
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and
Computational Mathematics (IMACM)

Preprint BUW-IMACM 14/02

A. Di Bucchianico, J. ter Maten, R. Pulch,
R. Janssen, J. Niehof, M. Hanssen, S. Kapora

Robust and Efficient
Uncertainty Quantification and

Validation of RFIC Isolation

January 2014

http://www.math.uni-wuppertal.de



Robust and Efficient
Uncertainty Quantification and
Validation of RFIC Isolation

Alessandro Di Bucchianico, Jan ter Maten, Roland Pulch, Rick Janssen,
Jan Niehof, Marcel Hanssen, Sergei Kapora

Abstract Modern communication and identification products impose de-
manding constraints on reliability of components. Due to this statistical con-
straints more and more enter optimization formulations of electronic prod-
ucts. Yield constraints often require efficient sampling techniques to obtain
uncertainty quantification also at the tails of the distributions. These sam-
pling techniques should outperform standard Monte Carlo techniques, since
these latter ones are normally not efficient enough to deal with tail proba-
bilities. One such a technique, Importance Sampling, has successfully been
applied to optimize Static Random Access Memories (SRAMs) while guaran-
teeing very small failure probabilities, even going beyond 6-sigma variations
of parameters involved. Apart from this, emerging uncertainty quantifications
techniques offer expansions of the solution that serve as a response surface
facility when doing statistics and optimization. To efficiently derive the coef-
ficients in the expansions one either has to solve a large number of problems
or a huge combined problem. Here parameterized Model Order Reduction
(MOR) techniques can be used to reduce the work load. To also reduce the
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amount of parameters we identify those that only affect the variance in a
minor way. These parameters can simply be set to a fixed value. The remain-
ing parameters can be viewed as dominant. Preservation of the variation also
allows to make statements about the approximation accuracy obtained by
the parameter-reduced problem. This is illustrated on an RLC circuit. Addi-
tionally, the MOR technique used should not affect the variance significantly.
Finally we consider a methodology for reliable RFIC isolation using floor-
plan modeling and isolation grounding. Simulations show good comparison
with measurements.

Keywords: Monte Carlo, Importance Sampling, Tail probabilities, Fail-
ure, Yield estimation, Uncertainty Quantification, Stochastic Collocation,
Stochastic Galerkin, Sensitivity, Variation aware, Parameterized Model Or-
der Reduction, Reliability, RFIC isolation, Floor-plan modeling, Isolation
grounding.

1 Introduction

As transistor dimensions become smaller with each new technology gener-
ation, they become increasingly susceptible to statistical variations in their
parameters. These statistical variations can result in failing memory. Ad-
ditionally, unintended RF couplings can occur, which also downgrades the
quality of the product and thus performance of end products or even safety
of environment or of the end-user. Failures directly affect yield of the produc-
ing company and its fame for reliable products. Hence there is a general focus
on reliability in IC design. In the Artemos project1, NXP Semiconductors and
Eindhoven University of Technology joined effort to tackle this topic. Mathe-
matics was needed to accurately estimate low tail probabilities. Several novel
methods were needed to do the simulations in an efficient way. Enhanced floor
planning of a design was set up. In all the various tasks one was interested to
determine the dominant parameters and the dominant sources that caused a
certain effect.
The paper is organized as follows. Section 2 overviews Monte Carlo simu-
lation and comes down to estimation of tail probabilities, based on results
from Large Deviation Theory. Section 3 considers the benefits of Importance
Sampling. Section 4 gives some achievements obtained during the project.
Section 5 describes statistics based on uncertainty quantification, where we
combine the techniques with model order reduction and sensitivity analysis.
Section 6 deals with reliable RFIC isolation.

1 http://www.artemos.eu/
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2 Monte Carlo Simulations

We start this section with some general, well-known, results from statistics
[2, 15]. We assume that N independent random observations Yi (i = 1, . . . ,N)
of Y are taken, each with mean µ and variance σ2. One can estimate the mean
µ by the sample mean µ̂N = 1

N

∑N
i=1 Yi and the variance σ2 by the sample

variance σ̂2
N = 1

N−1
∑N
k=1 (Xk − µ̂N )

2
. Both, µ̂N and σ̂2

N , can be updated on-
the-fly, using recursion. The Central Limit Theorem says that µ̂N converges
in distribution to a standard normal distribution, i.e.,

lim
N→∞

P

(
µ̂N − µ
σ/
√
N
≤ x

)
= Φ(x), (1)

where Φ(x) =
∫ x
−∞

1√
2π
e−

y2

2 dy is the cumulative distribution function of the

standard normal distribution, e.g., the normal distribution with mean 0 and
variance 1. In fact, this theorem holds under much weaker conditions, but
this is usually not important when performing simulations. Note that Φ is
monotonically increasing and that, because of the symmetry of Φ(x) around
0, we have Φ(−x) = 1− Φ(x).
The Central Limit Theorem yields that we may use the following approx-
imative confidence interval for µ. Let Z be a standard normal variable. In
the sequel we will assume that α < 1/2. We define zα to be the unique
number such that P (Z > zα) = 1 − Φ(zα) = α. Note that zα > 0 and
P (|Z| > zα) = 2Φ(zα) = 2α. Combining this notation with (1), we obtain

lim
N→∞

P

(
−zα/2 <

µ̂N − µ
σ/
√
N

< zα/2

)
=

lim
N→∞

P
(
−zα/2 < Z < zα/2

)
= 1− α.

If we wish to estimate µ within absolute accuracy ε with 100(1 − α)% con-
fidence, then N ≥ z2α/2 σ

2/ε2. This result is not useful in practice, since we

usually do not know σ. Although (1) also holds with σ replaced by σ̂N (this is
not trivial, it requires Slutsky’s Lemma [2, Section 7.7]), this only helps a pos-
teriori unless we have some prior information, like lower and upper bounds.
Fig. 1 shows the powers of the tail accuracy, log10(α), versus the quantiles zα
of the normal distribution along a σ-scale. Clearly, the zα vary moderately for
−12 ≤ log10(α) ≤ −1. For default statistics around 2σ, we have zα = 2. In the
following, our interest will concern variations up to 6σ. We now show how to
estimate tail probabilities, rather than the mean, since this is relevant for de-
termining reliability of electronic components. For a given set A = (−∞, x),
we define the event indicator Xi = IA(Yi) where IA(Yi) = 1 if Yi ∈ A and 0

otherwise. Then pMC
f = 1

N

∑N
i=1Xi estimates p =

∫ x
−∞ f(z)dz = P (Y ∈ A).

The Xi are Bernoulli distributed, hence NpMC
f ∼ Bin(N, p) is binomially dis-
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Fig. 1 Powers of tail accuracy, log10(α),versus quantiles zα of the normal distribution

along a σ-scale. Our interest goes to variations up to 6σ.

tributed, and thus for the expectation one has E(pMC
f ) = 1

NNp = p and for

the variance σ2(pMC
f ) = p(1−p)

N . Note that, here, we can not directly approxi-

mate σ2(pMC
f ), like in the general Monte Carlo case. However, similarly to the

general case we may replace p, in the expression for σ2(pMC
f ), by p̂ = pMC

f ,
using Slutsky’s Lemma [2, Section 7.7]. If we know p then we can estimate
the number of Monte Carlo samples we have to take. Using (1), we derive

P (|pMC
f − p| > ε) = P

( |pMC
f − p|
σ(pMC

f )
> z

)
NMC→∞−→ 2Φ(−z) ≤ 2Φ(−zα/2) (2)

= α, (3)

where z = ε/
√
p(1− p)/NMC and N = NMC. The convergence holds for all

points z in (2) for which the distribution is continuous. In our case it allows
to derive an error estimate for a particular value of z, which leads to estimate
the number of samples we have to take. Hence, if z ≥ zα/2, we deduce

NMC ≥ p(1− p)
(zα/2

ε

)2
=

1− p
p

(zα/2
ν

)2
, (4)

for ε = νp. Here we assume ν = 0.1 and p = 10−10. Now let α = 0.02. Then
zα/2 ≈ 2 and (4) implies NMC ≥ 4 ·1012. This is large, but it looks acceptable
if we compare it to the small value of p. We see that NMC may grow with 1/p
and not necessarily with 1/p2. A problem arises if we do not know p. Then
more general estimates show up, in which indeed NMC = O(1/p2) [8, 16, 17].
To cover this gap in reasonable upper bounds for NMC, results from Large
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Deviation Theory (LDT) can be used [4, 9, 10]. We assume the following
lemma.

Lemma (LDT) The sequence of the Monte Carlo results PN (A) := pMC
f

satisfies a “Large-Deviation Principle” [4, 9, 10], meaning that there is some
“rate function” I : R→ R ∪ {−∞,+∞} such that

• (i) lim supN→∞
1
N lnPN (C) ≤ − infx∈C I(x) for all closed subsets C ⊂ R,

• (ii) lim inf N→∞
1
N lnPN (G) ≥ − infx∈G I(x) for all open subsets G ⊂ R.

Note the first statement implies an upper bound for 1
N lnPN (C), for N large

enough. From this, we can prove the following theorem [8, 16, 17].

Theorem (MC for tail probabilities) For N= NMC large enough, the
Monte Carlo results PN := pMC

f approximate p with a relative precision ν
such that

P (|pMC
f − p| > νp) ≤ exp

(
−NMC

2

p

1− p
ν2
)
. (5)

The exponential type of bound in (5) is also valid from below and thus is
sharp. For ν = 0.1, p = 10−10 and α = 0.02, as above, we find: NMC ≥ 1012.
Note that an extra k-th decimal in ν increases NMC with a factor k2. Indeed,
this lower bound for NMC is close to the one found with (4). Consequently,
the result (5) is sharp. It means that in general one really needs O(1012)
samples, and, in general, NMC ≈ 1/p.

3 Importance Sampling

There are several methods to speed up Monte Carlo sampling. In [5] antithetic
variables, control variates, matching moment technique, and stratification are
exploited. Here we will describe Importance Sampling. It fits the estimation
of tail probabilities very well and is based on the observation that pf (A) =∫ x
−∞ f(z)dz =

∫ x
−∞

f(z)
g(z) g(z)dz for any distribution function g (called design

distribution) that satisfies g(z) 6= 0 on A. Hence, we sample the Yi according
to a different distribution function g rather that according to f and define a
weighted success indicator V = V (A) = IA(Y )f(Y )/g(Y ).
Then with the g-distribution we have for the expectation

Eg(V ) =

∫
IA(y)

f(y)

g(y)
g(y) dy =

∫ x

−∞
f(z)dz = pf (A).

Hence if we determine Vi = IA(Yi)f(Yi)/g(Yi) from the g-distributed Yi we

can define pISg = pISg (A) = 1
N

∑N
i=1 Vi. Its expectation becomes Eg

(
pISg
)

=
1
N

∑N
i=1 Eg (Vi) = pf (A), which is unbiased. Note that this re-sampling may
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already be a benefit: sampling according to a known and simple g may be
more efficient than sampling according to a density f that involves more
calculations.
We can easily prove [16, 17]

f(z)

g(z)
≤ 1 on A =⇒ Varg

(
pISg
)
≤ Varf

(
pMC
f

)
. (6)

Thus we obtain variance reduction using the same number of samples as used
for Monte Carlo sampling. We will sharpen the amount of reduction shortly,
in (11). The variance reduction does not yet imply more efficiency. However,
similarly to (5), we derive (in which NIS = N), for NIS large enough [16, 17]

Theorem (IS for tail probabilities) For N= NIS large enough, the Im-
portance Sampling results PN := pISg approximate p with a relative precision
ν such that

P
(∣∣pISg − p∣∣ > νp

)
≤ exp

(
− NIS p

2

2Varg(V )
ν2
)
. (7)

Also this result is sharp as it was for (5). Comparing (5) and (7), we see the
same type of exponential decay as a function of N . So an improvement for
Importance Sampling should come from a proper choice of the distribution
function g. Assuming the same upper bounds values in (5) and (7), comparing
them we obtain

NIS
NMC

=
Varg(V )

p(1− p)
=

Eg(V
2)− p2

p(1− p)
. (8)

This expression can also be obtained by equating the normalized standard
deviations σ(pMC

f )/E(pMC
f ) and σg(p

IS
g )/Eg(p

IS
g ). However, the way via (5)

and (7) indicates the sharpness. Next, we consider the variance reduction (6)
more closely. For this, suppose

f(z)

g(z)
≤ κ < 1, on A. (9)

Then p =
∫ x
−∞ f(z)dz≤ κ

∫ x
−∞ g(z)dz ≤ κ. With q = 1−p, we obtain [16, 17]

NIS
NMC

=
Eg(V

2)

pq
− p

q
≤ κ

q
− p

q
≤ κ(1 + ζ), (10)

when |(1 − 1
κ )p + O(p2)| ≤ ζ. For κ = 0.1 and p = 10−10 this means that

ζ ≤ 10−9. Hence, for κ = 0.1, we can take an order less samples with Im-
portance Sampling to get the same accuracy as with regular Monte Carlo.
This even becomes better with smaller κ. By Importance Sampling we gain
efficiency; this is the main message. Also the asymptotic accuracy improves
when compared to regular Monte Carlo, but the improvement is less impres-
sive than for the efficiency. We can derive an enhanced variance reduction
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[16, 17]

Varg
(
pISg
)
≤ κVarf

(
pMC
f

)
− 1− κ

N
p2 (11)

and thus σg
(
pISg
)
≤
√
κσf

(
pMC
f

)
, which for κ = 0.1 means that here not an

order is gained, but a factor
√
κ ≈ 0.316.

The condition (9) is easily satisfied if f is a Gaussian probability density
distribution and g has a broader or a shifted Gaussian distribution, with
enough density on A. Let us consider f(z) ∼ N(0, 1) and gσ(z) ∼ N(0, σ2),
with σ ≥ 1 (hence a broader distribution than f). Fig. 2 shows the speed up

−12 −10 −8 −6 −4 −2 0
−10

−8

−6

−4

−2

0

2

log(p)

lo
g
(N

IS
/N

M
C

)

log(NIS /NMC ) for various σ

 

 

σ=1.1
σ=2
σ=3
σ=4
σ=5

Fig. 2 log10(NIS/NMC) versus log10(p) for f(z) ∼ N(0, 1) and g(z) ∼ N(0, σ2).

that one can obtain. The figure also indicates convergence with respect to

increasing σ. Indeed h̃(σ, x) = f(x)
gσ(x)

has a minimum when σ2
opt = x2 = z2α.

For α = p = 10−10, we find za = 6.4, giving log10(NIS/NMC) = −8.5 and
thus an optimal speed up of 3.2 · 108. This is an example of parameterized
Importance Sampling, in which an additional parameter (here σ) is used to
optimize the outcome. Note that with gσopt(x) still a significant fraction

1√
2π

1

σopt

∫ ∞
−σopt

e
− x2

2σ2opt dx =
1√
2π

∫ ∞
−1

e−
x2

2 dx = 0.8413

is sampled outside A = (−∞, x); gσopt(−zα) = 1√
zαe

. Only 15% falls within

A. Surprisingly even this results in a much higher efficiency for Importance
Sampling over ordinary Monte Carlo sampling. Note that in this example the
simple choice σ = 2 already gives good results (thus we may use a sampling
with a distribution that is double as wide as that of f).
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Of course, all this reasoning assumes that each sample requires the same
amount of cpu.

4 Parameterized quantities

In several simulations the nonlinear output response Y (p) depends on inde-
pendent input parameters p = (p1, . . . , pP )T with known density distribution
functions fk for each pk (in most cases a normal distribution). In this case the
ratio ”f(p)/g(p)” has to be considered in p-space, where f is known and thus
the ratio can easily be calculated. Of course, in a multi-dimensional parameter
space the definition of g(p) that should cover the area of parameters for the
rare events of interest, requires more attention. With increasing dimension of
the parameter space, importance sampling can have more impact. Assuming
p = (p1, p2)T , a scalar function Y (p) and samples Yi = y((p)i) = y(p1i, p2i)
in which the input parameters pki are chosen according to density fk.
If the input parameters pk are independent, we have

pf (A) =

∫∫
A

f1(p1)f2(p2)dp,

in which A is identified with a 2-D p-area such that Y (p) > Ylim (or < Ylim).
The indicator function is now defined by

IA(y) = IA(p) =

{
1 if p ∈ A, i.e. if Y (p) > Ylim
0 else

(12)

and similar as before one can estimate pf (A) by

pMC
f (A) ≈ 1

N

N∑
i=1

IA(Yi), (13)

pISg (A) ≈ 1

N

N∑
i=1

IA(Yi) ∗
P∏
k=1

fk(pki)

gk(pki)
. (14)

Note that, in practice, on A, not all factors fk/gk in (14) may be less than
or equal to 1. In [6, 8, 17] SRAM (Static Random Access Memory) cells were
considered. The threshold voltages Vt of the six transistors in an SRAM cell
are the most important parameters causing variations of the characteristic
quantities of an SRAM cell [6] like Static Noise Margin (SNM) and Read Cur-
rent (Iread). Hence SNM=SNM(Vt,1, . . . , Vt,6) and Iread = Iread(Vt,1, . . . , Vt,6).
In [6, 16] Importance Sampling (IS), using Gaussian distributions with a
σ = 3σVt for the Vt-s in each transistor in the SRAM cell, was used to
accurately and efficiently estimate low failure probabilities for SNM and
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Iread. SNM = min(SNMh,SNMl) is a measure for the read stability of the
cell. SNMh and SNMl are identically Gaussian distributed. The min() func-
tion provides a non-linear operation after which the distribution of SNM
is no longer Gaussian. However, in this particular case, one can argue that
SNM = 2 SNMh [6, 16]. For results, see [8].
The Read Current Iread is a measure for the speed of the memory cell. This

Fig. 3 Cumulative distribution function for the Read Current Iread based on extrapolated
MC (dashed), regular MC (solid) and IS (dotted) [8]. Extrapolation assumes a normal

distribution.

quantity has a non-Gaussian distribution and the cumulative distribution
is shown in Figure 3 [8]. Here IS is essentially needed for sampling Iread
appropriately. Regular MC can only simulate down to a failure probability
Pfail = pf (A) ≤ 10−5.
In [7, 8, 17] the access time optimization for an SRAM active column in com-
bination with a sense amplifier was considered. For robust design of SRAM
memories, it is not sufficient to only guarantee good statistical margins on the
individual SRAM cell parameters. The additional sense amplifier also needs
sufficient input signal before it can reliably sense the data, while the SRAM
cell requires sufficient time to develop that input signal. Here Importance
Sampling was used for the sampling in generating the voltage differences
∆Vk at the output of the SRAM cells. As constraint one can guarantee a
yield target set by the designer. Using this method, the access time of a
45nm high performance SRAM could be improved 6%, while simultaneously
reducing the size of the sense amplifier.
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5 Uncertainty Quantification

We consider Uncertainty Quantification (UQ) by expanding the solution in
so-called generalized Polynomial Chaos expansions. In these expansions the
solution is decomposed into a series with orthogonal polynomials in which the
parameter dependency becomes an argument of the orthogonal polynomial
basis functions. The time and space dependency remains in the coefficients. In
UQ two main approaches are in use: Stochastic Collocation (SC) and Stochas-
tic Galerkin (SG). In SC the coefficients in the expansion are approximated
by quadrature and thus lead to a large series of deterministic simulations
for several parameters. In SG one assumes a finite sum of the expansion as
approximation to the solution and requires that the vector of residuals is per-
pendicular to all basis functions used in the finite expansion (using an inner
product in parameter space), which leads to one big, but coupled, system.
Also here quadrature can be applied but this does not automatically lead to
decoupling as happens for SC.

We will denote parameters by p = (p1, . . . , pP )T again and assume a proba-
bility space (Ω,A,P) given where A represents a σ-algebra, P : A → R is
a measure and p = p(ω) : Ω → B ⊆ RP . Here we will assume that the pi
are independent.
For a function f : B → R, the mean or expected value is defined by

Ep[f(p)] =< f >=

∫
Ω

f(p(ω))dP(ω) =

∫
B

f(p) ρ(p)dp. (15)

The specific probability distribution density is defined by the function ρ(p).
A bilinear form < f, g > (with associated norm L2

ρ) is defined by

< f, g >=

∫
B

f(p) g(p) ρ(p)dp =< f g > . (16)

We assume a complete orthonormal basis of polynomials (φi)i∈N, φi : RP →
R, given with < φi, φj >= δij (i, j,≥ 0). When P = 1, φi has degree i.
To treat a uniform distribution (i.e., for studying effects caused by robust
variations) Legendre polynomials are optimal in some sense; for a Gaussian
distribution one can use Hermite polynomials [12, 26]. A polynomial φi on

RP can be defined from one-dimensional polynomials: φi(p) =
∏P
d=1 φid(pd).

Actually i orders a vector i = (i1, . . . , iP )T .
A solution x(t,p) = (x1(t,p), . . . , xn(t,p))T of a dynamical system (which
we do not further specify) becomes a random process. We assume that second
moments are finite: < x2j (t,p) > < ∞, for all t ∈ [t0, t1] and j = 1, . . . , n.
We express x(t,p) in a Polynomial Chaos expansion
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x(t,p) =

∞∑
i=0

vi(t) φi(p), (17)

where the coefficient functions vi(t) are defined by

vi(t) =< x(t,p), φi(p) > . (18)

Here the inner product is considered component wise. A finite approximation
xm(t,p) to x(t,p) is defined by

xm(t,p) =

m∑
i=0

vi(t) φi(p). (19)

When exploiting Stochastic Collocation (SC), the integrals (18) are computed
by (quasi) Monte Carlo, or by multi-dimensional quadrature. We assume
quadrature grid points pk and quadrature weights wk, 0 ≤ k ≤ K, such that

vi(t) =< x(t,p), φi(p) >≈
K∑
k=0

wk x(t,pk) φi(p
k). (20)

Typically, for low numbers of random parameters, Gaussian quadrature is
used with corresponding weights. We solve the dynamical system for x(t,pk),
k = 0, . . . ,K (K + 1 deterministic simulations). By post-processing we de-
termine the vi(t) in (20).
As alternative to SC, Stochastic Galerkin (SG) can be used. One puts the
approximation (19) in the equations of the dynamical system and makes the
residues orthogonal to each basis function used. The result is a big system
that involves all coefficients vi(t), 0 ≤ i ≤ m, as unknowns. For linear dynam-
ical systems one can determine all integrals over B exactly, in advance. For
nonlinear systems one may approximate these again by quadrature, similar
as done for SC.
After determining the approximation (19) by SC or by SG, the expansion
provides a response surface facility from which the solution can be deter-
mined for any values of t and p. It also provides (fast) information about
mean, variance and sensitivity. In [1, 18, 20] efficient methods are described
to determine the coefficients by SC. In [18, 22, 24] also the combination with
(parameterized) Model Order Reduction (MOR) was studied.
In Fig. 4 at the top-left Monte Carlo Sampling and Importance Sampling

generate a list of samples of p for which the dynamical system has to be
solved, after which statistical analysis can be done. At the top-right the al-
ternative path by UQ is indicated. Stochastic Collocation provides a list of
deterministic values p for which the dynamical system has to be solved. In
both cases parameterized MOR (pMOR) can be of help to faster provide ap-
proximations. The path via Stochastic Galerkin results in a huge system that
involves all coefficients. The system is independent of p, due to averaging.
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Fig. 4 The various ways to obtain statistic information.

Here normal MOR can be of use - it may be even necessary to reduce the
huge system to be able to obtain approximative solutions.
In [13, 18] the combination between (response surface) approximations and
more accurate solutions was studied for Failure Analysis. In [20] the method
can shift the (probability density) weighting function in the inner product
to the area of interest (shifted Hermite chaos). One also can use a windowed
Hermite chaos. The shift is tuned by some optimization procedure. The win-
dowed Hermite chaos looks to be the most accurate alternative. In [21] various
multi-dimensional integration methods have been studied for the purpose of
efficient reliability analysis.
Central in Fg. 4 is the question on dominant parameters. In [22, 23] the sen-
sitivity coefficients of parameters to the variance of the solution have been
studied via a Sobol decomposition and using uniform distributions. Assuming
a scalar solution x in (17), the variance of x (at time t) reads as

Varx(t) =

∞∑
i=1

v2i (t).

The total normalized sensitivity of the j-th random parameter can be written
as

Sj :=
Vj

Varx
, with Vj :=

∑
i∈Ij

v2i , for j = 1, . . . , P. (21)

Here i ∈ Ij if and only if φi varies with respect to the random variable
pj , i.e., φi includes a non-constant univariate polynomial in pj . Clearly the
bounds 0 ≤ Sj ≤ 1 apply for each j. One obtains approximations of these
total normalized sensitivities by a truncated expansion
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V Dj :=
∑
i∈IDj

v2i , , with IDj := {i ∈ Ij : degree(φi) ≤ D}.

Although the bounds 1 ≤ S1 + · · · + SP ≤ P hold, the sum of the total
normalized sensitivities is often close to the lower bound. In view of this
variability of the sum of sensitivities, we further normalize

S∗j := Sj

( P∑
l=1

Sl

)−1
, j = 1, . . . , P. (22)

We now have S∗1 + · · · + S∗P = 1. We can use the S∗j as follows. If we as-
sume a partitioning (possibly after re-ordering) p = (q, r), where q are Pred

parameters that will be allowed to vary, while r are the parameters set to a
fixed value r0, we obtain, for the error δ(r0) in doing this, the estimate in the
following theorem [22, 23].

Theorem (Approximation error after fixing parameters)

δ2(r0) =

<

(
x(q, r)− x(q, r0)

)2

>

Varx
≤ (1 + ε−1)

P∑
j=Pred+1

Sj . (23)

Here ε is a tolerance parameter. In [24] the solution x(t,p) is determined via
parameterized MOR on the transfer function H(s,p) where s = iR on the
imaginary axis. Now, first the approach (23) is applied to the transfer func-
tion H(s, (q, r0)) after splitting p, resulting in an error for δH(s, r0). Next,
parameterized MOR on H(s, (q, r0)) leads to an additional error. Balanced
Truncation MOR techniques provide error estimation. For systems that are
ordinary differential equations the overall error can be related to an approx-
imation error for the solution x(t,p) in the time domain. By this we obtain
error estimates for the coefficients in the generalized polynomial chaos ex-
pansion by which we can provide error plots of the mean and of the variance
(as functions of time).

For an RLC-circuit, Fig. 5 shows a typical outcome for the variation sensitivi-
ties of H(s,p) of various conductances as random parameters. Similar results
can be shown for conductances and for inductances. In [22, 24] the authors
did focus on Stochastic Galerkin and considered first reducing the original
system by parameterized MOR, followed by SG, versus first applying SC on
the original system, followed by a (global) MOR.
At Eindhoven University of Technology, several Ph.D. theses on Model Or-
der Reduction have been generated during the last years, with emphasis on
sparsity and multi-terminal problems [11, 25], with application to coupled sys-
tems by exploiting low-rank approximation [14], with application to nonlinear
problems [3], and use of MOR within optimizaton [19]. The sensitivity tech-
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Fig. 5 Normalized variation sensitivities of H(s,p) for conductances as random parame-

ters [22].

nique described in this section can lead to variation-aware MOR approaches.
Clearly, MOR should not lead to reduced models that do not preserve the
main statistical characteristics of the full model.

6 Reliable RFIC isolation

In order to minimize interference issues and coupling effects in RF products,
it is essential to apply proper floorplanning and grounding strategies. The
interaction of the IC with its physical environment needs to be accounted
for, so as to certify that the final packaged and mounted product meets the
specifications.
The first focus was on the key requirements to address physical design issues
in the early design phases of complex RF designs. Typical physical design is-
sues encountered, such as on-chip coupling effects, chip-package interaction,
substrate coupling and co-habitation, were investigated.
The main challenges are the first order prediction of cross-domain coupling.
Therefore we apply a floorplan methodology to quantify the impact of floor-
planning choices and isolation grounding strategies. This methodology is
based on a very high level floorplan EM/circuit simulation model, including
the most important interference contributors and including on-chip, package
and PCB elements, to be applied in the very early design phases (initial floor-
planning).
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Fig. 6 Floorplan model for isolation and grounding strategies.

The overall model of a complete RF product contains the following parts (see
Fig. 6):

• On-chip: domain-regions, padring, sealring, splitter-cells, substrate effects.
• Package: ground and power pins, bondwires/downbonds, exposed diepad.
• PCB: ground plane and exposed diepad connections.

The effect of a number of parameter variations on the impact of noise from
digital parts on the isolation sensitive RF domains has been investigated, i.e.
the number of down-bonds, the number of ground pins, the domain spacing
and shape, the application of deep-Nwell and exposed diepad, and the number
of exposed diepad vias.
Key to the investigations is the cross-domain transfer function from the dig-
ital to RF domain. First a reference situation (Icore to Voltage at domain
grounds) has been chosen, with which all other situations have been com-
pared.

The specific coupling paths that have been identified and investigated are
(see Fig. 7, row-wise ordered)

1. Via the exposed diepad and downbonds.
2. Via the splitter cells.
3. Via the substrate.
4. Through the air.

We describe these couplings more detailedly in the next subsections.



16 Alessandro Di Bucchianico et al.

Fig. 7 Coupling paths: 1. (Top-Left) Exposed diepad & downbonds 2. (Top-Right) Split-
tercells 3. (Bottom-Left) Substrate 4. (Bottom-Right) Air.

6.1 Exposed diepad & downbonds

From the investigations, the following conclusions can be drawn. Without
downbonds the isolation is independent of the diepad impedance (up to
300 MHz). With downbonds we find that the isolation is determined by the
diepad–PCB ground impedance. In this case as many PCB ground - exposed
diepad vias as possible should be used. Furthermore we see that the frequency
range of isolation increases.

6.2 Splittercells

The main conclusion from the investigation is that a splitter cell only impacts
the domain to domain coupling (between neighbours). There is no impact on
the coupling of the digital domain to RF (< 1 GHz).
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6.3 Substrate

A number of investigations have been performed. First of all the substrate
can be described by a resistive network. This is mainly fixed by the specific
technology choice. Coupling can be minimized by maximizing the lateral
resistance. Several options can be used to ensure this, such as minimizing
the domain boundary length, usage of so-called ”pwellprot” at the boundary
between domains to ensure high resistivity between domains, and increasing
the domain spacing. However, the latter has very limited impact on domain-
domain coupling and no impact on the coupling of digital to RF.

6.4 Air

The capacitive coupling via air (plastic mold, ε ≈ 4) between domains is
determined (from electromagnetic simulation) to be negligible compared to
the other coupling elements in the network. Simulations show some impact
when the coupling capacitances would be 100-1000 times higher.
Additional coupling paths and measures are via sealring downbond to diepad
(see Fig. 8) and using domain buffers, but investigation shows negligible ef-
fect.

Fig. 8 Coupling paths: 5. Sealring downbond to diepad.

Overall conclusions of the coupling path investigation are:

• The digital - RF main coupling path is via the exposed diepad and down-
bonds.

• Downbonds are effective only in combination with a low-ohmic connec-
tion of exposed diepad to PCB ground. When this impedance is too high,
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downbonds have an adverse effect, serving as a coupling path to the RF;
removing the downbonds then improves the isolation.

• Isolation of digital - RF is not impacted by inter-domain spacing, down-
bonding the sealring, splittercel capacitance ( < 1 GHz) or domain buffers
( < 1 GHz).

The modelling methodology predicting RFIC interference issues allows in-
vestigation into various floorplan options and verification of isolation and
grounding strategies. Application of this modelling methodology guides in
making well quantified choices and trade-offs in the implementation of RF
products, ultimately enabling achievement of single-pass design success,
avoiding costly re-spins and loss of market opportunities. As a first verifi-
cation of the methodology, measurements were performed of the impact of
the downbonds on the coupling, showing indeed an isolation improvement of
> 8 dB (see Fig. 9 and Fig. 10, which compare well).

Fig. 9 Measurement result showing downbonds improve isolation.

7 Conclusions

Importance Sampling has very effectively been exploited in SRAM design
and certainly will also be used in other IC-design processes. Recently, Eind-
hoven University of Technology, Fachhochschule Oberösterreich (Hagenberg
im Mühlkreis, Austria) and Bergische Universität Wuppertal did start work
on Importance Sampling for Communication Systems, where one aims for
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Fig. 10 Downbonds improve isolation shown by simulations.

low Bit Error Rates (BER). First outcomes show promising results.
Uncertainty Quantification has led us to identify parameters that mostly con-
tribute to the variation of an output quantity. In [14, 18] other concepts of
’dominant’ parameters have been described. Reduced models should preserve
the main statistical characteristics of the full model.
The modeling methodology predicting RFIC interference issues, presented
here, allows investigation into various floor planning options and verification
of different isolation- and grounding strategies. It shows a good agreement of
model predictions and measurements. Application of this modeling method-
ology guides in making well quantified design choices and trade-offs.
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