrivial Z2-automorphism
in the massive case (cf. Proposition 4.1).

We now prove that the automorphisms found in Proposition 6.12 exhaust the automorphism group of the
covariant functor PAp. For the proof we require the analog of Theorem 4.5, stating that an endomorphism is
uniquely determined by its component on one object, for the functor PAp : LocSrcp → PoisAlg. This follows
by a similar proof as for Theorem 4.5 and we omit the details.

Theorem 6.14. Every endomorphism of the functor PAp is an automorphism and

End(PAp) = Aut(PAp) '

{
{idPAp

} , for m 6= 0 ,

Rp , for m = 0 ,
(6.20)

where the action for m = 0 is given by Proposition 6.12.

Proof. Let η ∈ End(PAp) and consider its component η(M0,0) ∈ End(PAp(M0, 0)) on the Minkowski
spacetime M0 with J0 = 0. Now, η(M0,0) must commute with the relative Cauchy evolution (6.17) and its
derivative (6.18); considering the h = 0 case of (6.18), we obtain the requirement

η(M0,0)

({
[(j, 0)], [(ϕ, 0)]

}
σ(M0,0)

)
=
{

[(j, 0)], η(M0,0)

(
[(ϕ, 0)]

)}
σ(M0,0)

(6.21)

for all j, ϕ ∈ C∞0 (M0,Rp). Next, we exploit the fact (cf. Lemma 6.9) that there is a preferred isomorphism
κ : PAp(M0, 0)→ CPAlin

p (M0) given by κ
(
[(ϕ, α)]

)
= α+ [ϕ]lin, i.e. the φ0 = 0 case of (6.15), which

intertwines the natural actions of the Poincaré transformations on PAp(M0, 0) and CPAlin
p (M0). Then the

induced endomorphism η̃ = κ ◦ η(M0,0) ◦ κ−1 of CPAlin
p (M0) must commute with all Poincaré transforma-

tions, because η(M0,0) does. Owing to (6.21), η̃ also satisfies, for all generators [ϕ]lin ∈ CPAlin
p (M0) and all

j ∈ C∞0 (M0,Rp),

η̃

({
[j]lin, [ϕ]lin

}
σlin
M0

)
=
{

[j]lin, η̃
(
[ϕ]lin

)}
σlin
M0

. (6.22)

The left hand side of this equation is simply σlin
M0

([j]lin, [ϕ]lin) and the right hand side can be simplified as
follows: We write η̃([ϕ]lin) = η̃0([ϕ]lin) + η̃1([ϕ]lin) + η̃≥2([ϕ]lin), where the index labels the N0-degree of
η̃([ϕ]lin) in CPAlin

p (M0). This yields the condition, for all [ϕ]lin ∈ PSlin
p (M0) and all j ∈ C∞0 (M0,Rp),

σlin
M0

([j]lin, [ϕ]lin) = σlin
M0

(
[j]lin, η̃1

(
[ϕ]lin

))
+
{

[j]lin, η̃≥2

(
[ϕ]lin

)}
σlin
M0

. (6.23)

Counting the N0-degree of the individual terms and using the fact that the Poisson bracket in CPAlin
p (M0) is

non-degenerate we obtain that η̃≥2 = 0 and η̃1 = idCPAlin
p (M0). Hence, η̃([ϕ]lin) = η̃0([ϕ]lin) + [ϕ]lin, for all

[ϕ]lin ∈ PSlin
p (M0), and the remaining freedom in η̃ is a linear map η̃0 : PSlin

p (M0)→ R, which also has
to be Poincaré invariant. By Lemma 4.7, η̃0 ≡ 0 in the case of m 6= 0 and η̃0([ϕ]lin) =

∫
M0
〈ϕ, µ〉 volM0

for some µ ∈ Rp in the massless case. Hence, there are no nontrivial endomorphisms of PAp(M0, 0) in the
massive case. Form = 0 the endomorphisms of PAp(M0, 0) coincide with the Minkowski space components
of the functor automorphisms found in Proposition 6.12. Since any endomorphism η ∈ End(PAp) is uniquely
determined by its component on one object, this proves our claim.

21



6.5 Composition property of the functor PAp

It remains to prove the validity of the composition property of the covariant functor PAp : LocSrcp → PoisAlg.
Explicitly, we define for p ≥ 2 and 0 < q < p the covariant functor

PAp,q := ⊗ ◦
(
PAq ×PAp−q

)
◦Splitp,q : LocSrcp → PoisAlg (6.24)

and we will prove that PAp,q and PAp are naturally isomorphic.

Theorem 6.15. For any 2 ≤ p ∈ N and 0 < q < p, the covariant functors PAp,q : LocSrcp → PoisAlg and
PAp : LocSrcp → PoisAlg are naturally isomorphic. The natural isomorphism η = {η(M ,J)} : PAp,q ⇒
PAp is specified by, for all [(ϕ, α)] ∈ PAq(M ,Jq) and [(ψ, β)] ∈ PAp−q(M ,Jp−q),

η(M ,J)

(
[(ϕ, α)]⊗ 1

)
=
[
(ϕ, α)

]
, η(M ,J)

(
1⊗ [(ψ, β)]

)
=
[
(ψ, β)

]
, (6.25)

where on the right hand sides we have identified ϕ ∈ C∞0 (M,Rq) and ψ ∈ C∞0 (M,Rp−q) as elements in
C∞0 (M,Rp) (ϕ is placed in the first q and ψ in the last p− q components of Rp) .

Proof. We first notice that (6.25) actually defines a Poisson algebra homomorphism CPAq(M ,Jq) ⊗
CPAp−q(M ,Jp−q) → CPAp(M ,J). It induces a unital Poisson algebra homomorphism between the
quotients, PAq(M ,Jq)⊗PAp−q(M ,Jp−q)→ PAp(M ,J), since, for all α ∈ R,

η(M ,J)

((
[(0, α)]− α

)
⊗ 1
)

= η(M ,J)

(
1⊗

(
[(0, α)]− α

))
= [(0, α)]− α . (6.26)

Naturality of the η(M ,J) is also a straightforward check. We next show that η(M ,J) is invertible, hence a
PoisAlg-isomorphism. Notice that setting, for any [(ϕ, α)] ∈ PAp(M ,J),

η−1
(M ,J)

(
[(ϕ, α)]

)
=
[
[(ϕq, α)]⊗ 1 + 1⊗ [(ϕp−q, 0)]

]
∈ PAq(M ,Jq)⊗PAp−q(M ,Jp−q) , (6.27)

where ϕ = ϕq + ϕp−q is the split of ϕ into the first q and last p− q components, is well-defined and extends
to a unital Poisson algebra homomorphism η−1

(M ,J) : PAp(M ,J) → PAq(M ,Jq) ⊗PAp−q(M ,Jp−q).

One checks directly that η−1
(M ,J) is the inverse of η(M ,J).

7 Quantization

We shall now turn to the quantization of our model. As a first step, we are going to use the CCR-functor
(in polynomial form) in order to construct a covariant functor CQAp := CCR ◦ PSp : LocSrcp → ∗Alg,
where ∗Alg is the category of unital ∗-algebras over C with injective unital ∗-algebra homomorphisms as
morphisms. As CQAp is a deformation quantization of the Poisson algebra functor CPAp, it is not surprising
to find that its automorphism group is too large and that it violates the composition property. We then improve
this functor following a strategy similar to that of Subsection 6.2 for the Poisson algebras. The essential
step is to specify a suitable state space for CQAp. The kernel corresponding to this state space forms a
two-sided ∗-ideal in the algebras described by CQAp, which when quotiented out leads to a covariant functor
QAp : LocSrcp → ∗Alg that has the correct automorphism group and satisfies the composition property.
Accordingly, we find that QAp is the correct description of the quantum field theory of a multiplet of p ∈ N
inhomogeneous Klein–Gordon fields and not the functor CQAp, which was used in [BDS12]. An alternative
construction of QAp via the quantization of pointed presymplectic spaces is presented in Appendix B.

7.1 Canonical algebras

We briefly review the CCR-functor CCR : PreSymp→ ∗Alg in polynomial form, following the slightly non-
standard approach taken in [BSZ92] and [FV12b, §5], which is equivalent to the standard presentation in terms
of generators and relations. To any object (V, σV ) in PreSymp we associate the following unital ∗-algebra
CCR(V, σV ): The vector space underlying CCR(V, σV ) is the complexification of the vector space underlying
the symmetric tensor algebra S(V ) :=

⊕∞
k=0 S

k(V ). The involution ∗ is defined by C-antilinearity and
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(v1 · · · vk)∗ = v1 · · · vk, for all v1, . . . , vk ∈ V , where juxtaposition denotes a symmetric product. The
product ? in CCR(V, σV ) is specified (uniquely) by demanding, for all v1, v2 ∈ V and n,m ∈ N0,

vm1 ? vn2 =

min{m,n}∑
r=0

(
iσV (v1, v2)

2

)r m!n!

r! (m− r)! (n− r)!
vm−r1 vn−r2 . (7.1)

To any morphism L : (V, σV ) → (W,σW ) in PreSymp we associate the injective unital ∗-algebra ho-
momorphism CCR(L) : CCR(V, σV ) → CCR(W,σW ), which is specified by CCR(L)(v1 v2 · · · vk) =
L(v1)L(v2) · · · L(vk), for all v1, . . . , vk ∈ V , and C-linearity.

Composing the covariant functor PSp : LocSrcp → PreSymp with CCR yields the covariant functor
CQAp := CCR ◦PSp : LocSrcp → ∗Alg. It is standard that CCR preserves the time-slice axiom and the
causality property; as PSp satisfies these conditions by Proposition 2.3, CQAp is a locally covariant quantum
field theory. In [BDS12] CQAp was taken to describe the quantized field polynomial algebras of a multiplet
of p ∈ N inhomogeneous Klein–Gordon fields.

It is easy to see that the automorphism group Aut(CQAp) contains a Z2-subgroup for the massive case
and a Z2 × Rp-subgroup for m = 0. This is an immediate consequence of Theorem 4.6 and the fact that any
automorphism η = {η(M ,J)} of PSp lifts to an automorphism of CQAp with components {CCR(η(M ,J))}.

To show that CQAp violates the composition property, we define, for all 2 ≤ p ∈ N and 0 < q < p, the
covariant functor

CQAp,q := ⊗ ◦ (CQAq × CQAp−q) ◦Splitp,q : LocSrcp → ∗Alg , (7.2)

where ⊗ : ∗Alg × ∗Alg → ∗Alg now denotes the covariant functor that takes the algebraic tensor product
of unital ∗-algebras. Adapting the proof of Lemma 6.5, one observes that the two covariant functors
CCR ◦ ⊕ : PreSymp × PreSymp → ∗Alg and ⊗ ◦ (CCR × CCR) : PreSymp × PreSymp → ∗Alg are
naturally isomorphic. Furthermore, the result of Lemma 6.4 also extends to our present setting: two unital
∗-algebras CCR(V, σV ) and CCR(W,σW ) are isomorphic if and only if (V, σV ) and (W,σW ) are isomorphic
as presymplectic vector spaces. Then by an argument similar to that of Proposition 6.6 we obtain

Proposition 7.1. For any 2 ≤ p ∈ N and 0 < q < p, the covariant functors CQAp,q : LocSrcp → ∗Alg and
CQAp : LocSrcp → ∗Alg are not naturally isomorphic. Indeed, there is no object (M ,J) in LocSrcp for
which the unital ∗-algebras CQAp,q(M ,J) and CQAp(M ,J) are isomorphic.

7.2 Improved algebras

Employing a strategy similar to the one in Subsection 6.2, we now modify the canonical algebras of Subsection
7.1 in order to obtain the correct automorphism group and satisfy the composition property. The essential
idea is again to make our theory remember that it came from affine functionals acting on the affine space of
solutions of the inhomogeneous Klein–Gordon equation.

We implement this idea mathematically by introducing suitable state spaces. Recall a state space for a
unital ∗-algebra A is a subset S of the set of normalized and positive linear functionals on A that is closed
under convex linear combinations and operations induced by A. The latter property means that, given any
state ω ∈ S and b ∈ A such that ω(b∗b) > 0, then the state ωb(a) := ω(b∗ab)/ω(b∗b), for all a ∈ A, is also
contained in S. To promote the concept of state spaces to the categorical setting, we define the category
State as follows: The objects in State are all possible state spaces for objects in ∗Alg, with affine maps
as morphisms. A state space for our covariant functor CQAp : LocSrcp → ∗Alg is a contravariant functor
Sp : LocSrcp → State, such that Sp(M ,J) is a state space for CQAp(M ,J) for each object (M ,J) and
Sp(f) = CQAp(f)∗|Sp(M2,J2) for every morphism f : (M1,J1)→ (M2,J2) in LocSrcp (it is a necessary
condition that CQAp(f)∗[Sp(M2,J2)] ⊆ Sp(M1,J1)).

Definition 7.2. An admissible state space Sp : LocSrcp → State for the covariant functor CQAp :
LocSrcp → ∗Alg is a state space Sp, such that for each object (M ,J) in LocSrcp, and for all ω ∈ Sp(M ,J)
and [(0, α)], [(0, β)] ∈ CQAp(M ,J),

ω
(
[(0, α)]

)
= α , ω

(
[(0, α)] ? [(0, β)]

)
= αβ . (7.3)
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Remark 7.3. The first condition in (7.3) demands that the expectation values of the quantum observables
corresponding to [(0, α)] agree with the classical result (2.9). The second condition in (7.3) sets the fluctuations
around this classical result to zero, cf. the lemma below. This behavior of states for the quantum theory is
motivated by the fact that [(0, α)] corresponds in the classical theory to a constant functional.

Lemma 7.4. Let Sp be any admissible state space for CQAp. Then for any object (M ,J) in LocSrcp, and
for all ω ∈ Sp(M ,J) and [(0, α1)], . . . , [(0, αn)] ∈ CQAp(M ,J),

ω
(
[(0, α1)] ? · · · ? [(0, αn)]

)
= α1 · · · αn . (7.4)

Proof. This is a straightforward consequence of the Cauchy-Schwarz inequality and a simple proof by
induction. Using the short notation α̂ := [(0, α)] we obtain∣∣ω(α̂1 ? · · · ? α̂n

)
− α1 · · ·αn

∣∣2 =
∣∣ω(α̂1 ? · · · ? α̂n

)
− α1 ω

(
α̂2 ? · · · ? α̂n

)∣∣2
=
∣∣ω((α̂1 − α1) ? α̂2 ? · · · ? α̂n

)∣∣2
≤ ω

(
(α̂1 − α1)2

)
ω
(
(α̂2 ? · · · ? α̂n)2

)
= 0 , (7.5)

where the last equality follows from the admissibility condition (7.3).

Lemma 7.5. There exists a non-empty admissible state space Sp for CQAp, i.e. Sp(M ,J) is non-empty for
all objects (M ,J) in LocSrcp.

Proof. Let Smax
p (M ,J) be the set of all states on CQAp(M ,J) satisfying (7.3). This is non-empty, since

it was shown in [BDS12, §8] that any state of the homogeneous Klein–Gordon theory induces a state in
Smax
p (M ,J). The admissibility condition of states in Smax

p (M ,J) is met by construction and it is preserved
under convex linear combinations and operations induced by CQAp(M ,J) (to prove the latter statement, use
the Cauchy-Schwarz inequality and the fact that [(0, α)] − α lies in the center of CQAp(M ,J)). Thus, it
remains to show that

Smax
p (f) : Smax

p (M2,J2)→ Smax
p (M1,J1) , ω 7→ Smax

p (f)(ω) = ω ◦ CQAp(f) (7.6)

is a morphism in State, i.e. that Smax
p (f)(ω) ∈ Smax

p (M1,J1), for all ω ∈ Smax
p (M2,J2). This holds

because Smax
p (f)(ω) is clearly a state, and obeys (7.3) because CQAp(f)

(
[(0, α)]

)
= [(0, α)].

Given any non-empty admissible state space Sp for CQAp, we define for every object (M ,J) in LocSrcp

JSp(M ,J) :=
⋂

ω∈Sp(M ,J)

ker(πω) ⊆ CQAp(M ,J) , (7.7)

where πω denotes the GNS-representation of CQAp(M ,J) induced by ω ∈ Sp(M ,J). The subset (7.7) of
CQAp(M ,J) is clearly a two-sided ∗-ideal, and it must be proper because Gelfand ideals necessarily exclude
the unit. Hence CQAp(M ,J)/JSp(M ,J) is a nontrivial unital ∗-algebra.

It will again be convenient to express JSp(M ,J) in terms of an algebraically generated ideal. Let us
consider the following two-sided ∗-ideal (generated by a set) of CQAp(M ,J)

J̃p(M ,J) :=
〈{

[(0, α)]− α ∈ CQAp(M ,J) : α ∈ R
}〉

. (7.8)

It is easy to see that J̃p(M ,J) ⊆ JSp(M ,J): Let ω ∈ Sp(M ,J) be arbitrary. Then, for all b, c ∈
CQAp(M ,J) and all α ∈ R,∣∣∣ω(b ? ([(0, α)]− α

)
? c
)∣∣∣2 =

∣∣∣ω(b ? c ? ([(0, α)]− α
))∣∣∣2

≤ ω
(
b ? c ? (b ? c)∗

)
ω
((

[(0, α)]− α
)2)

= 0 , (7.9)

where in the first step we have used that [(0, α)]−α lies in the center of CQAp(M ,J), in the second step the
Cauchy-Schwarz inequality and in the last one the admissibility condition (7.3). Hence, J̃p(M ,J) ⊆ ker(πω)

and since ω was arbitrary we have J̃p(M ,J) ⊆ JSp(M ,J), for any non-empty admissible state space Sp.

24



Lemma 7.6. Let (M ,J) be any object in LocSrcp.

a) The unital ∗-algebra CQAp(M ,J)/J̃p(M ,J) is (noncanonically) isomorphic to CQAlin
p (M) :=

CCR
(
PSlin

p (M)
)
.

b) J̃p(M ,J) = JSp(M ,J) whenever Sp is a non-empty admissible state space.

Proof. Proof of a): We define a unital ∗-algebra homomorphism κ : CQAp(M ,J) → CQAlin
p (M) by

setting, for all [(ϕ, α)] ∈ CQAp(M ,J),

κ
(
[(ϕ, α)]

)
= ω0

(
[(ϕ, α)]

)
+ [ϕ]lin , (7.10)

where ω0 is any choice of admissible state. As J̃p(M ,J) clearly lies in the kernel of κ, we can induce a
unital ∗-algebra homomorphism κ : CQAp(M ,J)/J̃p(M ,J)→ CQAlin

p (M). To show that the induced κ
is a ∗Alg-isomorphism we notice that setting, for all [ϕ]lin ∈ CQAlin

p (M),

κ−1
(
[ϕ]lin

)
:=
[
[(ϕ, 0)]− ω0

(
[ϕ, 0]

)]
∈ CQAp(M ,J)/J̃p(M ,J) (7.11)

is well-defined and defines the inverse of κ.

Proof of b): By a), CQAp(M ,J)/J̃p(M ,J) is a simple nontrivial unital ∗-algebra. Hence Ĩp(M ,J) is
a maximal proper ideal. But J̃p(M ,J) ⊆ JSp(M ,J) and JSp(M ,J) is proper so the ideals are equal.

Remark 7.7. As a consequence of this lemma, the two-sided ∗-ideals JSp(M ,J) do not depend on which
(non-empty) admissible state space Sp for CQAp we use in the construction. We therefore introduce a simpler
notation and set for any object (M ,J) in LocSrcp

Jp(M ,J) := JSp(M ,J) = J̃p(M ,J) . (7.12)

These studies now allow us to construct our improved functor for the quantum theory of a multiplet of
p ∈ N inhomogeneous Klein–Gordon fields.

Proposition 7.8. The following rules define a covariant functor QAp : LocSrcp → ∗Alg: To any ob-
ject (M ,J) in LocSrcp we associate QAp(M ,J) := CQAp(M ,J)/Jp(M ,J). To any morphism f :
(M1,J1)→ (M2,J2) in LocSrcp we associate the map QAp(f) : QAp(M1,J1)→ QAp(M2,J2) that
is canonically induced from CQAp(f) : CQAp(M1,J1)→ CQAp(M2,J2).

Proof. Lemma 7.6 has established that the quotients are nontrivial unital ∗-algebras. Next, let f : (M1,J1)→
(M2,J2) be any morphism in LocSrcp. Then CQAp(f) induces a unital ∗-homomorphism QAp(f) :
QAp(M1,J1) → QAp(M2,J2) because it restricts to a map CQAp(f) : Jp(M1,J1) → Jp(M2,J2).
This is clear from the fact that CQAp(f)

(
[(0, α)] − α

)
= [(0, α)] − α, for any α ∈ R. The induced unital

∗-algebra homomorphism QAp(f) : QAp(M1,J1)→ QAp(M2,J2) is injective (i.e. a morphism in ∗Alg),
since QAp(M1,J1) is simple, cf. Lemma 7.6. The composition and identity properties of the association
QAp are consequences of the same properties of CQAp, hence QAp : LocSrcp → ∗Alg is a covariant
functor.

The following statement may be proved in complete analogy with Proposition 6.11:

Proposition 7.9. The covariant functor QAp : LocSrcp → ∗Alg satisfies the causality property and the
time-slice axiom and is therefore a locally covariant quantum field theory.
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7.3 Relative Cauchy evolution of the functor QAp

The relative Cauchy evolution of the functor PSp : LocSrcp → PreSymp induces that of the functor
QAp : LocSrcp → ∗Alg as follows: Let (M ,J) be any object in LocSrcp and let (h, j) ∈ H(M ,J) be

any globally hyperbolic perturbation. From the explicit expression for rce
(PSp)

(M ,J)[h, j] ∈ Aut(PSp(M ,J))

given in (3.9) we observe that the relative Cauchy evolution rce
(QAp)
(M ,J)[h, j] ∈ Aut(QAp(M ,J)) of QAp is

uniquely specified by, for all [(ϕ, α)] ∈ QAp(M ,J),

rce
(QAp)
(M ,J)[h, j]

(
[(ϕ, α)]

)
=
[(
ϕ+ (KGM −KGM [h])

(
EM [h](ϕ)

)
, 0
)]

+ α

+

∫
M

(〈
−j,EM [h](ϕ)

〉
+
〈
(1− ρh) (J + j),EM [h](ϕ)

〉)
volM , (7.13)

where on the right hand side we have used the equivalence relation entering the definition of QAp(M ,J)
(cf. Proposition 7.8) and we have chosen as in (3.9) a representative ϕ with compact support in M+. In
sufficiently regular representations of the algebra QAp(M ,J) one can differentiate this expression, yielding

d

ds
rce

(QAp)
(M ,J)[sh, sj]

(
[(ϕ, α)]

)∣∣∣
s=0

= −
[(

KG′M [h]

(
EM (ϕ)

)
, 0
)]

−
∫
M

〈
1

2
gab hab J + j,EM (ϕ)

〉
volM

= i

[
1

2
T(M ,J)(h) + [(j, 0)] ?, [(ϕ, α)]

]
, (7.14)

where T ab(M ,J) is the quantization of the stress-energy tensor (3.13), with regularization by point-splitting (as
emphasized in [BFV03], the precise nature of the c-number subtraction is irrelevant owing to the commutator).
Although (7.13) was derived under an assumption on the support of the representative ϕ, the formulae in (7.14)
are valid for any representative (ϕ, α) of its equivalence class. Of course, (7.14) is the Dirac quantization of
(6.18). Finally, we note the special case of (7.13) for vanishing metric perturbation h = 0, namely

rce
(QAp)
(M ,J)[0, j]

(
[(ϕ, α)]

)
= [(ϕ, α)]−

∫
M
〈j,EM (ϕ)〉 = [(ϕ, α)] + i

[
[(j, 0)] ?, [(ϕ, α)]

]
. (7.15)

7.4 Automorphism group of the functor QAp

We study the automorphism group of the covariant functor QAp : LocSrcp → ∗Alg defined in Proposition 7.8.
For this we first notice that in the massless case m = 0 the automorphism group contains a Rp subgroup.

Proposition 7.10. If m = 0 there exists a faithful homomorphism η : Rp → Aut(QAp) induced by the one
in Proposition 4.2 restricted to {+1} × Rp ⊆ Z2 × Rp. Explicitly, for any object (M ,J) in LocSrcp the
automorphism η(µ)(M ,J) is specified by, for all [(ϕ, α)] ∈ QAp(M ,J),

η(µ)(M ,J)

(
[(ϕ, α)]

)
=
[(
ϕ, α+

∫
M
〈ϕ, µ〉 volM

)]
. (7.16)

Proof. Applying the functor CCR, the automorphism η(σ, µ) ∈ Aut(PSp) of Proposition 4.2 induces an
element in Aut(CQAp) (denoted with a slight abuse of notation by the same symbol). For σ = −1 this
automorphism does not preserve the two-sided ∗-ideals Jp(M ,J), since η(−1, µ)(M ,J)

(
[(0, α)] − α

)
=

[(0,−α)]− α 6∈ Jp(M ,J). For σ = +1 and µ ∈ Rp arbitrary the two-sided ∗-ideals are preserved, hence
η(+1, µ) induces the automorphism η(µ) ∈ Aut(QAp) which is claimed in this proposition. The group law
is an obvious consequence of the group law of the automorphisms η(σ, µ) of Proposition 4.2.

Remark 7.11. In the same way, one may also show for m 6= 0 that the nontrivial Z2-automorphism of PSp

does not lift to an automorphism of QAp.
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We may now prove that the automorphisms found in Proposition 7.10 exhaust Aut(QAp). We require the
analog of Theorem 4.5 for the functor QAp : LocSrcp → ∗Alg, which can be obtained by a similar proof as in
Theorem 4.5 and hence can be omitted.

Theorem 7.12. Every endomorphism of the functor QAp is an automorphism and

End(QAp) = Aut(QAp) '

{
{idQAp} , for m 6= 0 ,

Rp , for m = 0 ,
(7.17)

where the action for m = 0 is given by Proposition 7.10.

Proof. The steps in this proof are similar to the ones in Theorem 6.14. Let η ∈ End(QAp) be any endomor-
phism and let us consider its component η(M0,0), where M0 is Minkowski spacetime. For this particular
object, the ∗Alg-isomorphism κ : QAp(M0, 0)→ CQAlin

p (M0) defined by κ
(
[(ϕ, α)]

)
= α+ [ϕ]lin inter-

twines the natural action of the Poincaré transformations on QAp(M0, 0) and CQAlin
p (M0). Consequently,

the endomorphism η̃ := κ ◦ η(M0,0) ◦κ−1 of CQAlin
p (M0) has to commute with all Poincaré transformations.

Furthermore, because η(M0,0) commutes with (derivatives of) the relative Cauchy evolution on QAp(M0, 0) –
in particular those with h = 0 – we obtain the condition, for all j ∈ C∞0 (M0,Rp) and [ϕ]lin ∈ CQAlin

p (M0),

η̃
([

[j]lin ?, [ϕ]lin
])

=
[
[j]lin ?, η̃

(
[ϕ]lin

)]
(7.18)

on η̃, where we have used (7.14) with h = 0. The left hand side of (7.18), which is analogous to (6.22)
in the proof of Theorem 6.14, is simply i σlin

M0

(
[j]lin, [ϕ]lin

)
. Using the explicit expression (7.1) for the

?-product in CQAlin
p (M0), we find that the right hand side of this equality is equal to the Poisson bracket

i
{

[j]lin, η̃
(
[ϕ]lin

)}
σlin
M0

. The remainder of the proof runs in complete analogy with that of Theorem 6.14.

7.5 Composition property of the functor QAp

It remains to prove that the covariant functor QAp : LocSrcp → ∗Alg satisfies the composition property. We
define for p ≥ 2 and 0 < q < p the covariant functor

QAp,q := ⊗ ◦
(
QAq ×QAp−q

)
◦Splitp,q : LocSrcp → ∗Alg (7.19)

and we obtain the following, in complete analogy with the proof of Theorem 6.15

Theorem 7.13. For any p ≥ 2 and 0 < q < p, the covariant functors QAp,q : LocSrcp → ∗Alg and
QAp : LocSrcp → ∗Alg are naturally isomorphic. The natural isomorphism η = {η(M ,J)} : QAp,q ⇒ QAp
is specified by, for all [(ϕ, α)] ∈ QAq(M ,Jq) and [(ψ, β)] ∈ QAp−q(M ,Jp−q),

η(M ,J)

(
[(ϕ, α)]⊗ 1

)
=
[
(ϕ, α)

]
, η(M ,J)

(
1⊗ [(ψ, β)]

)
=
[
(ψ, β)

]
, (7.20)

where on the right hand sides we have identified ϕ ∈ C∞0 (M,Rq) and ψ ∈ C∞0 (M,Rp−q) as elements in
C∞0 (M,Rp) (ϕ is placed in the first q and ψ in the last p− q components of Rp).

7.6 Dynamical locality

To conclude, we shall study whether or not our improved functor QAp : LocSrcp → ∗Alg satisfies the
dynamical locality property, which was introduced in [FV12a] as part of an investigation into question of
what it means for a theory to describe the same physics in all spacetimes (SPASs). The dynamical locality
property has been proven previously for the homogeneous Klein–Gordon theory with non-vanishing mass
m 6= 0 in [FV12b] and for extended algebras of Wick polynomials in [Fer13].

We start by formulating the content of the dynamical locality property, essentially following [FV12a,
FV12b], suitably adapted to theories on the category LocSrcp. Let (M ,J) be any object in LocSrcp. As
above, we shall denote by O(M) the set of all causally compatible, open and globally hyperbolic subsets of
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M with finitely many connected components all of which are mutually causally disjoint. To each non-empty
O ∈ O(M), there is an object (M ,J)|O in LocSrcp obtained by restricting all the geometric data (including
the source J ) to the subsetO of M . Moreover, there is a canonical inclusion ι(M ,J);O : (M ,J)|O → (M ,J)
which is a morphism in LocSrcp. Adapting an idea from [BFV03], we may construct from QAp a net of
unital ∗-algebras as follows: Given any non-empty O ∈ O(M), we denote by QAkin

p ((M ,J);O) the image
of QAp((M ,J)|O) in QAp(M ,J) under the ∗Alg-morphism QAp(ι(M ,J);O). The assignment

O 7→ QAkin
p ((M ,J);O) ⊆ QAp(M ,J) (7.21)

is called the kinematic net, and is one way of describing the local physics of the theory QAp in a region O in
the spacetime M underlying the object (M ,J). It is easily seen that QAkin

p ((M ,J);O) is generated by the
unit together with all [(ϕ, 0)] ∈ QAp(M ,J) such that supp(ϕ) ⊆ O.

Another description of the local physics of the theory QAp in a region O in the spacetime M underlying
the object (M ,J) can be obtained by using the relative Cauchy evolution and was introduced in [FV12a].
For K ⊆ M compact, let us denote by H((M ,J);K⊥) the set of all globally hyperbolic perturbations
(h, j) of (M ,J), such that supp(h) ∪ supp(j) ⊆ K⊥, with K⊥ := M \ JM (K) the causal complement
of K. We define QA•p((M ,J);K) to be the subalgebra of QAp(M ,J) consisting of fixed points under

arbitrary relative Cauchy evolutions rce
(QAp)
(M ,J)[h, j] with (h, j) ∈ H((M ,J);K⊥). The idea behind this

definition is that the elements in QA•p((M ,J);K) can be regarded as localized in K because they are
insensitive to perturbations (h, j) of the background localized in the causal complement K⊥. By taking the
subalgebra of QAp(M ,J) that is generated by the QA•p((M ,J);K) as K ranges over suitable compact
subsets of O ∈ O(M) we obtain the dynamical algebras QAdyn

p ((M ,J);O), which can be compared with
the kinematic ones QAkin

p ((M ,J);O). More precisely, let us denote by Kb(M ;O) the set of finite unions
of causally disjoint subsets of O ∈ O(M), each of which is the closure of a Cauchy ball B with a relatively
compact Cauchy development DM (B). Here, a Cauchy ball B is a subset of a Cauchy surface, for which
there is a chart containing the closure of B, and in which B is a non-empty open ball. With these definitions
in place, we set for any non-empty O ∈ O(M)

QAdyn
p ((M ,J);O) :=

∨
K∈Kb(M ;O)

QA•p((M ,J);K) ⊆ QAp(M ,J) . (7.22)

Definition 7.14. The functor QAp : LocSrcp → ∗Alg satisfies the dynamical locality property if, for all
objects (M ,J) in LocSrcp and all non-empty O ∈ O(M), we have

QAkin
p ((M ,J);O) = QAdyn

p ((M ,J);O) . (7.23)

Remark 7.15. In its original formulation [FV12a], dynamical locality was defined using relative Cauchy
evolution induced by metric perturbations, because only theories defined on Loc were considered. In
generalizing to theories on LocSrcp, one has a choice as to whether to consider perturbations in both the
metric and the external source, or just the metric, or potentially something intermediate. We have adopted
the first of these possibilities as being the most natural – it would indeed appear strange to regard as local
an observable that was sensitive to perturbations in the external source located in the causal complement of
the localization region. However, our consideration of massless inhomogeneous theories will suggest a more
nuanced view, which will be discussed below.

Using the relative Cauchy evolution of the functor QAp derived in Subsection 7.3, we can characterize
the fixed point subalgebras QA•p((M ,J);K) of rce

(QAp)
(M ,J)[h, j] with (h, j) ∈ H((M ,J);K⊥).

Lemma 7.16. Let (M ,J) be any object in LocSrcp and let K be any compact subset of M . Then
QA•p((M ,J);K) is the subalgebra of QAp(M ,J) generated by the unit together with all [(ϕ, 0)] ∈
QAp(M ,J) such that supp

(
EM (ϕ)

)
⊆ JM (K).

Proof. The stated subalgebra of QAp(M ,J) is clearly a subalgebra of QA•p((M ,J);K) for the following
reason: If [(ϕ, 0)] obeys supp

(
EM (ϕ)

)
⊆ JM (K) then, for any (h, j) ∈ H((M ,J);K⊥), we have

28



EM [h](ϕ) = EM (ϕ) and hence rce
(QAp)
(M ,J)[h, j]

(
[(ϕ, 0)]

)
= [(ϕ, 0)] by (7.13). Thus QA•p((M ,J);K)

contains the subalgebra generated by (finite sums of finite products of) such elements and the unit.

To show the reverse inclusion, let us take any element a ∈ QA•p((M ,J);K). In particular, using (7.15),
we find the condition that, for all j ∈ C∞0 (K⊥,Rp),

[
[(j, 0)] ?, a

]
= 0. Evaluating the ?-product (7.1) in

the commutator, this condition reduces to the vanishing Poisson bracket condition
{

[(j, 0)], a
}
σ(M,J)

= 0,

for all j ∈ C∞0 (K⊥,Rp). We can now express a as a finite sum of finite symmetric products of the unit
and the elements [(ϕ, 0)] with ϕ ∈ C∞0 (M,Rp). Notice that if a is one of the generators [(ϕ, 0)], with
ϕ ∈ C∞0 (M,Rp), then the vanishing Poisson bracket condition implies that supp

(
EM (ϕ)

)
⊆ JM (K).

For generic a ∈ QA•p((M ,J);K) we follow the strategy in [FV12b, Lemma 5.2. and Appendix A] and
associate to a its support subspace Ya, which is a finite dimensional vector subspace of the complex vector
space spanned by the [(ϕ, 0)], ϕ ∈ C∞0 (M,Rp), such that the element a lies in the subalgebra generated
by Ya together with the unit. If a ∈ QA•p((M ,J);K) then Ya is invariant under the relative Cauchy
evolution corresponding to perturbations supported in K⊥; considering relative Cauchy evolutions of the form
(7.15), we see that all [(ϕ, 0)] in the support subspace must satisfy supp

(
EM (ϕ)

)
⊆ JM (K). Hence, a is

generated only by (finite sums of finite symmetric products of) the unit and those generators [(ϕ, 0)] satisfying
supp

(
EM (ϕ)

)
⊆ JM (K). As one can invert the formula (7.1) for the ?-product (leading to an expression

for the symmetric product in terms of ?-products) this implies that a is also generated by finite sums of finite
?-products of the unit and the elements [(ϕ, 0)] with supp

(
EM (ϕ)

)
⊆ JM (K).

With this preparation we can prove the main statement of this subsection.

Theorem 7.17. The functor QAp : LocSrcp → ∗Alg satisfies the dynamical locality property.

Proof. We must show that (7.23) holds for all objects (M ,J) in LocSrcp and all non-empty O ∈ O(M).
Notice that the unit is contained in both QAkin

p ((M ,J);O) and QAdyn
p ((M ,J);O). To show the inclusion

“⊆”, note that any a ∈ QAkin
p ((M ,J);O) is generated by finite sums of finite products of the unit and the

elements [(ϕ, 0)] with supp(ϕ) ⊆ O, all of which may be shown to lie in QAdyn
p ((M ,J);O) by an argument

similar to [FV12b, Lemma 3.3.]: We can decompose ϕ ∈ C∞0 (O,Rp) into a finite sum ϕ =
∑n

i=1 ϕi, such
that supp(ϕi) ∈ Kb(M ;O). (Take for example an open cover of supp(ϕ) by diamonds, pass to a finite
subcover and then use a partition of unity.) For each ϕi we have supp

(
EM (ϕi)

)
⊆ JM (supp(ϕi)), which

shows that [(ϕ, 0)] =
∑n

i=1[(ϕi, 0)] ∈ QAdyn
p ((M ,J);O).

To show the other inclusion “⊇”, it is by Lemma 7.16 sufficient to prove that, for any K ∈ Kb(M ;O),
all elements [(ϕ, 0)] ∈ QAp(M ,J) with supp

(
EM (ϕ)

)
⊆ JM (K) are contained in QAkin

p ((M ,J);O).
This is a simple consequence of the following argument: Since EM (ϕ) has support in JM (K) and K ⊆ O is
a compact subset, there exists a ϕ′ ∈ C∞0 (O,Rp), such that EM (ϕ′) = EM (ϕ), see e.g. [FV12b, Lemma
3.1. (i)]. As the Klein–Gordon operator is normally hyperbolic, we have ϕ′ = ϕ + KGM (h), for some
h ∈ C∞0 (M,Rp). Thus, [(ϕ, 0)] = [(ϕ+ KGM (h),

∫
M 〈J , h〉 volM )] = [(ϕ′, 0)] +

∫
M 〈J , h〉 volM lies in

QAkin
p ((M ,J);O).

Remark 7.18. The proofs of Lemma 7.16 and Theorem 7.17 do not distinguish between the massless and the
massive case. In contrast, this distinction was essential for the homogeneous Klein–Gordon theory studied in
[FV12b]; indeed only the massive homogeneous Klein–Gordon field satisfies the dynamical locality property.
At first sight this looks like a discrepancy, because the homogeneous Klein–Gordon theory seems to be
contained as a special case of our inhomogeneous model by setting all source terms to zero. However, the
inhomogeneous theory is formulated as a functor QAp from the category LocSrcp to ∗Alg and the relative
Cauchy evolution rce

(QAp)
(M ,J)[h, j] depends on both a metric perturbation h and a source term perturbation

j. Even restricting to (the full subcategory of) objects with zero source term J = 0, we still can study the
response (via the relative Cauchy evolution) of the restricted theory to source term perturbations j, as well
as the response to metric perturbations h, thus obtaining stronger restrictions on the fixed point subalgebras
QA•p((M ,J);K) than those arising from metric perturbations h alone as in [FV12b]. To conclude, we point
out that if we forbade nontrivial source term perturbations j in our proofs above, i.e. making only use of the
relative Cauchy evolutions rce

(QAp)
(M ,J)[h, 0] depending on h, we would obtain as in [FV12b] (and by similar
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arguments) that the massive theory satisfies (this restricted form of) the dynamical locality property and that
the massless theory does not. We finally remark that if we were to restrict to coexact source perturbations
j = δα (for compactly supported one-forms α) and traceless metric perturbations h we would also lose
dynamical locality in the massless case. This will be discussed further below.

8 Gauge theory interpretation in the massless case

In this section we shall briefly point out and discuss some features of the classical and quantum theory of a
massless multiplet of p ∈ N inhomogeneous Klein–Gordon fields.

Let us start with the automorphisms of this theory. As was shown in Theorem 6.14 for the classical and
in Theorem 7.12 for the quantized case, this theory has a nontrivial automorphism group isomorphic to Rp.
These symmetries can also be understood from the Lagrangian of this model (see equation (1.1) with λ = 1
and m = 0) as they correspond to shifts of the classical field φ, i.e. transformations φ 7→ φ+ µ with µ ∈ Rp.
According to [Few13] one should regard the massless Klein–Gordon theory as a gauge theory of the first kind
with φ playing the role of a zero-form gauge field. This is supported by the fact that the Lagrangian can also
be written as

L =
1

2
〈dφ, ∗dφ〉 − 〈φ, ∗J〉 , (8.1)

where ∗ denotes the Hodge operator corresponding to M . The differentials dφ play the same role as the field
strength F = dA in electromagnetism, just one differential form degree lower. Under gauge transformations
φ 7→ φ′ = φ+ µ, µ ∈ Rp, the Lagrangian transforms as

L 7→ L′ = L − 〈µ, ∗J〉 , (8.2)

thus it is gauge invariant up to a φ-independent term −〈µ, ∗J〉, which however depends on the metric via
the Hodge operator. In particular, the gauge transformations map the solution space of the inhomogeneous
massless Klein–Gordon equation to itself. This global gauge invariance is exactly the one described by the
automorphism groups characterized in Theorem 6.14 and Theorem 7.12. With this interpretation in mind,
the observables of the theory should be identified with those elements of the Poisson or quantized algebras
that are fixed under the action of the automorphism group. As described in [Few13, §3.3] this would lead
in a natural way to subfunctors of PAp and QAp that can be interpreted as the ‘theories of observables’.
This strategy was implemented for the massless homogeneous Klein–Gordon theory in [Few13, §5.3] and,
while we have not worked through the analogue for the present models, our expectation is that it would
result in the theories obtained by the following construction: For any object (M ,J) in LocSrcp we take the
vector subspace PSinv

p (M ,J) ⊆ PSp(M ,J) consisting of all [(ϕ, α)], such that
∫
M 〈ϕ, µ〉 volM = 0 for

all µ ∈ Rp. It is easy to see that PSinv
p : LocSrcp → PreSymp is a subfunctor of PSp and that, by the

same construction as in Section 6 and Section 7, we arrive at subfunctors PAinv
p : LocSrcp → PoisAlg and

QAinv
p : LocSrcp → ∗Alg of, respectively, PAp and QAp, which are gauge-invariant. (The remaining issue is

whether they coincide with the fixed-point subtheories of PAp and QAp, but this is our expectation.)

The role of this gauge invariance is obscured when we study globally hyperbolic perturbations (h, j) of
the background (M ,J) via the relative Cauchy evolution. The stress-energy tensor (see (3.13) and setm = 0)
obtained by the h-derivative of the relative Cauchy evolution is not gauge invariant under φ 7→ φ′ = φ+ µ,
µ ∈ Rp; it transforms as

T ab(M ,J)[φ] 7→ T ab(M ,J)[φ
′] = T ab(M ,J)[φ] + gab 〈µ,J〉 , (8.3)

and therefore is not an observable according to our discussion above.6 This feature becomes again clear by
looking at the transformation property of the Lagrangian (8.2): In fact, the stress-energy tensor derived from
the transformed Lagrangian L′ via taking the functional derivative along gab does not coincide with the one

6The stress-energy tensor does not actually belong to the algebras we have considered; here we have in mind an extended
(quantum) algebra containing (Wick) products.
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obtained from the untransformed Lagrangian L due to the metric-dependent extra term in the transformation
law (8.2). Note, however, that smearings of the stress-energy tensor by traceless tensor fields are gauge-
invariant and thus qualify as observables. Likewise, smearings of the field against test functions that are
derivatives of compactly supported 1-forms also give observables. This gives an interesting perspective on
some of the points made in Remark 7.18: the massless inhomogeneous theory fails to be dynamically local if
one restricts to variations of background structures with relative Cauchy evolution generated by observable
fields, but is dynamically local if one also allows variations generated by unobservable fields.

In order to obtain a gauge invariant stress-energy tensor we might proceed as follows: If we replace
the source terms J ∈ C∞(M,Rp) by source terms that are top-form valued J̃ ∈ Ωdim(M)(M,Rp), the
Lagrangian (8.1) can be written as

L̃ =
1

2
〈dφ, ∗dφ〉 −

〈
φ, J̃

〉
. (8.4)

Under gauge transformations φ 7→ φ+ µ, µ ∈ Rp, the Lagrangian transforms as

L̃ 7→ L̃′ = L̃ −
〈
µ, J̃

〉
, (8.5)

where now the φ-independent additional term does not depend on the metric. As a consequence, the stress-
energy tensor obtained by the functional derivative of the Lagrangian along gab reads

T̃ ab
(M ,J̃)

[φ] =
〈
∇aφ,∇bφ

〉
− 1

2
gab 〈∇cφ,∇cφ〉 (8.6)

and is gauge invariant. The functorial theory with top-form valued source terms can be obtained from our
functors PAp : LocSrcp → PoisAlg and QAp : LocSrcp → ∗Alg by noticing the following equivalence of
categories: Let us define in analogy to LocSrcp (see Definition 2.1) the category LocTopp, where objects are
tuples (M , J̃) with J̃ ∈ Ωdim(M)(M,Rp) a top-form source term. The categories LocSrcp and LocTopp are
equivalent via the Hodge operator. Explicitly, we define the covariant functor Hodge : LocTopp → LocSrcp

on objects by Hodge(M , J̃) = (M , ∗J̃) and on morphisms by Hodge(f) = f (with a slight abuse of notation
we denote both a morphism and its underlying smooth map by the same symbol). The inverse Hodge operator
provides us with the inverse functor Hodge−1 : LocSrcp → LocTopp. Hence, LocSrcp and LocTopp are
equivalent categories. Composing the functor Hodge with our functors PAp and QAp we obtain the covariant
functors

P̃Ap := PAp ◦ Hodge : LocTopp → PoisAlg , (8.7a)

Q̃Ap := QAp ◦ Hodge : LocTopp → PoisAlg , (8.7b)

which are respectively a locally covariant classical and quantum field theory. The endomorphisms of P̃Ap and
Q̃Ap of course coincide with the ones of PAp and QAp. However, as the functor Hodge mixes between the
metric and the external source terms, the relative Cauchy evolution of the new theories differs from the that of
the original theories. Indeed, from (3.7) and (3.9) one easily observes that, for all [(ϕ, α)] ∈ P̃Ap(M , J̃),

rce
(P̃Ap)

(M ,J̃)
[h, j̃]

(
[(ϕ, α)]

)
=

[(
ϕ+ (KGM −KGM [h])

(
EM [h](ϕ)

)
, α−

∫
M

〈
j̃,EM [h](ϕ)

〉
volM

)]
,

(8.8)

where now j̃ ∈ Ω
dim(M)
0 (M,Rp) is a compactly supported perturbation of the top-form source term J̃ . A

similar formula holds true for the relative Cauchy evolution of Q̃Ap. Following the same steps as in Appendix
A, we can extract the stress-energy tensor (up to a constant functional) from the derivative of this relative
Cauchy evolution along h. In the massless case, we find exactly the one obtained from the Lagrangian, see
(8.6). As already mentioned, this stress-energy tensor is gauge invariant under the gauge transformations
φ 7→ φ+ µ, µ ∈ Rp.
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9 Concluding remarks

Our original aim was to understand how the methods of [Few13] could be extended to the setting of locally
covariant theories with external sources in order to compute the automorphism group (which should be
the global gauge group) of the inhomogeneous Klein–Gordon theory. This has brought to light various
shortcomings in the formulation of the theory according to the prescription of [BDS12]: it has automorphisms
that are not gauge symmetries of the original theory (cf. Theorem 4.6); furthermore, it violates a natural
composition property that expresses the lack of interaction between fields in the multiplet (cf. Proposition
5.3). To remedy these problems, we have proposed an improved formulation of such theories at the classical
and quantum level. We have traced the source of the pathological behavior to a failure of [BDS12] to
adequately capture the interplay between the observables spaces (described by the presymplectic vector
spaces) with the solution spaces. We have reintroduced this information by studying the representation of
the abstract Poisson algebras derived from these presymplectic vector spaces on the solution spaces. These
representations of the Poisson algebras have a kernel, which has no corresponding analog in the category of
presymplectic vector spaces. Performing the quotient by these kernels, we have obtained a functor to the
category of Poisson algebras which gives an appropriate description of the classical theory of a multiplet of
inhomogeneous Klein–Gordon fields. We have substantiated this claim by proving that the theory has the
correct automorphism group and satisfies the composition property. In the quantized setting, we have replaced
the pairing between observables and solutions with carefully defined state spaces on the CCR-algebras derived
from our presymplectic vector spaces. The GNS representation of our CCR-algebras in these state spaces
has a kernel, and we have shown that the quantum algebras obtained by quotienting out these kernels are
given functorially. Again, we have justified our constructions by showing that the automorphism group of this
improved functor is the correct one and that the composition property holds true.

In this paper we have restricted ourselves to the simplest case given by a multiplet of inhomogeneous
Klein–Gordon fields, as this choice made it possible to characterize explicitly the relative Cauchy evolution
and the automorphism groups, which were important tools in unraveling the pathological features of the earlier
approach to affine field theories [BDS12]. However, our insights concerning the improved functors describing
the classical and quantum theory of this model remain valid for generic affine field theories as described
in [BDS12]. In particular, the general presymplectic vector space functor in [BDS12] can be promoted via
CanPois to a covariant functor with values in the category of Poisson algebras. This functor can be paired
with the solution space functor corresponding to the equation of motion operators, which are part of the
source category in [BDS12], and the corresponding kernel forms a Poisson ideal. The improved classical
functor for generic affine field theories is then given by taking the quotient of the canonical Poisson algebras
by these Poisson ideals. In the quantized setting one proceeds analogously to Section 7, i.e. one defines
suitable state spaces and studies the kernels of the corresponding GNS representation. The same techniques
apply to Abelian gauge theories [BDS13, BDHS13], where however the following remark is in order: The
kernel of the presymplectic spaces in [BDS13, BDHS13] does not only consist of constant affine functionals,
but also topological observables (‘electric charges’) depending on the topology of spacetime. This implies
that quotienting out the kernel of the pairing between the abstract Poisson algebras and the solution spaces
does not generally yield simple Poisson algebras. The same holds true for quotienting out the kernel of the
GNS representation of the CCR-algebras given by suitable state spaces. This additional degeneracy in the
improved Poisson algebras (or the center in the improved quantum algebras) is the source of the violation of
the injectivity property in Abelian gauge theories. As is clear from the general no-go theorem in [BDHS13],
our approach does not lead to a solution of this problem and hence a complete understanding of Abelian gauge
theories remains to be achieved in future work.

We end this section by commenting on the relation between our improved quantum algebras and the
algebras for the inhomogeneous Klein–Gordon theory used by Hollands and Wald [HW05]. In our notation,
what Hollands and Wald propose is the following construction: Consider the off-shell presymplectic vector
space for a multiplet of p ∈ N Klein–Gordon fields PSHW

p (M ,J) :=
(
C∞0 (M,Rp), σM

)
, where for all

ϕ,ψ ∈ C∞0 (M,Rp), σM (ϕ,ψ) =
∫
M 〈ϕ,EM (ψ)〉 volM . Apply the CCR-functor CCR(PSHW

p (M ,J))
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and consider the two-sided ∗-ideal

IHW
p (M ,J) :=

〈{
KGM (ϕ) +

∫
M
〈ϕ,J〉 volM : ϕ ∈ C∞0 (M,Rp)

}〉
, (9.1)

which is supposed to describe the inhomogeneous Klein–Gordon equation. The algebras of Hollands and
Wald are then defined by the quotient QAHW

p (M ,J) := CCR(PSHW
p (M ,J))/IHW

p (M ,J) and it is easy
to see that they are functorial, i.e. that we have a covariant functor QAHW

p : LocSrcp → ∗Alg. The covariant
functor QAHW

p turns out to be naturally isomorphic to our functor QAp given in Proposition 7.8. Explicitly,
the natural isomorphism κ : QAHW

p ⇒ QAp is given by setting, for all ϕ ∈ C∞0 (M,Rp),

κ(M ,J)(ϕ) =
[
[(ϕ, 0)]

]
, (9.2)

where the outer brackets denote the equivalence relation used in defining QAp and the inner square
brackets that used in defining PSp. The only nontrivial property to show is that κ(M ,J)

(
KGM (ϕ) +∫

M 〈ϕ,J〉 volM
)

= 0, which is easily seen by the following calculation

κ(M ,J)

(
KGM (ϕ) +

∫
M
〈ϕ,J〉 volM

)
=
[[(

KGM (ϕ), 0
)]]

+
[ ∫

M
〈ϕ,J〉 volM

]
=
[[(

KGM (ϕ), 0
)]]

+
[[(

0,

∫
M
〈ϕ,J〉 volM

)]]
=
[[(

KGM (ϕ),

∫
M
〈ϕ,J〉 volM

)]]
= 0 , (9.3)

where we have used (7.8) in the second equality and (2.5) in the last one. Even though our improved quantum
algebras reproduce the earlier constructions by Hollands and Wald, we believe that our strategy for obtaining
these algebras is conceptually better motivated than the slightly ad-hoc ideal (9.1) used in [HW05]. Moreover,
we have determined a number of detailed properties of these models and exemplified the opportunities for
analyzing and distinguishing locally covariant theories by functorial invariants opened up by [Few13].
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A Differentiation of the relative Cauchy evolution and stress-energy tensor

We discuss the sense in which the relative Cauchy evolution of PSp can be differentiated, and show that it
has the derivative stated in the text. Our method follows that of [FV12b, Appendix A]; however, additional
care must be taken when defining a suitable topology. In [FV12b], the relative Cauchy evolution for the
(homogeneous) real scalar field was differentiated using the weak symplectic topology on the solution space
induced by seminorms of the form |σM ( · , φ)|, where σM is the symplectic structure and φ ranges over
the symplectic vector space. An obvious generalization to our present context is to induce a topology from
the presymplectic structure on PSp(M ,J) in a similar way. However, the resulting topology does not
separate points, because the presymplectic structure is degenerate. In particular, it is clear from (3.7) that
the presymplectic structure of any element with an element rce

(PSp)

(M ,J)[h, j]
(
[(ϕ, α)]

)
is independent of j – it

would therefore be impossible to obtain the ‘obviously correct’ derivative given in (3.11b).

The solution to this problem is, as at various other points in this paper, to recall that PSp(M ,J) acts as a
space of functionals on the affine solution space Solp(M ,J) of the inhomogeneous theory. Dually, therefore,
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each solution φ ∈ Solp(M ,J) defines a seminorm |〈〈 · , φ〉〉(M ,J)|, where the pairing 〈〈 · , · 〉〉(M ,J) was
defined in (2.9). The resulting weak-∗ topology does separate points and is the appropriate generalization
of the weak symplectic topology used in [FV12b]. With the topology fixed, differentiability of the relative
Cauchy evolution may be established as follows. From (3.9) we have〈〈(

rce
(PSp)

(M ,J)[h, j]− idPSp(M ,J)

)(
[(ϕ, α)]

)
, φ
〉〉

(M ,J)

=

∫
M

( 〈
(KGM −KGM [h])

(
EM [h](ϕ)

)
, φ
〉
−
〈
j,EM [h](ϕ)

〉
+(1−ρh)

〈
J + j,EM [h](ϕ)

〉 )
volM ,

(A.1)

and the integration region may be restricted, without loss, to any strip S of M containing the support of j and
h. As in [FV12b, Appendix B], energy estimates entail that s 7→ EM [sh](ϕ) is differentiable in L2(S, volM );
the same is true for s 7→ 1− ρsh, with derivative −1

2g
abhab at s = 0. It follows that∫

M

〈
sj,EM [sh](ϕ)

〉
volM = s

∫
M
〈j,EM (ϕ)〉 volM +O(s2) (A.2a)

and ∫
M

(1− ρsh)
〈
J + sj,EM [sh](ϕ)

〉
volM = −s

2

∫
M
gabhab 〈J ,EM (ϕ)〉 volM +O(s2) . (A.2b)

Moreover, the formula∫
M

〈(
KGM −KGM [sh]

)(
EM [sh](ϕ)

)
, φ
〉

volM = −s
∫
M

〈
KG′M [h]

(
EM (ϕ)

)
, φ
〉

volM +O(s2)

(A.3)

was established in [FV12b, Appendix A]. Note that here φ solves the inhomogeneous equation, while its
analogue in the cited reference solved the homogeneous equation. However the difference is inessential,
because the only property of φ used is that it is square-integrable on the strip S. Assembling these observations,

d

ds

〈〈
rce

(PSp)

(M ,J)[sh, sj]
(
[(ϕ, α)]

)
, φ
〉〉

(M ,J)

∣∣∣∣
s=0

= −
〈〈(
T(M ,J)[h] + J(M ,J)[j]

) (
[(ϕ, α)]

)
, φ
〉〉

(M ,J)

(A.4)

for every φ ∈ Solp(M ,J), where T(M ,J)[h] and J(M ,J)[j] were given in (3.11a) and (3.11b). Accordingly,
(3.10) holds in the weak-∗ topology on PSp(M ,J).

To relate these formulae with the classical stress-energy tensor and action, we note that

KG′M [h] =
d

ds
KGM [sh]

∣∣∣
s=0

= −∇ahab∇b +
1

2

(
∇ahbb

)
∇a (A.5)

(unfortunately, a sign error appears in the analogous step in [FV12b]: see the second line of the central
displayed formula on p.1706 of that reference). Inserting this formula and integrating by parts we obtain〈〈

T(M ,J)[h]
(
[(ϕ, α)]

)
, φ
〉〉

(M ,J)
=

∫
M

(
hab

〈
∇bEM (ϕ),∇aφ

〉
− 1

2
hbb∇a 〈∇aEM (ϕ), φ〉

)
volM

+

∫
M

1

2
gab hab 〈J ,EM (ϕ)〉 volM

=

∫
M
hab

(〈
∇bEM (ϕ),∇aφ

〉
− 1

2
gab 〈∇cEM (ϕ),∇cφ〉

+
1

2
m2gab 〈EM (ϕ), φ〉+

1

2
gab 〈J ,EM (ϕ)〉

)
volM

=
1

2

d

ds

∫
M
hab T

ab
(M ,J)[φ+ sEM (ϕ)] volM

∣∣∣∣
s=0

, (A.6)
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thus establishing (3.12), where the stress-energy tensor is given by (3.13) and we have used the fact that

∇a 〈∇aEM (ϕ), φ〉 =
〈
�M

(
EM (ϕ)

)
, φ
〉

+ 〈∇aEM (ϕ),∇aφ〉
= −m2 〈EM (ϕ), φ〉+ 〈∇aEM (ϕ),∇aφ〉 . (A.7)

To conclude, we will express the derivative of the relative Cauchy evolution using the Poisson bracket.
Identifying the space of solutions Solp(M ,J) with phase space, and identifying an element [(ϕ, α)] ∈
PSp(M) with the functional

φ 7→ 〈〈[(ϕ, α)], φ〉〉(M ,J) =

(∫
M
〈φ, ϕ〉 volM

)
+ α (A.8)

on phase space (cf. (2.9)), we already have the Poisson bracket{
[(ϕ, α)], [(ϕ′, α′)]

}
σ(M,J)

(φ) :=
〈〈{

[(ϕ, α)], [(ϕ′, α′)]
}
σ(M,J)

, φ
〉〉

(M ,J)
= EM (ϕ,ϕ′) . (A.9)

Unsmearing the second slot, this gives{
[(ϕ, α)], φ(x)

}
σ(M,J)

(φ) = −
(
EM (ϕ)

)
(x) , (A.10)

where, in an obvious way, φ(x), x ∈M , stands for the functional φ 7→ φ(x) on phase space. Thus, we also
have for the functional φ 7→

∫
M f 〈φ, φ〉 volM{

[(ϕ, α)], φ 7→
∫
M
f 〈φ, φ〉 volM

}
σ(M,J)

(φ) = 2 EM (ϕ, fφ) . (A.11)

Proceeding in this way, one easily obtains the formula

d

ds

〈〈
rce

(PSp)

(M ,J)[sh, sj]
(
[(ϕ, α)]

)
, φ
〉〉

(M ,J)

∣∣∣∣
s=0

=

{
[(ϕ, α)], φ 7→

∫
M

(
1

2
hab T

ab
(M ,J)[φ] + 〈j, φ〉

)
volM

}
σ(M,J)

(φ) , (A.12)

which can also be written in the form (6.18). In this form, it is clear that, just as the relative Cauchy evolution
correctly identifies the current coupling to the metric as the stress-energy tensor, so it also correctly identifies
the ‘current’ coupling to the external source J as the field φ itself.

B Pointed presymplectic spaces

We briefly discuss an alternative method for obtaining a good classical and quantum theory of the inhomo-
geneous models. The idea is to modify the functor PSp, so that it takes values in the category of pointed
presymplectic spaces •PreSymp defined as follows: Objects of •PreSymp are pairs ((V, σV ), 1V ), where
(V, σV ) is an object in PreSymp (so that σV has nontrivial null space) and 1V is a distinguished nonzero
vector in the null space of σV . A morphism L : ((V, σV ), 1V ) → ((W,σW ), 1W ) is a PreSymp morphism
L : (V, σV ) → (W,σW ), such that L(1V ) = 1W . For example, in the one-dimensional vector space with
trivial presymplectic structure I = (R, 0) we may single out the unit of R to obtain a pointed presymplectic
space (I, 1), which is then an initial object of •PreSymp – in fact, we may also regard •PreSymp as the
category of arrows in PreSymp with domain I.

Our modified functor •PSp : LocSrcp → •PreSymp is defined on objects by

•PSp(M ,J) =
(
PSp(M ,J), [(0, 1)]

)
(B.1)

and on morphisms by •PSp(f) = PSp(f), noting that the latter indeed preserve the distinguished elements
[(0, 1)] ∈ PSp(M ,J), which are naturally distinguished by their action on solutions: 〈〈[(0, 1)], φ〉〉(M ,J) =
1 for all φ ∈ Solp(M ,J).

The resulting theory has the expected symmetries.
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Theorem B.1. Every endomorphism of the covariant functor •PSp : LocSrcp → •PreSymp is an automor-
phism and

End(•PSp) = Aut(•PSp) '

{
{id•PSp

} , for m 6= 0 ,

Rp , for m = 0 ,
(B.2)

where for m = 0 the action is given by, for all [(ϕ, α)] ∈ •PSp(M ,J) and µ ∈ Rp,

•η(µ)(M ,J)

(
[(ϕ, α)]

)
=

[(
ϕ, α+

∫
M
〈ϕ, µ〉 volM

)]
. (B.3)

Proof. The forgetful functor •PreSymp → PreSymp induces a faithful homomorphism End(•PSp) →
End(PSp) of monoids. Thus, it suffices to determine which endomorphisms of PSp lift to •PSp. By
Proposition 4.1 and Theorem 4.6, we see that η(−1)(M ,J)([(0, 1)]) = [(0,−1)] so η(−1) does not lift, leaving
only the trivial group for m 6= 0. Similarly, by Proposition 4.2 and Theorem 4.6, we see in the massless case
that η(σ, µ)(M ,J)([(0, 1)]) = [(0, σ)] so η(σ, µ) lifts if and only if σ = 1.

The second problem identified with PSp was its failure to behave correctly with respect to the composition
of systems, see Section 5. In our present context this can be remedied in the following way: The natural
composition of pointed presymplectic spaces ((V, σV ), 1V ) and ((W,σW ), 1W ) is not the direct sum, but
rather the direct sum with amalgamation of distinguished points

((V, σV ), 1V )⊕• ((W,σW ), 1W ) =
(
((V ⊕W )/ ∼, σV⊕W ), J(1V , 0)K

)
, (B.4)

where the equivalence relation implements a quotient by the subspace {(λ1V ,−λ1W ) : λ ∈ R}. Note this is
well-defined due to our assumption that the distinguished elements lie in the null space of the presymplectic
structures. The operation ⊕• gives a monoidal structure on •PreSymp, with monoidal unit (I, 1), just as the
direct sum ⊕ does for PreSymp (with the zero-dimensional presymplectic vector space as the monoidal unit).

Theorem B.2. The theory •PSp obeys the composition property, i.e., there is a natural isomorphism

•PSp
∼= •PSp,q := ⊕• ◦

(
•PSq × •PSp−q

)
◦Splitp,q . (B.5)

Proof. For any object (M ,J) in LocSrcp, define (ηp,q)(M ,J) : •PSp,q(M ,J)→ •PSp(M ,J) by, for all
[(ϕ, α)] ∈ •PSq(M ,Jq) and [(ψ, β)] ∈ •PSp−q(M ,Jp−q),

(ηp,q)(M ,J)

(q(
[(ϕ, α)], [(ψ, β)]

)y)
=
[
(ϕ+ ψ, α+ β)

]
, (B.6)

where on the right hand side we have identified ϕ ∈ C∞0 (M,Rq) and ψ ∈ C∞0 (M,Rp−q) as elements in
C∞0 (M,Rp) (ϕ is placed in the first q and ψ in the last p− q components of Rp). This map is well-defined
(because α and β are summed on the right-hand side of (B.6)), linear and it preserves the distinguished
element and the presymplectic structure. Furthermore, it is invertible via •PSp(M ,J) 3 [(ϕ, α)] 7→q(

[(ϕq, α)], [(ϕp−q, 0)]
)y

, where ϕ = ϕq + ϕp−q denotes the split of ϕ ∈ C∞0 (M,Rp) into the first q and
last p− q components. Hence, (B.6) is an isomorphism in •PreSymp.

To establish naturality, consider any morphism f : (M1,J1)→ (M2,J2) in LocSrcp. It is straightfor-
ward to check commutativity of

q(
[(ϕ, α)], [(ψ, β)]

)y
_

•PSp,q(f)

��

� (ηp,q)(M1,J1) //
[
(ϕ+ ψ, α+ β)

]
_

•PSp(f)

��q(
[(f∗(ϕ), α)], [(f∗(ψ), β)]

)y � (ηp,q)(M2,J2) //
[
(f∗(ϕ+ ψ), α+ β)

]
(B.7)

for all [(ϕ, α)] ∈ •PSq(M1,J
q
1) and [(ψ, β)] ∈ •PSp−q(M1,J

p−q
1 ). Hence, the (ηp,q)(M ,J) form the

components of a natural isomorphism.
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Finally, we consider the quantization of pointed presymplectic spaces via a suitable covariant functor
•CCR : •PreSymp → ∗Alg. On objects we set •CCR((V, σV ), 1V ) = CCR(V, σV )/I(V, σV ), where
I(V, σV ) is the two-sided ∗-ideal generated by 1V − 1. On morphisms L : ((V, σV ), 1V )→ ((W,σW ), 1W )
we have CCR(L)(1V ) = 1W and hence there is a uniquely defined injective ∗-algebra homomorphism
•CCR(L) : •CCR((V, σV ), 1V )→ •CCR((W,σW ), 1W ) making the following diagram commute

CCR(V, σV )

��

CCR(L)
// CCR(W,σW )

��

•CCR((V, σV ), 1V )
•CCR(L)

// •CCR((W,σW ), 1W )

(B.8)

where the vertical morphisms are the quotient maps (and the diagram is drawn in the category of unital
∗-algebras without the requirement that morphisms be monic). Our last result is simply a restatement of the
definition of the improved functor QAp : LocSrcp → ∗Alg in Subsection 7.2.

Theorem B.3. QAp = •CCR ◦ •PSp.

C Deformation quantization

As a further alternative construction of the improved functor QAp : LocSrcp → ∗Alg we focus on deformation
quantization. We show that, starting from the improved Poisson algebra functor PAp : LocSrcp → PoisAlg,
we can obtain for each object (M ,J) in LocSrcp the unital ∗-algebra QAp(M ,J) by deformation quanti-
zation of (the complexification of) the Poisson algebra PAp(M ,J). After this, we make some remarks on
the application of Fedosov quantization [Fed94], which has been studied recently in [SDH12] (although not
adhering strictly to [Fed94], as we will explain) for the inhomogeneous Maxwell field.

Let (M ,J) be any object in LocSrcp and consider the Poisson algebra PAp(M ,J) constructed in
Subsection 6.2, which we shall denote also by A := PAp(M ,J) in order to simplify the notation. We define
a differential graded algebra over the unital algebra A as follows: Consider the graded commutative algebra
Ω• := PAp(M ,J)⊗

∧•PSlin
p (M) with product defined by linearity and, for all a⊗ λ, a′ ⊗ λ′ ∈ Ω•,

(a⊗ λ) (a′ ⊗ λ′) := (a a′)⊗ (λ ∧ λ′) . (C.1)

We define a differential d : Ω• → Ω•+1 by linearity, the graded Leibniz rule and setting, for all 1⊗ λ ∈ Ω•

and [(ϕ, α)]⊗ λ ∈ Ω•,

d
(
1⊗ λ

)
= 0 , d

(
[(ϕ, α)]⊗ λ

)
= 1⊗

(
[ϕ]lin ∧ λ

)
. (C.2)

Using the differential graded algebra (Ω•, d) over A, the Poisson bracket in PAp(M ,J) can be reformulated
as, for all a, a′ ∈ A,

{a, a′}σ(M,J)
= Π

(
da,da′

)
, (C.3)

where the Poisson tensor Π : Ω1 × Ω1 → A is the A-bilinear map that is defined by the following extension
of σlin

M : PSlin
p (M)×PSlin

p (M)→ R, for all a⊗ λ, a′ ⊗ λ′ ∈ Ω1,

Π
(
a⊗ λ, a′ ⊗ λ′

)
:= σlin

M (λ, λ′) a a′ . (C.4)

On the A-module Ω1 there is a canonical connection ∇ : Ω1 → Ω1 ⊗A Ω1 specified by linearity and, for
all a⊗ λ ∈ Ω1,

∇(a⊗ λ) := (1⊗ λ)⊗A (da) . (C.5)

The Leibniz rule∇(ω a) = ∇(ω) a+ ω ⊗A da, for all ω ∈ Ω1 and a ∈ A, is obviously satisfied. The torsion
of ∇ is the A-module homomorphism T : Ω1 → Ω2 defined by, for all ω ∈ Ω1,

T(ω) := ∧
(
∇(ω)

)
+ dω . (C.6)
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One easily checks that the canonical connection ∇ is torsion free. The curvature of ∇ is the A-module
homomorphism R : Ω1 → Ω1 ⊗A Ω2 defined by, for all ω ∈ Ω1,

R(ω) := ∇2(ω) := ∇∇(ω) . (C.7)

When applying ∇ the second time, the usual extension ∇ : Ω1 ⊗A Ω• → Ω1 ⊗A Ω•+1 defined by linearity
and, for all ω ⊗A ω′ ∈ Ω1 ⊗A Ω•,

∇(ω ⊗A ω′) := (idΩ1 ⊗ ∧)
(
∇(ω)⊗A ω′

)
+ ω ⊗A dω′ (C.8)

is implicitly understood. One easily checks that the canonical connection ∇ is flat, i.e., R = 0. As
a last property, notice the canonical connection preserves the Poisson tensor Π, i.e. the A-bilinear map
Q : Ω1 × Ω1 → Ω1 defined by, for all ω, ω′ ∈ Ω1,

Q(ω, ω′) := d
(
Π
(
ω, ω′

))
−Π

(
∇(ω), ω′

)
−Π

(
ω,∇(ω′)

)
(C.9)

vanishes. To sum up, we have shown that the canonical connection ∇ : Ω1 → Ω1 ⊗A Ω1 is a flat and torsion
free Poisson connection.

As the next step, we consider the tensor module E :=
⊕∞

n=0

(
Ω1
)⊗n

A , which is an N0-graded A-module
that describes tensor fields on A. The connection ∇ on Ω1 lifts to a connection on E =

⊕∞
n=0 En via a

recursive construction: On E0 ' A we choose the connection ∇0 : A → A ⊗A Ω1 ' Ω1 given by the
differential d. On E1 = Ω1 we take the canonical connection∇1 = ∇ : Ω1 → Ω1⊗A Ω1. Given a connection
∇n on En = Ω1 ⊗A · · · ⊗A Ω1 (n-times) we construct a connection ∇n+1 : En+1 → En+1 ⊗A Ω1 on
En+1 = En ⊗A Ω1 by linearity and setting, for all ω ⊗A ω′ ∈ En ⊗A Ω1,

∇n+1(ω ⊗A ω′) := (idEn ⊗ τ)
(
∇n(ω)⊗A ω′

)
+ ω ⊗A ∇1(ω′) , (C.10)

where τ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1 is the flip map, for all ω ⊗A ω′, τ(ω ⊗A ω′) = ω′ ⊗A ω. To simplify the
notation, we shall denote the resulting connection on E by∇E and notice that we can regard it as a linear map
(of degree 1)∇E : E → E .

Since ∇ is a flat and torsion free Poisson connection, we can define an associative ?-product on the
complexification of A (denoted with abuse of notation also by A), for all a, a′ ∈ A,

a ?(Π,∇) a
′ :=

∞∑
n=0

1

n!

(
i

2

)n
Πn
(
∇nE(a),∇nE(a′)

)
. (C.11)

Here ∇nE denotes the n-times iterated application of ∇E and Πn : En × En → A is the A-bilinear map
specified by, for all ω1, . . . , ωn, ω

′
1, . . . , ω

′
n ∈ Ω1,

Πn
(
ω1 ⊗A · · · ⊗A ωn, ω′1 ⊗A · · · ,⊗Aω′n

)
:= Π(ω1, ω

′
1) · · ·Π(ωn, ω

′
n) (C.12)

and Π0(a, a′) = a a′, for all a, a′ ∈ A. Notice that the sum in (C.11) terminates, since a, a′ ∈ A are
polynomials, hence ∇mE (a) = 0 and ∇m′E (a′) = 0 for sufficiently large m,m′ ∈ N (see also (C.13)
below). Furthermore, the ?-product ?(Π,∇) is hermitian if we equip A with the involution ∗ defined by(
[(ϕ1, α1)] · · · [(ϕn, αn)]

)∗
= [(ϕ1, α1)] · · · [(ϕn, αn)] and C-antilinear extension.

It remains to show that the ?-product (C.11) coincides with the product in QAp(M ,J), which is defined
in (7.1). For the elements [(ϕ, α)]m ∈ A we find, for all k ≤ m,

∇kE
(
[(ϕ, α)]m

)
=

m!

(m− k)!
[(ϕ, α)]m−k ⊗ [ϕ]lin

⊗k
, (C.13)

and for k > m,∇kE
(
[(ϕ, α)]m

)
= 0. Plugging this into (C.11) we obtain, for all [(ϕ, α)]m, [(ϕ′, α′)]n ∈ A,

[(ϕ, α)]m ?(Π,∇) [(ϕ′, α′)]n

=

min(m,n)∑
k=0

(
iσlin

M ([ϕ]lin, [ϕ′]lin)

2

)k
m!n!

k! (m− k)! (n− k)!
[(ϕ, α)]m−k [(ϕ′, α′)]n−k . (C.14)
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This shows that the products (C.11) and (7.1) coincide.

In view of this direct construction of the ?-product (C.11) given above, the application of full-fledged
Fedosov quantization [Fed94] to our model is not required. However, we shall now focus on this quantization
method using our algebraic approach developed in this appendix, as this will clarify certain issues in an earlier
treatment of this subject [SDH12]. The basic structure entering Fedosov’s approach is a bundle of CCR-
algebras over a symplectic (or regular Poisson) manifold. In our algebraic approach this bundle is given by the
A-moduleW := S⊗A(Ω1), where S⊗A(Ω1) is the (complexified) symmetric tensor algebra with respect to
the tensor product ⊗A of the A-module of one-forms Ω1 on A. Using that Ω1 = PAp(M ,J)⊗PSlin

p (M),
W is isomorphic to PAp(M ,J) ⊗ S

(
PSlin

p (M)
)
. We shall suppress this isomorphism. Notice that

S
(
PSlin

p (M)
)

is the vector space underlying the CCR-algebra B := CQAlin
p (M) = CCR

(
PSlin

p (M)
)

– the quantum algebra of observables of the homogeneous theory – hence, we can equip the A-module
W = A⊗B with a (noncommutative) product, for all a⊗ b, a′ ⊗ b′ ∈ A⊗B,

(a⊗ b) (a′ ⊗ b′) := (a a′)⊗ (b ? b′) . (C.15)

Notice that A can be identified with a commutative subalgebra ofW via A→W , a 7→ a⊗ 1. Fedosov’s
idea is to characterize a subalgebra A? ofW in such a way that A? is isomorphic to A as a vector space and
that the induced product on A? is a deformation quantization of the Poisson structure on A. To achieve this
goal, the first step is to construct a suitable connection onW as follows: Given the canonical connection∇
on Ω1, we can induce a tensor product connection ∇W onW via the prescription outlined in (C.10). This
connection extends analogously to (C.8) to a linear map ∇W : W ⊗A Ω• → W ⊗A Ω•+1. Notice that
W ⊗A Ω• is an N0-graded algebra (the grading is inherited from that of differential forms Ω•) by setting, for
all w ⊗A ω,w′ ⊗A ω′ ∈ W ⊗A Ω•, (w ⊗A ω) (w′ ⊗A ω′) = (w w′)⊗A (ω ω′). It is easy to check that ∇W
is flat, i.e. RW = ∇2

W = 0, since it is the tensor product connection of our flat canonical connection∇ on Ω1.
Furthermore, ∇W satisfies the graded Leibniz rule on the N0-graded algebra, for all homogeneous elements
w•,w•′ ∈ W ⊗A Ω•,

∇W
(
w•w•′

)
=
(
∇W(w•)

)
w•′ + (−1)|w

•|w•∇W(w•′) . (C.16)

Thus,∇W structuresW⊗AΩ• as a differential graded algebra. Fedosov’s idea [Fed94] is now to modify∇W
into a differential D :W⊗A Ω• →W⊗A Ω•+1, such that the kernel ker(D)∩W , which is a unital ∗-algebra
under the product inherited fromW ⊗A Ω•, gives the desired deformation quantization of A. Because ∇W
is flat, this construction drastically simplifies and we do not have to take into account the corrections by
curvature dependent terms as in [Fed94]. The Fedosov differential for our model is given by

D := −δ +∇W , (C.17)

where δ : W ⊗A Ω• → W ⊗A Ω•+1 is the A-module homomorphism defined by linearity and, for all
a⊗

(
[ϕ1]lin · · · [ϕn]lin

)
⊗ λ ∈ A⊗B ⊗

∧•PSlin
p (M) ' W ⊗A Ω•,

δ
(
a⊗

(
[ϕ1]lin · · · [ϕn]lin

)
⊗ λ
)

=

n∑
j=1

a⊗
(
[ϕ1]lin · · ·

j
∨. · · · [ϕn]lin

)
⊗
(
[ϕj ]

lin ∧ λ
)
. (C.18)

It is easy to check that δ satisfies the graded Leibniz rule, δ2 = 0 and δ ◦ ∇W +∇W ◦ δ = 0, from which it
follows that D is a differential onW ⊗A Ω•.

We now come to the characterization of the kernel ker(D) ∩ W . Like in [Fed94], we are making
use of the A-module homomorphism δ∗ : W ⊗A Ω• → W ⊗A Ω•−1 defined by linearity and, for all
a⊗ b⊗

(
[ϕ1]lin ∧ · · · ∧ [ϕn]lin

)
∈ A⊗B ⊗

∧•PSlin
p (M) ' W ⊗A Ω•,

δ∗
(
a⊗ b⊗

(
[ϕ1]lin ∧ · · · ∧ [ϕn]lin

))
=

n∑
j=1

(−1)j+1 a⊗
(
b [ϕj ]

lin
)
⊗
(
[ϕ1]lin ∧ · · ·

j
∨. · · · ∧ [ϕn]lin

)
.

(C.19)
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It is easy to check that δ∗2 = 0 and that δ∗ ◦ δ+ δ ◦ δ∗ = (n+m) id, when acting on homogeneous elements
a⊗

(
[ϕ1]lin · · · [ϕn]lin

)
⊗
(
[ϕn+1]lin ∧ · · · ∧ [ϕn+m]lin

)
. The latter property implies that

δ−1 ◦ δ + δ ◦ δ−1 + σ = idW⊗AΩ• (C.20)

on all of W ⊗A Ω•, where δ−1 : W ⊗A Ω• → W ⊗A Ω•−1 is defined on homogeneous elements by
δ−1 = δ∗/(n+m) for n+m 6= 0 and δ−1 = 0 for n+m = 0. The linear map σ :W ⊗A Ω• → A is the
projection defined by σ(a ⊗ 1 ⊗ 1) = a and σ(a ⊗ b ⊗ λ) = 0 if the degree of b or λ is not equal to zero.
Following the proof of Fedosov [Fed94], we can show that the map σ : ker(D) ∩W → A is bijective, i.e.
that for any a ∈ A there exists a unique w ∈ W , such that D(w) = 0 and σ(w) = a. We briefly sketch the
relevant steps: Let w ∈ W be such that 0 = D(w) = −δw +∇W(w). Applying δ−1 and using (C.20) this
yields the equation

w = σ(w) + δ−1
(
∇W(w)

)
. (C.21)

Notice that σ(w) has degree (0, 0) according to the natural grading (n,m) onW ⊗A Ω• discussed above.
The map ∇W increases the form-degree by one (n,m) 7→ (n,m + 1), while the map δ−1 decreases the
form-degree by one and increases the B-degree by one (n,m) 7→ (n+ 1,m− 1). Hence, δ−1 ◦∇W increases
the B-degree by one (n,m) 7→ (n+ 1,m) and equation (C.21) can be solved uniquely by iteration for any
initial condition σ(w) = a (since A is a polynomial algebra this requires just a finite number of iterations).
For any initial condition σ(w) = a ∈ A, the solution w to (C.21) satisfies D(w) = 0 as a consequence of
D being a differential, cf. [Fed94]. This establishes the bijection σ : ker(D) ∩ W → A and we define a
?-product on A by setting, for all a, a′ ∈ A,

a ?F a
′ := σ

(
σ−1(a)σ−1(a′)

)
, (C.22)

where the product between σ−1(a) and σ−1(a′) is of course taken inW .

It remains to show that (C.22) coincides with the product (7.1). For this let us take [(ϕ, α)]m ∈ A and
notice that

σ−1
(
[(ϕ, α)]m

)
=

m∑
j=0

(
m

j

)
[(ϕ, α)]m−j ⊗

(
[ϕ]lin

)j
. (C.23)

From this expression and a slightly tedious calculation one obtains that

[(ϕ, α)]m ?F [(ϕ′, α′)]n = σ
(
σ−1

(
[(ϕ, α)]m

)
σ−1

(
[(ϕ′, α′)]n

))
= [(ϕ, α)]m ? [(ϕ′, α′)]n , (C.24)

where the product on the right hand side is (7.1). So the three products (7.1), (C.11) and (C.22) all coincide
on the complexification of PAp(M ,J) and hence give the same quantum algebra QAp(M ,J).

To conclude, we make some remarks on the quantization prescription pursued in [SDH12], which is
described as being a Fedosov quantization, but in fact differs in essential respects from the Fedosov method
[Fed94]. Briefly, the method of [SDH12] is to construct a bundle A of infinitesimal Weyl algebras over an
affine space V , equipped with a Poisson structure, and then to define the quantized algebra as the algebra
of flat sections in A with respect to a certain connection. While this basic idea matches exactly with the
Fedosov construction, the starting point chosen in [SDH12] is an affine connection on the tangent bundle of
V with prescribed affine parallel transport maps between all fibres. The problem with this choice is that the
affine connection does not dualize to the cotangent bundle and in particular not to the bundle of infinitesimal
Weyl algebras A.7 This issue is sidestepped in [SDH12], by regarding elements of the infinitesimal Weyl
algebras as symmetric polynomials acting on the vector space V0 on which V is modeled, which permits
a unique parallel transport between fibres in A to be defined. This could be regarded as a slightly ad hoc

7The correct dualization would be to the vector dual bundle of the tangent bundle regarded in the category of affine bundles, but
this would lead to the following logical problem: Instead of replacing the problem of quantizing affine Poisson spaces by quantizing
linear Poisson spaces (which Fedosov’s method does, as explained above), the choice of affine connection in [SDH12] replaces the
problem of quantizing affine Poisson spaces by quantizing affine Poisson spaces in the fibres.
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mixture of the quantized and classical theories, because V0 is analogous to the classical solution space of the
homogeneous theory. By contrast, our prescriptions for improved theories are based on classical structures in
the classical case and quantum structures in the quantum case. The connection thus employed in [SDH12] is
much more rigid than that of [Fed94], which does not integrate to a unique parallel transport between fibres
(see [Fed94, p. 222]).8 With these thoughts in mind, the approach in [SDH12] might be better described as
‘Fedosov-inspired’ rather than an application of Fedosov’s method as such; nonetheless, this procedure does
lead to the correct ‘improved algebra’. We note, however, that the summary [SDH12, Definition 4.3.] does
not adequately capture the result of the ‘Fedosov-inspired’ procedure, because the algebraic relations posed
do not ensure that the generator corresponding to the unit constant functional on V is a unit in the algebra
[as needed in the ‘improved’ algebra]; as it stands, the algebra therefore has an obvious Z2 automorphism
by negating the generators, which becomes a natural automorphism when the prescription is regarded as a
functor from affine Poisson spaces to unital ∗-algebras (as in [SDH12, Lemma 4.11.]) and recreates one of
the pathologies of the unimproved theory. The quantizations of specific theories given in [SDH12] are free of
this problem, because they are not strict applications of [SDH12, Definition 4.3.], but add a further axiom
implementing the inhomogeneous field equation after the manner of [HW05].
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Poincaré 15, 171 – 211 (2014) [arXiv:1210.3457 [math-ph]].

[BDS13] M. Benini, C. Dappiaggi and A. Schenkel, “Quantized Abelian principal connections on Lorentzian
manifolds,” to appear in Communications in Mathematical Physics arXiv:1303.2515 [math-ph].

[BFR13] R. Brunetti, K. Fredenhagen and K. Rejzner, “Quantum gravity from the point of view of locally
covariant quantum field theory,” arXiv:1306.1058 [math-ph].

[BFV03] R. Brunetti, K. Fredenhagen and R. Verch, “The generally covariant locality principle: A New
paradigm for local quantum field theory,” Commun. Math. Phys. 237, 31 (2003) [math-ph/0112041].

[Fed94] B. V. Fedosov, “A Simple geometrical construction of deformation quantization,” J. Diff. Geom. 40,
213 (1994).

[Fer13] M. Ferguson, “Dynamical Locality of the nonminimally coupled scalar field and enlarged algebra of
Wick polynomials,” Annales Henri Poincaré 14, 853 (2013) [math-ph/1203.2151].
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