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Modelling Stochastic Correlation

Long Teng, Matthias Ehrhardt and Michael Günther

Abstract This work deals with the stochastic modelling of correlation in finance. It is well known that the
correlation between financial products, financial institutions, e.g., plays an essential role in pricing and eval-
uation of financial derivatives. Using simply a constant or deterministic correlation may lead to correlation
risk, since market observations give evidence that the correlation is hardly a deterministic quantity.

The approach of modelling the correlation as a hyperbolic function of a stochastic process was proposed
recently by Teng et al. in [14]. Here, we review this novel concept and generalize this approach to derive
stochastic correlation processes (SCP) from a hyperbolic transformation of the modified Ornstein-Uhlenbeck
process.
We determine a transition density function of this SCP in closed form which could be used easily to cal-
ibrate SCP models to historical data.

As an illustrating example of our new approach, we compute the price of a quantity adjusting option
(Quanto) and discuss concisely the effect of considering stochastic correlation on pricing the Quanto.

1 Introduction

Correlation is a well established concept for quantifying the relationship between financial assets. It plays
an essential role in several financial applications, e.g. the arbitrage pricing model [3] is based on correlation
as a measure for the dependence of assets. Also in portfolio credit models, the default correlation is one
fundamental factor of risk evaluation, see e.g. [2] and [13].

For two random variables X1 and X2 with finite variances, the correlation of them is defined as

ρ1,2 = Corr(X1,X2) =
Cov(X1,X2)

σ1σ2
, (1)

with the covariance
Cov(X1,X2) = E

[
(X1−µ1)(X2−µ2)

]
, (2)
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2 Long Teng, Matthias Ehrhardt and Michael Günther

where µi and σi are the expectation and standard deviation of Xi, i = 1,2. Here ρ1,2 denotes a coefficient
number in the interval [−1,1]. The boundaries −1 and 1 will be reached if and only if X1 and X2 are indeed
linearly related. The greater the absolute value of ρ1,2 the stronger the dependence between X1 and X2 is.

Generally, there are several disadvantages or fallacies of the correlation concept (1), we state only some
of them:

• If the random variables X1 and X2 are independent, then it follows ρ1,2 = 0. However, the converse
implication does not hold, since in (1) only the two first moments are included. For example, we compute
ρ1,2 = 0 for X2 = X2

1 . Indeed, X1 and X2 depend even almost perfectly on each other. This illustrates that
the correlation coefficient only recognizes linear dependencies between random variables.

• Correlation is invariant under strictly increasing linear transformations, but, in contrast to Copula meth-
ods, not invariant under nonlinear strictly increasing transformations. For example, in general the corre-
lation of the random variables X1 and X2 does not equal the correlation of the random variables lnX1 and
lnX2, i.e. after a transformation of the financial data the correlation may change.

• Usually, the given marginal distributions and pairwise correlations of a random vector cannot determine
its joint distribution.

• Finally, as stated above, the variances of the two random variables X1 and X2 has to be finite. This assump-
tions is not fulfilled for every standard distribution, e.g. the Student’s t-distribution with v≤ 2 possess an
infinite variance.

For more detailed information about the disadvantages or fallacies we refer to [7]. Although this concept of
correlation (1) to measure dependence inherits a couple of limitations, it has been widely applied in financial
applications.

In financial markets, the first problem of using a correlation concept is the observability. Unlike price,
exchange rate and so on, the correlation cannot be observed directly in the market and can only be measured
in the context of a model. The easiest estimator of the correlation is the sample correlation coefficient. Given
a series of N measurements of X1 and X2, which are observable quantities in the market, and denoting the
measurements by x1, j and x2, j, j = 1,2, . . . ,N, the sample coefficient correlation reads

ρ̂12 =
∑

N
j=1(x1, j− µ̄1)(x2, j− µ̄2)√

∑
N
j=1(x1, j− µ̄1)2 ∑

N
j=1(x2, j− µ̄2)2

, (3)

where µ̄1 and µ̄2 are the sample means of X1 and X2.
In financial models, stochastic processes are used quite often to model data series, like price, interest rate

and exchange rate. The dependence between the series is given by the correlated Brownian motions. Two
Brownian motions W1 and W2 are correlated by the symbolic notion

dW1,t dW2,t = ρ1,2 dt. (4)

For example, in the multivariate Black-Scholes model, the correlation of the log-returns is used as a measure
of the dependence between asset processes. A further example of coupled stochastic processes is the quantity
adjusting option (Quanto) pricing in the Black-Scholes model:{

dSt = µSSt dt +σSSt dW S
t

dRt = µRRt dt +σRRt dW R
t ,

(5)
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Modelling Stochastic Correlation 3

with positive constants µS, µR, σS and σR. The first stochastic differential equation (SDE) describes the
price of the traded asset in a currency A. The second SDE is used to model the exchange rate between
currency A and another currency B. Besides, the Brownian motions are assumed to be correlated by a
constant correlation ρ ∈ [−1,1] which is a measure of co-movements between St and Rt .

As we explained above, the constant correlation coefficient defined by (1) only captures linear relation-
ships between X1 and X2. Therefore, in the model (5) a linear dependence between St and Rt is assumed.
However, from the market we realize that there is often a non-linear dependence between returns. Specifi-
cally, a constant correlation means that the two return processes are jointly stationary which is generally not
true in the real world. Thus, the dependence can be hardly modelled by a fixed constant, i.e. the constant
correlation may not be an appropriate measure of co-dependence. Using constant (“wrong”) correlation may
result some ’correlation risk’. There exist already some works which show that the correlation should not
be constant and even changes over a small time interval as the volatility, see e.g. [12]. Several approaches
generalize the constant correlation to a time-varying and stochastic concept, like Dynamic Conditional Cor-
relation model in [11], Local correlation models see e.g. [6] and the Wishart autoregressive process proposed
by Gourieroux [4] that guarantees the positive definiteness of the variance-covariance matrix.

In fact, either implied correlation in the context of a model or historical correlation from the market
data show us that the correlation should be time-varying and behave like a stochastic process. To illustrate
this statement, we make an example of historical correlations between S&P 500 index and Euro/US-Dollar
exchange rate on a daily basis. We use s̄ and r̄ to denote the daily return series of S&P 500 and Euro/US-
Dollar exchange rate and fix a time window nT , e.g. nT = 60 for 60-day historical correlation. At time t,
using the nT times most recent daily returns, the correlation at time t is given by the following estimator

ρ̂t =
∑

nT
j=1(ŝt− j− 1

nT
∑

nT
j=1 ŝt− j)(r̂t− j− 1

nT
∑

nT
j=1 r̂t− j)√

∑
nT
j=1(ŝt− j− 1

nT
∑

nT
j=1 ŝt− j)2 ∑

nT
j=1(r̂t− j− 1

nT
∑

nT
j=1 r̂t− j)2

. (6)

Then we roll it to the time t+1, and so on to obtain a series of correlations through the time. The 15-day, 30-
day and 60-day historical correlations are displayed in Figure 1. We observe that the longer a time window
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Fig. 1: Historical Correlation between S&P 500 and Euro/US-Dollar exchange rate.1
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4 Long Teng, Matthias Ehrhardt and Michael Günther

(the value of nT ) the less volatile a historical correlation is. In Figure 1, the 15-day historical correlation is
more variable than the 30-day historical correlation which is again more variable than the 60-day correlation.
With a longer averaging period a long-term correlation is calculated. If we choose nT = 10 or 15 days, the
estimated estimated correlation for each time t using (6), could be seen as a short-term correlation of the
current market phenomena whose immediate past returns are used for the estimation. It is worthwhile noting
that the events, especially, some extreme events in a time window will affect the correlation which would be
estimated in the following time windows, even has a delayed effect on the long-term correlation.

If one assumes that the phenomena in the past could be a reflection of the future, one would like to use
the historical correlation as a forecast for the future. It could be a better way for correlation forecasting, if
one describes the correlation using a mean-reverting stochastic process. Besides, modelling correlation as a
stochastic process, not only the variation of the short-term correlation can be reflected, also the attributes of
long-term correlation is determined by the long-term parameter values, like long-term mean value and mean
reversion speed.

To see more properties, which a mean-reverting stochastic process should have to be a SCP, we plot its
empirical density functions in Figure 2 using different bandwidths. We refer to [1] for details about the
estimation of density function from historical data.
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(a) bandwidth 1/40
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Fig. 2: Empirical Density function of the historical correlation between S&P 500 and Euro/US-Dollar ex-
change rate.

From studying the empirical density functions we require that the stochastic correlation process should
satisfy the following properties:

(i) only takes values in the interval (−1,1),
(ii) varies around a mean value,

(iii) the probability mass tends to zero at the boundaries −1, +1.

One stochastic correlation process was proposed by van Emmerich [16], including a restriction on the
parameter range to ensure that the boundaries −1 and 1 of the correlation process are not attractive and
unattainable. A modified Jacobi process is suggested in [8] modelling stochastic correlation. A more general
stochastic correlation process was proposed by Teng et al. [14], which relies on the hyperbolic transformation

1 Source of data: www.yahoo.com
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Modelling Stochastic Correlation 5

with the function tangens hyperbolicus of any mean-reverting process with positive and negative values, the
properties (i)–(iii) above can be thus directly satisfied without facing any additional parameter restrictions.
Hence, the subsequent calibration process is much simpler.

In this work, we study the general SCP by Teng et al. [14]. We show that the correlation process by van
Emmerich can be obtained by this general method, i.e. the correlation process by van Emmerich turns out to
be a special case of the hyperbolic transformation of a stochastic process. Furthermore, we apply this general
approach to find a new SCP which has a transition density function in closed form. Finally, as an illustrating
example, we compute the price of Quanto under stochastic correlation by our new SCP and investigate the
effect of considering stochastic correlation on pricing the Quanto.

2 A General Stochastic Correlation Model

Here we study the hyperbolic transformation proposed in [14] of a mean-reverting process to be a correlation
process. We show that the correlation process model of van Emmerich [16] can be obtained by transforming
a mean-reverting process with the tangens hyperbolicus function. We fix a probability space (Ω ,F ,P) and
an information filtration (Ft)t∈R+ satisfying the standard conditions, see e.g. [9].

2.1 The transformed Mean-reverting Process

For the motivations and the properties (i)–(iii) in Section 1, Teng et al. [14] proposed the tangens hyper-
bolicus function of a mean-reverting stochastic process Xt , like the Ornstein-Uhlenbeck process [15] or the
square root diffusion processes (with positive and negative values)

dXt = a(t,Xt)dt +b(t,Xt)dWt , t ≥ 0, X0 = x0, (7)

to model the correlations as
ρt = tanh(Xt), ρ0 = tanh(x0) ∈ (−1,1). (8)

Obviously, the properties (i)–(iii) are fulfilled due to the range of values of the tangens hyperbolicus and
mean reversion of the process. Besides, the function tanh is symmetrical and measurable. Although the
function tanh can not really attain −1 and 1 which presents perfect negative and perfect positive depen-
dence, respectively. It should make no difference to use this function for modelling correlations, because the
correlation equal to −1 or 1 is indeed an extreme event which happens very rarely in the real market, see
e.g. Figure 1. Besides, the function tanh tends to the boundaries −1 and 1 at infinity.

Applying Itô’s Lemma with (8)

dρt = d tanh(Xt) =
∂ tanh(Xt)

∂ t
dt +

∂ tanh(Xt)

∂x
dXt +

1
2

∂ 2 tanh(Xt)

∂x2 (dXt)
2 , (9)

we obtain the stochastic correlation process (SCP)

dρt = (1−ρ
2
t )
(
(ã−ρt b̃2)dt + b̃dWt

)
, t ≥ 0, (10)
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6 Long Teng, Matthias Ehrhardt and Michael Günther

where ρ0 ∈ (−1,1), ã = a(t,artanh(ρt)) and b̃ = b(t,artanh(ρt)). From (10) we see that there is a suitable
number of free parameters to calibrate the model to market data. Besides, it is obvious, in this approach any
mean-reverting process (with positive and negative values) can be considered without facing any additional
parameter restrictions. The free parameters are hidden in the functions a and b, see the example (13) in
Section 2.3 and (21) in Section 3.1.

2.2 Transformation with other functions

Although we could intuitively observe that the function tanh(x) is eminently suitable for correlation mod-
elling, one can still ask whether other functions having values inside the interval (−1,1), like trigonometric
functions or 2

π
arctan(π

2 x), x∈R can also be applied for this purpose? In theory, such functions could be used
for the SCP model above. However, the trigonometric function is a periodic function, the arising complex
number will complicate further calculations. For the function 2

π
arctan(π

2 x), its Itô’s formula for (7) is given
by

dρt = d
2
π

arctan
(

π

2
Xt

)
=

(
ã(

1+ tan2(ρt π
2 )
) − π b̃2 tan(ρt π

2 )

2
(
1+ tan2(ρt π

2 )
)2

)
dt

+
b̃(

1+ tan2(ρt π
2 )
) dWt ,

(11)

which is rather complicate such that the further computation will turn out to be tedious. Nevertheless, we will
additionally consider the function 2

π
arctan(π

2 x) which is, like tanh(x) close to the identity in the neighbour-
hood of x = 0, see Figure 3. However, compared with tanh(x), the function 2

π
arctan(π

2 x) grows much slower
up to 1 and down to−1, the estimation of the correlation will thus be worsened, similar to the estimation for
the heavy tailed distributions.

2.3 The Correlation Model of van Emmerich

As an example, we show that the correlation model of van Emmerich can be obtained by transforming a
special mean-reverting process (12), i.e. the van Emmerich’s correlation process is just a special case of the
general transformation [14]. To do so, we define the following mean-reverting process

dXt =
κ
(
µ− tanh(Xt)

)
1− tanh2(Xt)

dt +
σ√

1− tanh2(Xt)
dWt , t ≥ 0, X0 = x0, (12)

where κ and σ are positive, µ ∈ (−1,1). Next, we transform (12) with ρt = tanh(Xt). Again, applying Itô’s
Lemma we obtain in a tedious calculation

dρt =
[
(κ(µ−ρt))−σ

2
ρt
]

dt +σ

√
1−ρ2

t dWt . (13)

Next, if we define
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Fig. 3: Comparison of tanh(x) and 2
π

arctan(π

2 x) : the later is less steep having larger tails.

κ
∗ = κ +σ

2, µ
∗ =

κµ

κ +σ2 , σ
∗ = σ (14)

the correlation process (13) can be rewritten as

dρt = κ
∗(µ∗−ρt)dt +σ

∗
√

1−ρ2
t dWt , (15)

which is exactly the van Emmerich’s correlation process in [16]. Due to the transformation with the function
tanh, the correlations provided by (15), with coefficients (14), are obviously located in the interval (−1,1).
We can check this important property in another way: We recall that van Emmerich [16] derived the analytic
condition

κ
∗ ≥ σ∗

1±µ∗ (16)

to ensure that the boundaries −1 and 1 are unattainable. We see that the correlation process (15) must have
already satisfied the condition (16): Substituting (14) in (16) we obtain

σ2

κ(1±µ)+σ2 ≤ 1, (17)

which always holds whilst κ is positive and µ ∈ (−1,1).

3 Stochastic Correlation with a modified Ornstein-Uhlenbeck process

In this section, we specify a SCP by a hyperbolic transformation of the modified Ornstein-Uhlenbeck pro-
cess. The derivation of the transition density function of this SCP is provided in a closed form. Then, we
analyse this density function and show how to fit the correlation process to the historical market data.
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8 Long Teng, Matthias Ehrhardt and Michael Günther

3.1 The Transformed modified Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is defined by the SDE

dXt = κ(µ−Xt)dt +σ dWt , (18)

where κ , σ > 0 and X0, µ ∈R. If we want to restrict the mean value µ to be only in (−1,1), it is reasonable
to modify the Ornstein-Uhlenbeck process (18) as

dXt = κ
(
µ− tanh(Xt)

)
dt +σ dWt , (19)

where κ , σ > 0 and X0, µ ∈ (−1,1).

Lemma 1. Applying Itô’s Lemma with ρt = tanh(Xt),

dρt =
∂ tanh(Xt)

∂x
dXt +

1
2

∂ 2 tanh(Xt)

∂x2 σ
2 dt (20)

yields the stochastic correlation process

dρt = (1−ρ
2
t )
(
κ(µ−ρt)−σ

2
ρt
)

dt +(1−ρ
2
t )σ dWt , (21)

where t ≥ 0, ρ0 ∈ (−1,1), κ , σ > 0 and µ ∈ (−1,1).

Proof.

(20) = sech2(Xt)κ
(
µ− tanh(Xt)

)
dt− sech2(Xt)

sinh(Xt)

cosh(Xt)
σ

2dt + sech2(Xt)σ
2dWt

= (1−ρ
2
t )κ(µ−ρt)dt− (1−ρ

2
t )ρtσ

2dt +(1−ρ
2
t )σ

2dWt = (21). ut

Next, we modify the notation and rewrite (21) as

κ
∗ = κ +σ

2, µ
∗ =

κµ

κ +σ2 , σ
∗ = σ , (22)

dρt

1−ρ2
t
= κ

∗(µ∗−ρt)dt +σ
∗ dWt , (23)

where t ≥ 0, ρ0 ∈ (−1,1), κ∗, σ∗ > 0 and µ∗ ∈ (−1,1).

3.2 Transition density function

For calibration purposes, we first determine the transition density function of (23) with the aid of the Fokker-
Planck equation [10]. Then, we obtain the parameters of the correlation process (23) by fitting the density
function to the market data.

Let us assume that the SCP (23) possesses a transition density f (t, ρ̃|ρ0) which satisfies the following
Fokker-Planck equation
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Modelling Stochastic Correlation 9

∂

∂ t
f (t, ρ̃)+

∂

∂ ρ̃

(
â(t, ρ̃) f (t, ρ̃)

)
− 1

2
∂ 2

∂ ρ̃2

(
b̂(t, ρ̃)2 f (t, ρ̃)

)
= 0, (24)

with
â(t, ρ̃) = κ

∗(µ∗−ρt)(1− ρ̃
2), b̂(t, ρ̃) = (1− ρ̃

2)σ∗. (25)

For the calibration purpose we consider the stationary density (for t→ ∞)

f (ρ̃) := lim
t→∞

f (t, ρ̃|ρ0). (26)

With the above construction the SCP (23) is also a mean-reverting process. Thus one can show that every
two solutions of (24) are the same for t→ ∞, i.e. a unique stationary solution f (ρ̃) exists, c.f. [10].

In the sequel, we show how to determine the analytical stationary density function f (ρ̃) of the SCP (23).
First, the stationary density function f (ρ̃) obviously satisfies

∂

∂ ρ̃

(
(1− ρ̃

2)
(
κ
∗(µ∗−ρt)

)
f (ρ̃)

)
=

1
2

∂ 2

∂ ρ̃2

(
(1− ρ̃

2)σ∗
)2 f (ρ̃). (27)

By solving the elliptic equation (27) we obtain the stationary density f (ρ̃) as

f (ρ̃) =
m

2
κ∗
σ∗

(1+ ρ̃)
κ∗−2σ∗2

σ∗2 + κ∗µ∗
σ∗2 (1− ρ̃)

κ∗−2σ∗2

σ∗2 − κ∗µ∗
σ∗2

+
n

ρ̃2−1

(
1
2

) 2σ∗2−κ∗
σ∗2

F

(
1,

2σ∗2−2κ∗

σ∗2 ,
(−µ∗−1)κ∗+2σ∗2

σ∗2 ,
ρ̃

2
+

1
2

) (28)

with the constants m, n ∈ R and the hypergeometric function F which is defined as

F(a,b,c,x) =
∞

∑
k=0

xk

k!
(a)k(b)k

(c)k
, |x|< 1, (29)

where (·)k denotes the Pochhammer symbol,

(a)k = a(a+1)(a+2) · · ·(a+ k−1), (a)0 = 1. (30)

Next we need to fix the constants m and n in (28) to obtain the stationary density. Due to the mean reversion
the stationary density f (ρ̃) must satisfy ∫ 1

−1
ρ̃ f (ρ̃)dρ̃ = µ

∗.

If we choose µ∗ = 0, we observe that the first term in (28) becomes

m

2
κ∗

σ∗2
(1+ ρ̃)

κ∗−2σ∗2

σ∗2 (1− ρ̃)
κ∗−2σ∗2

σ∗2 , (31)

which is obviously symmetric around ρ̃ = 0, i.e. the condition (31) will be fulfilled for n= 0. In the sequel we
assume that n≡ 0 for all general µ∗ ∈ (−1,1) such that the transition density function (28) can be rewritten
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10 Long Teng, Matthias Ehrhardt and Michael Günther

as

f (ρ̃) =
m

2
κ∗

σ∗2
(1+ ρ̃)

κ∗−2σ∗2

σ∗2 + κ∗µ∗
σ∗2 (1− ρ̃)

κ∗−2σ∗2

σ∗2 − κ∗µ∗
σ∗2 . (32)

To determine the value of m we can employ the basic property of a density function∫ 1

−1
f (ρ̃)dρ̃ = 1. (33)

The constant m in (32) must be chosen such that the normalization condition (33) is always fulfilled. We set

a =
κ∗−2σ∗2

σ∗2 , b =
κ∗µ∗

σ∗2 , (34)

and substitute it into (32) to obtain

f (ρ̃) =
m

2
κ∗

σ∗2
(1+ ρ̃)a+b(1− ρ̃)a−b. (35)

The fact, as long as
a±b >−1, (36)

the integral ∫ 1

−1
(1+ ρ̃)a+b(1− ρ̃)a−b dρ̃

has the solution

M :=
Γ (1+a−b)F(1,−a−b,2+a−b,−1)

Γ (2+a−b)

+
Γ (1+a+b)F(1,−a+b,2+a+b,−1)

Γ (2+a+b)
,

(37)

with the hypergeometric function F defined in (29) and the gamma function Γ .
Using the definitions of κ∗, µ∗ and σ∗ in (22) we want to check the condition (36). Therefore, together

with (34) we obtain

a =
κ∗−2σ∗2

σ∗2 =
κ−σ2

σ2 , b =
κ∗µ∗

σ∗2 =
κµ

σ2 . (38)

We consider the following simple calculations

a+b >−1⇐ κ−σ2

σ2 + κµ

σ2 >−1⇐ κ(1+µ)> 0⇐ µ >−1,

a−b >−1⇐ κ−σ2

σ2 − κµ

σ2 >−1⇐ κ(1−µ)> 0⇐ µ < 1

and realize that the condition (36) will always hold due to µ ∈ (−1,1). Thus, the constant m can be deter-
mined as

m =
2

κ∗
σ∗2

M
. (39)

Finally, we obtain the transition density function in a closed form as
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f (ρ̃) =
(1+ ρ̃)a+b(1− ρ̃)a−b

M
, (40)

with a, b defined in (34) and M in (37). The parameters κ∗, µ∗ and σ∗, or rather, κ , µ and σ can be obtained
by fitting the expression (40) to the historical correlation from market data, see Section 3.3.

We could generalize the correlation process (23) with the same definition but directly with the arbitrary
parameter coefficients κ > 0, µ ∈ (−1,1) and σ > 0, like

dρt

1−ρ2
t
= κ(µ−ρt)dt +σ dWt . (41)

For this case, we have for a and b, as defined in (34), as

a =
κ−2σ2

σ2 , b =
κµ

σ2 . (42)

We perform a similar calculation for checking the condition (36) as above:

a+b >−1⇐ κ−2σ2

σ2 + κµ

σ2 >−1⇐ κ(1+µ)> σ2⇐ κ > σ2

1+µ
,

a−b >−1⇐ κ−2σ2

σ2 − κµ

σ2 >−1⇐ κ(1−µ)> σ2⇐ κ > σ2

1−µ
.

Thus, the process (41) could be employed for the stochastic correlation if the condition

κ >
σ2

1±µ
(43)

is fulfilled. We find that this condition dovetails nicely with that condition in [16], which ensures that the
boundaries −1 and 1 are unattainable.

To further illustrate the transition density function f (ρ̃), we display in Figures 4, 5 and 6 the behaviour
of f (ρ̃) for different values of each parameter. In Figure 4, we let κ = 2 and µ = 0 and display f (ρ̃) ith
different values of σ , which is equal to 0.3, 0.4 and 0.5, respectively. Obviously, σ shows the magnitude
of variation from the mean value µ = 0. Next, we fix κ = 2 and σ = 0.3, the behaviour of f (ρ̃) only with
varying mean value µ = −0.5, µ = 0 and µ = 0.5 can be found in Figure 5. However, whilst µ = −0.5
and µ = 0.5 we can observe that the peak of the corresponding f (ρ̃) does not locate exactly at the points
ρ̃ = −0.5 and ρ̃ = 0.5, respectively. The reason is that, the value of κ, which is mean reversion rate, is
not large enough. In order to illustrate the role of κ, we set µ = −0.5, σ = 0.5 and vary the value of κ,
see Figure 6. For κ = 3, the peak of the transition density function is far away from the mean value −0.5.
However, in contrast the peak reaches already the point ρ̃ =−0.5 when κ = 12.

3.3 Calibration

We assume that the correlation is itself observable. Under this assumption the transition density can be used
for calibration purposes. One uses usually maximum-likelihood estimation (MLE) when the density function
is known. Considering the density function (40), it will be tedious to determine its likelihood-function.
Another approach to estimate the parameters is to fit the empirically observed density to the stationary
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Fig. 4: Comparison of f (ρ̃) for different values of σ (κ = 2 and µ = 0).
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Fig. 5: Comparison of f (ρ̃) for different values of µ (κ = 2 and σ = 0.3).

density (40). As an example we fit the historical data from Figures 2a to (40). The fitting by nonlinear
least-squares works well, see Figure 7.

4 Stochastically correlated Brownian motions

The remaining problem is how to incorporate the stochastic correlation process in the financial model, like
option pricing. In Section 1, we mentioned that a widely used approach for dependence is the (constant) cor-
related Brownian motions. In order to consider a stochastic correlation, we need the concept of stochastically
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Fig. 6: Comparison of f (ρ̃) for different values of κ (µ =−0.5 and σ = 0.5).
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Fig. 7: Correlation between S&P 500 and Euro/US-Dollar exchange rate, empirical density compared to
density (40) computed with κ = 7.937, µ = 0.003 and σ = 1.186 (Mean Squared error: 2.46e-06).

correlated Brownian motions. In the following, we study the stochastically correlated Brownian motions fol-
lowing the work of van Emmerich [16].

Based on two independent Brownian motions W2,t and W3,t we define

W1,t =
∫ t

0
ρs dW2,s +

∫ t

0

√
1−ρ2

s dW3,s, (44)

where ρt is one SCP of type (10), and we assume that Wt in (10) is independent of each Wi,t , for i = 2,3.

Lemma 2. W1,t satisfies

(1) W1,0 = 0,
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(2) E
[
(W1,t)

2
]
= t,

(3) E[W1,t |Fs] =W1,s, for s≤ t.

Proof. (1) is obvious. We calculate the two expected values as follows:

E
[
(W1,t)

2]= E

[(∫ t

0
ρs dW2,s

)2

+

(∫ t

0

√
1−ρ2

s dW3,s

)2

+2
∫ t

0
ρs dW2,s

∫ t

0

√
1−ρ2

s dW3,s

]
= E

[∫ t

0
ρ

2
s ds+

∫ t

0
(1−ρ

2
s )ds

]
+E

[
2
∫ t

0
ρs dW2,s

∫ t

0

√
1−ρ2

s dW3,s

]
︸ ︷︷ ︸

=0, since W2⊥W3.

=
∫ t

0
1ds = t

E[W1,t |Fs] =W1,s +E
[∫ t

s
ρs1dW2,s1 +

∫ t

s

√
1−ρ2

s1
dW3,s1 |Fs

]
︸ ︷︷ ︸

:=0

. ut

This means that we have defined one new Brownian motion W1,t regarding the two independent Brownian
motion W2,t and W3,t . Besides, we can check that

E [W1,t ·W2,t ] = E
[∫ t

0
ρs ds

]
, (45)

which is the definition for the case that the Brownian motions W1,t and W2,t are correlated by the SCP ρt .
One can immediately see that (45) agrees for

E [W1,t ·W2,t ] = ρt, (46)

where W1,t and W2,t are correlated by the constant ρ . Indeed, (45) can be also seen as that W1,t and W2,t are
correlated by the average correlation

1
t

∫ t

0
E[ρs]ds (47)

which is a constant.

5 Pricing Quantos with Stochastic Correlation

To illustrate the impact of using stochastic correlation on option pricing, we use quanto options as an ex-
ample. These options hedge the exchange rate risk when investing in financial products not valued in the
domestic currency. To price these options, one has to consider the correlation between the currency ex-
change rate Rt between domestic and foreign currencies, and the price St of the underlying. We assume that
St and Rt follow the coupled stochastic process (5) by
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dSt = µSSt dt +σSSt dW S

t

dRt = µRRt dt +σRRt dW R
t ,

(48)

where W S
t and W R

t are correlated using the SCP (41) as:

dρt

1−ρ2
t
= κ(µ−ρt)dt +σ dWt . (49)

Wt is assumed to be independent of W S
t and W R

t .
We consider as an example a Put-Option on the S&P 500 with payoff in Euro [14]

(Strike︸ ︷︷ ︸
:=K

−S&P500T︸ ︷︷ ︸
:=ST

)+,

where (·)+ = max (0, ·). Then the payoff in US-Dollar can be written with the Euro/US-Dollar exchange
rate as

exchangeRate0︸ ︷︷ ︸
:=R0

·(Strike−S&P500T )
+.

We denote the risk-free interest rate of Euro and US-Dollar respectively by re and rd . If W S
t and W R

t are
correlated with a constant correlation, the price of a Quanto Put-Option in the Black-Scholes (BS) model
with continuous dividend yield is [17]:

PQuanto(S0,K,re,rd ,D,σS,σR,T ) = R0
(
K exp−rdT N (−d2)−S0 exp−DT N (−d1)

)
,

with

d1 =
log( S0

K )+((rd−D)+
σ2

S
2 )/T

σS
√

T
, d2 = d1−σS

√
T , D = rd− re +ρσSσR.

We follow the train of thoughts in [14] to incorporate the stochasticity of the correlation in the BS price.
The no-arbitrage principle requires

1
R0

exp(reT )E[RT ] = exp(rdT ) (50)

and
1

R0

1
S0

E[ST RT ] = exp(rdT ). (51)

(50) can be interpreted as: The expected return of one unit of US-Dollar, exchanged to Euro, risk-free in-
vested in the Euro countries and re-exchanged to US-Dollar must equal the risk-free return on one unit of
US-Dollar in US-Dollar countries. The interpretation of (51) is analogous, the left side of (51) describes the
re-exchanged expected value of an investment of one US-Dollar into the underlying with price S. Further
computing (50) and (51) by aid of Itô’s lemma we obtain

µR = rd− re (52)

and
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µS = rd−µR−
1
T

lnE
[

exp
(

σSσR

∫ T

0
ρtdt

)]
. (53)

In the BS model, we interpret (53) as a return minus the continuous dividend

D(ρt) := µR +
1
T

lnE
[

exp
(

σSσR

∫ T

0
ρtdt

)]
= rd− re +

1
T

lnE
[

exp
(

σSσR

∫ T

0
ρtdt

)]
.

The integral of the stochastic correlation ρt can be computed numerically using e.g. the Milstein scheme [5].
Finally, the price of a Quanto Put-Option in the extended BS model incorporating the SCP reads

PQuanto = PQuanto(S0,K,re,rd ,D(ρt),σS,σR,T )

= R0
(
K exp−rdT N (−d2)−S0 exp−D(ρt )T N (−d1)

) (54)

with

d1 =
log( S0

K )+((rd−D(ρt))+
σ2

S
2 )/T

σS
√

T
, d2 = d1−σS

√
T .

The price of a Quanto Call-Option is derived easily from the put-call parity [17].
We use a conditional Monte-Carlo approach and first simulate all the paths of ρ i

t , for i ∈ {1,2, . . . ,M}
and for each path we can compute a price Pi

Quanto by the pricing formula (54). Then the fair price P0 can be
approximated by the mean value over all prices

P0 = E[E[PQuanto|Ft ]]≈
∑

M
i=1 Pi

Quanto

M
. (55)

In Figure 8, we assume the parameter for the Black-Scholes model and use the estimated parameter for the
SCP model (see Figure 7). Besides, we apply the sample coefficient correlation (3) to estimate a constant
correlation using the whole historical data (Jan 2003 – Mar 2013) of S&P 500 and Euro/US-Dollar exchange
rate, which is 0.025. At the same time, we can let the SCP starting from the first correlation in the historical
correlations. In Figure 8b we present the relative difference between the price with constant correlation
and stochastic correlation. We can observe, whilst the maturity T is shorter than three years, the price with
constant correlation is lower than the price with stochastic correlation. Then, from nearly T = 3, the price
calculated with constant correlation becomes higher than the corresponding price calculated with stochastic
correlation. The reason for this, before the time T = 3, the SCP provides the correlations which are closed
to the initial correlation ρ0 = 0.3 which is larger than the constant correlation ρ = 0.025. That’s why is
the price with stochastic correlation higher than the price with constant correlation before T = 3 due to the
fact that the price of quanto increases direct proportional with that correlation. As the time increases, the
generated correlations tend to the mean value µ .

If we give a lower initial correlation than the constant correlation ρ = 0.025, e.g. set ρ0 = −0.6. At the
same time we choose a greater value for µ , say 0.1. The desired results should be that the price with constant
correlation is higher than the price with stochastic correlation within the short maturity, and then increases
for the longer maturity, which can be observed in Figures 9. To illustrate the role of the parameters κ and
σ in pricing the quanto, we calculate the prices using the parameter collection in which only κ and σ is
varying. The results for varying κ is displayed in Figure 10a and for varying σ can be found in Figure 10b.

Figure 10a shows that for increasing κ the stochastic correlation rapidly tends to the mean value µ of the
SCP process, which is set to be equal to the constant correlation value. The effect of stochastic correlation
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Fig. 8: BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.05, re = 0.03, σS = 0.2, σR = 0.4, SCP parameters:
κ = 7.937, µ = 0.003, σ = 1.186 and ρ0 = 0.3.
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Fig. 9: BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.05, re = 0.03, σS = 0.2, σR = 0.4, SCP parameters:
κ = 7.937, µ = 0.1, σ = 1.186 and ρ0 =−0.6.

is quite small in this case. In contrast, as shown in Figure 10b, an increase in the diffusion σ (and thus
randomness in the SCP process) shows an increasing impact of the SCP model on the prices.

6 Conclusion

In this work we have revised concisely stochastic correlation models. Market observations give strong ev-
idence that financial quantities are correlated in a strongly nonlinear, non-deterministic way. Instead of as-
suming a constant correlation, correlation has to be modelled as a stochastic process. We discussed first
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(a) SCP parameters: µ = 0.2, σ = 0.6, ρ0 = 0.2 and varying
κ = 2,4,16
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Fig. 10: BS parameters: K = 80, S0 = 100, R0 = 1, rd = 0.05, re = 0.03, σS = 0.2, σR = 0.4.

the general stochastic correlation model proposed in [14] and proved that the stochastic correlation process
in [16] can be obtained by applying this general approach.

We generalized our approach [14] to derive a stochastic correlation model from a hyperbolic transfor-
mation of the modified Ornstein-Uhlenbeck process allowing for a transition density function in a closed
form and an easy-to-handle calibration to historical data. As an example, we computed the fair price of a
Quanto Put-option with stochastic correlation. The numerical results showed that the correlation risk caused
by using a wrong (constant) correlation model cannot be neglected.
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