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1. Introduction

For classical mechanical systems, the equation of motion can be written
as

dρ

dt
= [ρ ◦H] ≡ L(t)ρ(t), (1)

where ρ is the set of phase variables, [ ◦ ] denotes the Poisson bracket,
H represents the Hamiltonian function, and L denotes the Liouville op-
erator. For the case of N particles, located in a spatially inhomogeneous
time-dependent external field u(ri, t) and interacting through the pair-wise
potential ϕ(rij) ≡ ϕ(|ri − rj|), the Hamiltonian reads

H =
N
∑

i=1

miv
2
i

2
+

1

2

N
∑

i 6=j

ϕ(rij) +
N
∑

i=1

u(ri, t) ≡ T (v) + V (r, t). (2)

Here ri represents the position of particle i (i = 1, 2, . . . , N) moving with
velocity vi = dri/dt and carrying the mass mi, so that T and V are the total
kinetic and potential energies, respectively. Then ρ = {ri, vi} ≡ {r, v}, and
the Liouville operator of the system takes the form

L(t) =
N
∑

i=1

(

vi ·
∂

∂ri
+

fi(t)

mi

·
∂

∂vi

)

, (3)

where

fi(t) =
N
∑

j(j 6=i)

ϕ′(rij)rij
rij

−
∂u(ri, t)

∂ri

are forces acting on the particles due to their interactions.
If the initial configuration ρ(0) is specified, the unique solution to the

problem of Eqn. (1) can be presented by the time propagator operator as

ρ(t) =
[

e(D+L)h
]l
ρ(0), (4)

where h is a temporal step size and l = t/h the total number of steps.

D =
←−
∂ /∂t denotes the time derivative operator acting on the left of time-

dependent functions. If L does not depend explicitly on time we set D = 0.
In case of many-particle systems (N > 2) the time propagator cannot be com-
puted exactly even in the absence of time dependent potentials. Hence one
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has to apply numerical integration methods such as decomposition schemes,
which both preserve the physical properties of the Hamiltonian system (4)
(symplecticity, time reversibility) and are computationally efficient [11].

The basic idea of a decomposition approach is to factor out the exponen-
tial propagator e(D+L)h in (4), such that D+L = T̂+V̂ , where the differential
operators T̂ = v · ∂/∂r and V̂ = a · ∂/∂v represent the kinetic and potential
energies with the acceleration a = {ai} = {fi/mi}. In our case the operator
(3) does not depend on time explicitly, hence D = 0.

In Section 2 we will discuss two well-known approaches to increase the
accuracy of decomposition schemes: force-gradient schemes and nested mul-
tirate algorithms, which are both based on decomposition techniques. For
both methods, computing the shadow Hamiltonian is the suitable tool for
deriving the order of the numerical integration scheme. In Section 3 both
approaches are combined to obtain a more efficient scheme. Finally, nu-
merical results for a three body problem confirm the theoretical findings in
Section 4.

2. Methods for obtaining higher order schemes

In this section we will briefly recapitulate two well-known schemes (force-
gradient and nested multirate schemes) for reducing the computational costs.
As both approaches are based on decomposition, the computation of the
shadow Hamiltonian can be used to determine the order of the numerical
scheme.

2.1. Shadow Hamiltonians

When transferring the well-known concept of modified equations to Hamil-
tonian systems one ends up with the Hamiltonian if and only if the integrator
is symplectic [14]. The motivation for studying numerically the conservation
properties of these ’modified Hamiltonians’ are multifaceted [14], e.g. numer-
ical evidence for the existence of a Hamiltonian for a particular calculation,
exposure of energy drifts caused by numerical instability, etc.. Skeel and
Hardy [14] proposed a simple strategy for deriving highly accurate estimates
for modified Hamiltonians. Since these modified Hamiltonians approximate
well the true Hamiltonian, they are referred as ”shadow” Hamiltonians H̃, cf.
[5]. The existence of these shadow Hamiltonians guarantees the boundedness
of the error in the symplectic map, in fact we have H̃(r,v, h)→ H(r,v) for
h→ 0.
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Conversely, if one starts from a given numerical solver then it is well
known that any symplectic integrator different from the Hamiltonian flow it-
self does not preserve the Hamiltonian however a nearby system, the so-called
shadow Hamiltonian H̃ is conserved. The energy computed from the shadow
Hamiltonian of a symplectic integrators differs by H(r,v) − H̃(r,v, h) =
O(hp) from the true Hamiltonian [7], with p being the order of the inte-
gration scheme. Hence, computing the shadow Hamiltonian of a symplectic
integrator is equivalent to determining the order of the integrator.

To compute a shadow Hamiltonian it is necessary to expand an exponen-
tial map to a Hausdorff series. To do so, we need to use the Baker-Cambell-
Hausdorf (BCH) formula [9].

ln(eT eV ) =
∞
∑

n=1

cn(T, V ), (5)

where the coefficients cn are recursively determined from the relations c1 =
T + V and

(n+ 1)cn+1 =

⌊n/2⌋
∑

m=1

B2m

(2m)!

∑

k1,...,k2m≥1

adck1 . . . adck2m(T + V )−
1

2
(adcn)(T − V ),

for n ≥ 0, where ada : b 7→ [a, b] and Bn denote the Bernoulli numbers.

For example, the shadow Hamiltonian of the leap-frog method eh
T̂
2 ehV̂ eh

T̂
2 is

given by

H̃ = H −
h2

24

(

2
[

V, [T, V ]
]

+
[

T, [T, V ]
]

)

+O(h4),

which is of second order accuracy.

2.2. Force-gradient schemes

Force-gradient schemes are based on the fact that the total propagator in
Eqn. (4) can be split in the following way:

e(T̂+V̂ )h+O(hK+1) =
P
∏

p=1

eT̂ aph eV̂ bph+Ccph3

, (6)
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where C = [V, [T, V ]] and [ , ] denotes the commutator of two operators.

C ≡
[

V, [T, V ]
]

=
N
∑

i=1

gi

mi

·
∂

∂v
≡ G ·

∂

∂v
,

where

giα = 2
∑

jβ

fjβ

mj

∂fiα
∂rjβ

,

α and β denote the Cartesian components of the vectors. The force-gradient
evaluations ∂fiα/∂rjβ can be explicitly represented taking into account that

fiα = miwiα −
∂u(ri, t)

∂riα
,

where

wiα = −
1

mi

∑

j(j 6=i)

ϕ′(rij)
(riα − rjα)

rij

is the inter-particle part of the acceleration. The result is

gi = −2
N
∑

j(j 6=i)

[

(wi −wj)
ϕ′
ij

rij
+

rij

r3ij

(

rijϕ
′′
ij − ϕ′

ij

) (

ri · (wi −wj)
)

]

+ hi, (7)

where

hi =
2

mi

∑

β

∂u

∂riβ

∂2u

∂riα∂riβ
.

The coefficients ap, bp and cp in (6) have to be chosen in such way to obtain
the highest possible order K ≥ 1 for a given integer P ≥ 1. Eqn. (6) repre-
sents the general form of the decomposition, while for cp ≡ 0 the decomposi-
tion reduces to the standard non-gradient factorization. The force-gradient
method is defined by using the value of cp which reduces the difference be-
tween the true Hamiltonian and shadow Hamiltonian H̃ which is conserved
by the method. We will show how to determine the shadow Hamiltonian H̃
in the next section.

Basically the evolution operators eTaph and eV bph+Ccph3

displace v and r

forward in time with

v→ v + bpah+ cpGh3 and r→ r+ apvh. (8)
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The decomposition integration of Eqn. (6) conserves the symplectic map of
flow of the particles in phase space, because the separate shifts of Eqn. (8) of
positions and velocities do not change the phase volume. Time-reversibility
can be ensured by imposing two conditions, namely a1 = 0, ap+1 = aP−p+1,
bp = bP−p+1, cp = cP−p+1, as well as ap = aP−p+1, bp = bP−p, cp = cP−p with
bP = 0 and cP = 0.

Next we deal with numerical integrators of the form given in Eqn. (6),
the most efficient version of which is due to Omelyan [11]. Adding the
force-gradient term C in the leap-frog scheme does not increase the order
of the method as one cannot cancel the commutator

[

T, [T, V ]
]

. However,
the second-order five-stage method

∆(h)5 = e
1

6
hV̂ e

1

2
hT̂ e

2

3
hV̂ e

1

2
hT̂ e

1

6
hV̂ ,

conserves the shadow Hamiltonian [2]

H̃5 = H−
[

V, [T, V ]
]h2

72
+O(h4),

where the leading error coefficient is a scalar multiple of the force-gradient
term C. Thus adding a proper amount of the shadow Hamiltonian defines
the force-gradient scheme

∆(h)5C = e
1

6
hV̂ e

1

2
hT̂ e

2

3
hV̂+ 1

72
h3C e

1

2
hT̂ e

1

6
hV̂ .

This scheme conserves the shadow Hamiltonian [8]

H̃5C = H+

(

41

[

V,
[

V,
[

V, [V, T ]
]

]

]

+ . . .

+54

[

T,
[

T,
[

T, [V, T ]
]

]

])

h4

155520
+O(h6),

which gains two orders of accuracy.

2.3. Nested integrators for multirate systems

In order to reduce the computational effort to evaluate an evolution op-
erator for one part of the action, we use a nested integrator with a small
step-size to evaluate the inner cheap part [13]. An example of such class of
problems can be the multi-time scale problems.
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Let us consider a Hamiltonian which can be represented in the following
form

H = T + V1 + V2, (9)

where T represents the kinetic part, V1 is the potential energy of the small
(fast) scale part of the system and V2 corresponds to the potential energy of
the large (slow) scale part.

We choose the following integrator to compute the inner part H = T +V1

∆(h)M =
[

e
h

2M
V̂1 e

h
M

T̂ e
h

2M
V̂1

]M

.

Therefore we define ∆ (h) a nested integrator to solve the split problem
of Eqn. (9), it yields

∆̂(h) =
[

e
h
2
V̂2 ∆(h)M e

h
2
V̂2

]l

. (10)

This method, called nested leap-frog, conserves the shadow Hamiltonian
[13]

H̃M = H +

(

−
1

24

[

V2, [V2, T ]
]

+
1

12

[

V1, [V2, T ]
]

+
1

12

[

T, [V2, T ]
]

+
1

M2

(

−
1

24

[

V1, [V1, T ]
]

+
1

12

[

T, [V1, T ]
]

)

)

h2 +O(h4).

3. Combining force-gradient and multirate splitting technique

Our idea is to combine both the force-gradient and the nested algorithm
approaches in order to obtain a higher energy conservation rate. To do so,
let us first take a look at the following alike 5-stage nested integrator

∆(h) =

[

eλhV̂2 ∆

(

h

2

)

M

e(1−2λ)hV̂2 ∆

(

h

2

)

M

eλhV̂2

]l

, (11)

where

∆

(

h

2

)

M

=
[

e
h

4M
V̂1 e

h
2M

T̂ e
h

4M
V̂1

]M

.

We have chosen the 5-stage numerical integrator, since it has an optimal
number of steps, necessary for increasing its order. To analyze the energy
conservation of this integrator we have to determine its shadow Hamiltonian.
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In order to do so, we use the BCH formula (5). To simplify this task we
consider the limit of the integrator of Eqn. (11), as M tends to infinity. We
obtain

∆(h) =
[

eλhV̂2 e
h
2
(V̂1+T ) e(1−2λ)hV̂2 e

h
2
(V̂1+T̂ ) eλhV̂2

]l

. (12)

Theorem 1 (Shadow Hamiltonian of (12)). The shadow Hamiltonian of the
nested multirate integrator (12) is given by

H̃ = H +
(−1 + 6λ− 6λ2

12

[

V2, [T, V2]
]

+
−1 + 6λ

24

[

V1, [T, V2]
]

+
−1 + 6λ

24

[

T, [T, V2]
]

)

h2 +O(h4). (13)

Proof: We apply the BCH formula to the first two evolution operators

X = ln
(

eλhV̂2 eh
V̂1+T̂

2

)

= c1h+ c2h
2 + c3h

3 +O(h5),

where

c1 = λV2 +
V1 + T

2
,

2c2 =
B2

2!
adc1

(

λV2 +
V1 + T

2

)

−
1

2
adc1

(

λV2 −
V1 + T

2

)

,

c2 = −
1

4

[

λV2 +
V1 + T

2
, λV2 −

V1 + T

2

]

= −
λ

4
[V1, V2]−

λ

4
[T, V2],

3c3 =
B3

3!
adc1adc1

(

λV2 +
V1 + T

2

)

−
1

2
adc2

(

λV2 −
V1 + T

2

)

,

c3 = −
1

6

[

−
λ

4
[V1, V2]−

λ

4
[T, V2], λV2 −

V1 + T

2

]

= −
λ2

24

[

V2, [V1, V2]
]

−
λ2

24

[

V2, [T, V2]
]

+
λ

48

[

V1, [V1, V2]
]

+
λ

48

[

V1, [T, V2]
]

+
λ

48

[

T, [V1, V2]
]

+
λ

48

[

T, [T, V2]
]

.
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Then we have the result for our first two operators

X =

(

λV2 +
V1 + T

2

)

h+

(

−
λ

4
[V1, V2]−

λ

4
[T, V2]

)

h2

+

(

−
λ2

24

[

V2, [V1, V2]
]

−
λ2

24

[

T, [T, V2]
]

+
λ

48

[

V1, [V1, V2]
]

+
λ

48

[

V1, [T, V2]
]

+
λ

48

[

T, [V1, V2]
]

+
λ

48

[

T, [T, V2]
]

)

h3 +O(h5).

The next step is to apply the BCH formula on the following operators

Y = ln
(

eX e(1−2λ)hV̂2

)

= c1 + c2 + c3 +O(h
5)

and coefficients

c1 = X + (1− 2λ)hV2 =

(

(1− λ)V2 +
V1 + T

2

)

h+ (. . .)h2 + (. . .)h3,

2c2 =
B2

2!
adc1

(

X + (1− 2λ)hV2

)

−
1

2
adc1

(

X − (1− 2λ)hV2

)

,

c2 = −
1

4

[

X + (1− 2λ)hV2, X − (1− 2λ)hV2

]

=

(

1− 2λ

4
[V1, V2] +

1− 2λ

4
[T, V2]

)

h2

+

(

λ− 2λ2

8

[

V2, [V1, V2]
]

+
λ− 2λ2

8

[

V2, [T, V2]
]

)

h3

3c3 =
B3

3!
adc1adc1

(

X + (1− 2λ)hV2

)

−
1

2
adc2

(

X − (1− 2λ)hV2

)

,

c3 = −
1

6

[

c2, X − (1− 2λ)hV2

]

=

(

−
(1− 2λ)(1− 3λ)

24

[

V2, [V1, V2]
]

−
(1− 2λ)(1− 3λ)

24

[

V2, [T, V2]
]

+
(1− 2λ)

48

[

V1, [V1, V2]
]

+
(1− 2λ)

48

[

V1, [T, V2]
]

+
(1− 2λ)

48

[

T, [V1, V2]
]

+
(1− 2λ)

48

[

T, [T, V2]
]

)

h3,

and we obtain the following expansion
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Y =

(

(1− λ)V2 +
V1 + T

2

)

h+

(

1− 3λ

4
[V1, V2] +

1− 3λ

4
[T, V2]

)

h2

+

(

−1 + 8λ− 13λ2

24

[

V2, [V1, V2]
]

+
−1 + 8λ− 13λ2

24

[

T, [T, V2]
]

+
1− λ

48

[

V1, [V1, V2]
]

+
1− λ

48

[

V1, [T, V2]
]

+
1− λ

48

[

T, [V1, V2]
]

+
1− λ

48

[

T, [T, V2]
]

)

h3 +O(h5),

The next step would be to repeat the previous procedures to find

Z = ln
(

eY eh
V̂1+T̂

2

)

= c1 + c2 + c3 +O(h
5).

Using the BCH formula we obtain

c1 = Y + h
V1 + T

2
= ((1− λ)V2 + V1 + T )h+ (. . .)h2 + (. . .)h3,

2c2 =
B2

2!
adc1

(

Y + h
V1 + T

2

)

−
1

2
adc1

(

Y − h
V1 + T

2

)

,

c2 = −
1

4

[

Y + h
V1 + T

2
, Y − h

V1 + T

2

]

=

(

−
1− λ

4
[V1, V2]−

1− λ

4
[T, V2]

)

h2

+

(

−
1− 3λ

16

[

V1, [V1, V2]
]

−
1− 3λ

16

[

V1, [T, V2]
]

−
1− 3λ

16

[

T, [V1, V2]
]

−
1− 3λ

16

[

T, [T, V2]
]

)

h3,

3c3 =
B3

3!
adc1adc1

(

Y + h
V1 + T

2

)

−
1

2
adc2

(

Y − h
V1 + T

2

)

c3 = −
1

6

[

c2, Y − h
V1 + T

2

]

,

=

(

−
(1− λ)2

24

[

V2, [V1, V2]
]

−
(1− λ)2

24

[

V2, [T, V2]
]

)

h3.
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Therefore we obtain

Z =
(

(1− λ)V2 + V1 + T
)

h+
(−λ

2
[V1, V2] +

−2λ

2
[T, V2]

)

h2

+

(

−1 + 5λ− 7λ2

12

[

V2, [V1, V2]
]

+
−1 + 5λ− 7λ2

12

[

T, [T, V2]
]

+
−1 + 4λ

48

[

V1, [V1, V2]
]

+
−1 + 4λ

48

[

V1, [T, V2]
]

+
−1 + 4λ

48

[

T, [V1, V2]
]

+
−1 + 4λ

48

[

T, [T, V2]
]

)

h3 +O(h4).

Applying the BCH formula for a last time we obtain the shadow Hamiltonian

H̃ = ln
(

eZ eλV̂2h
)

= c1 + c2 + c3 +O(h
5),

with the coefficients

c1 = Z + λV2h = (V2 + V1 + T )h+ (. . .)h2 + (. . .)h3,

2c2 =
B2

2!
adc1 (Z + λV2h)−

1

2
adc1 (Z − λV2h) ,

c2 = −
1

4
[Z + λV2h, Z − λV2h]

=

(

λ

2
[V1, V2] +

λ

2
[T, V2]

)

h2 +

(

λ2

4

[

V2, [V1, V2]
]

+
λ2

4

[

V2, [T, V2]
]

)

h3,

3c3 =
B3

3!
adc1adc1 (Z + λV2h)−

1

2
adc2 (Z − λV2h) ,

c3 = −
1

6
[c2, Z − λV2h]

=

(

λ(1− 2λ)2

12

[

V2, [V1, V2]
]

+
λ(1− 2λ)2

12

[

V2, [T, V2]
]

+
λ

12

[

V1, [V1, V2]
]

+
λ

12

[

V1, [T, V2]
]

+
λ

12

[

T, [V1, V2]
]

+
λ

12

[

T, [T, V2]
]

)

h3,

and finally

H̃ = H +

(

−1 + 6λ− 6λ2

12

[

V2, [V1, V2]
]

+
−1 + 6λ

24

[

V1, [T, V2]
]

+
−1 + 6λ− 6λ2

12

[

V2, [T, V2]
]

+
−1 + 6λ

24

[

V1, [V1, V2]
]

+
−1 + 6λ

24

[

T, [V1, V2]
]

+
−1 + 6λ

24

[

T, [T, V2]
]

)

h2 +O(h4).
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Finally, taking into account that [V1, V2] = 0, hence
[

V2, [V1, V2]
]

,
[

V1, [V1, V2]
]

and
[

T, [V1, V2]
]

are equal to zero, we obtain (13).
We can eliminate a couple of terms by choosing λ = 1/6, thus

H̃ = H −
1

72

[

V2, [T, V2]
]

h2 +O(h4).

We would like to increase the order of the method (11) by adding the force-
gradient term, but first we consider the force-gradient itself. Due to the
splitting (9) it can be represented as

C =
[

V, [T, V ]
]

=
[

V2 + V1, [T, V2 + V1]
]

=
[

V2, [T, V2]
]

+
[

V1, [T, V1]
]

+
[

V1, [T, V2]
]

+
[

V2, [T, V1]
]

.

Then we can tune the original algorithm (11) by adding the first term of the
force gradient

[

V2, [T, V2]
]

and neglect the last three terms:

∆(h) =

[

e
1

6
hV̂2 ∆

(

h

2

)

M

e
2

3
hV̂2+

1

72
h3
[

V2,[T,V2]
]

∆

(

h

2

)

M

e
1

6
hV̂2

]l

, (14)

which preserves the fourth-order accurate shadow Hamiltonian

H̃ = H +O(h4).

4. Numerical experiments

In order to estimate the performance of the integrator of Eqn. (14) we
compare it with the other algorithms mentioned above. Let us consider
the three body problem [6] and a particular case of it, the Sun-Earth-Moon
problem. The given system has the energy

E =
2

∑

i=0

miv
2
i

2
−G

2
∑

i=1

i−1
∑

j=0

mimj

rij
,

where rij = ‖ri − rj‖, m0, m1 and m2 represent the masses of the Sun, the
Earth and the Moon, respectively and G is the gravitational constant. The
equations of motion are then

dr0
dt

= v0,
dv0

dt
= −m1G

r0 − r1

r301
−m2G

r0 − r2

r302
,

dr1
dt

= v1,
dv1

dt
= −m0G

r1 − r0

r310
−m2G

r1 − r2

r312
,

dr2
dt

= v2,
dv2

dt
= −m0G

r2 − r0

r320
−m1G

r2 − r1

r321
.

(15)
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Gravitational constant (G) 6.67384× 10−11,m3/kg s 0.2662 AU3/SU mo
Mass of the Sun (m0) 1.9891× 1030, kg 1 SU
Mass of the Earth (m1) 5.9736× 1024, kg 3× 10−6 SU
Mass of the Moon (m2) 7.3477× 1022, kg 0.0369× 10−6 SU
Initial position of the Sun (r0) (0, 0), m (0, 0), AU
Initial position of the Earth (r1) (0, 1.52098× 1011), m (0, 1.0167138), AU
Initial position of the Moon (r2) (0, 1.52504× 1011), m (0, 1.0191138), AU
Initial velocity of the Sun (v0) (0, 0), m/s (0, 0), AU/mo
Initial velocity of the Earth (v1) (0, 29.78× 103), m/s (0, 0.5160), AU/mo
Initial velocity of the Moon (v2) (0, 30.802× 103), m/s (0, 0.5337), AU/mo

Table 1: Physical parameters of the Sun-Earth-Moon problem.

The force-gradient terms can be obtained from (7) for this case, using the
external field potential u(rij) = 0 and the pair-wise potentials

ϕ(rij) = −G
mimj

rij
,

respectively for each interaction, with the fast V1 and the slow V2 potentials
are given

V1 = −G
m1m2

r12
, V2 = −G

m0m1

r01
−G

m0m2

r02
.
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Figure 1: Sun-Moon-Earth problem: absolute error for different integrators

Figure 1 presents a comparison between the standard numerical algo-
rithms, nested approaches, the force-gradient and our combined method.
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The proposed integrator of Eqn. (14) with M = 30, which combines nested
and force-gradient ideas, yields a better energy conservation even compared
with 9-stage and 11-stage force-gradient numerical schemes. These numerical
results correspond to our analytical observations.
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Figure 2: Sun-Moon-Earth problem: CPUs time vs. achieved accuracy for
different integrators

Figure 2 presents the CPU time, required for the three different inte-
grators against the achieved accuracy. Here we scale the time needed for
the computation of the fast part by a factor of 0.001, since we assume that
the computation of the fast scale functions is very cheap compared to the
slow scale function evaluations. We can see that in general our nested force-
gradient method (14) requires less CPU time and performs more accurate
than the standard schemes, presented in Figure 2.
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Thus we can argue that, if the evaluation of fast function is significantly
cheaper than the slow function, computational costs decrease. This is ex-
actly the case found in our long-term goal applications in lattice quantum
chromodynamics (LQCD), where the action can be split into two parts: the
gauge action (whose force evaluations are cheap) and the fermion action (ex-
pensive).

5. Conclusions and outlook

We have introduced a new decomposition scheme for Hamiltonian sys-
tems, which combines the idea of the force-gradient time-reversible and sym-
plectic integrators and the splitting approach of nested algorithms. The new
method of Eqn. (14) is fourth-order accurate. Compared to other fourth-
order schemes, the leading error coefficient is smaller and computational
costs are lower.

Our future work will apply this approach in the Hybrid Monte Carlo [3]
(HMC) algorithm for numerical integration of the lattice path-integral of
quantum chromodynamics (QCD), which describes the strong interactions
between quarks and gluons inside the nucleons. In this case, the Hamiltonian
dynamics are defined on curved manifolds and one has to take into account
the non-commutativity of the operators T̂ and V̂ .
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[2] M.A. Clark, B. Joó, A.D. Kennedy, P.J. Silva, Better HMC integrators
for dynamical simulations, PoS 323(2010).

[3] S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Hybrid Monte
Carlo, Phys. Lett. B195 (1987), pp. 216–222.

15
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