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Abstract. We consider a system of partial differential-algebraic equations which model an electric network
containing semiconductor devices. We introduce a topological condition which permits to give a notion of tractability
index for this kind of nonlinear coupled system, and prove an existence result for index-2 systems.

Key words. RLC networks, semiconductors, steady-state drift-diffusion, coupled systems, elliptic partial
differential-algebraic equations (PDAEs), tractability index

AMS subject classifications. 35J60, 34M15

1. Introduction. Commonly in circuit simulation, network designs are simulated on the basis
of lumped network equations. These equations are usually derived from Modified Nodal Analysis
(MNA). Generally, this modeling yields a system of differential algebraic equations (DAEs). So-
called index concepts [7] are used to classify these equations. The index roughly determines the
number of inherent differentiations, which are needed to derive an ordinary differential equation.

For the classical MNA equations, various index cases can be distinguished solely by structural
means. That is, the network topology determines the index, see e.g. [4, 5, 12]. Using for instance
the tractability index [9], one decomposes the set of variables accordingly and projects parts of the
equations.

Nowadays, downscaling as in semiconductor devices demands to include more and more former
secondary effects in the electric circuit simulation. This leads directly to coupled systems of differ-
ential algebraic equations (DAEs) for the electric network and partial differential equations (PDEs)
for the semiconductor devices. The coupling has two parts. On the one hand, an additional source
term occurs in the current balance of the electric network. On the other hand, the boundary con-
ditions of the device equations depend on the time-dependent node potentials, which are genuine
unknowns of the electric network.

The scope of the work at hand is twofold. In first place, we wish to generalize the index concept
available for DAEs to the setting above described, with coupled DAEs and PDEs. Our approach is
to determine additional topological conditions on the coupling matrices which relate the DAE and
PDE parts, such that the known results keep their validity for the enlarged system. This system
will be viewed as electric network with a nonlinear controlled source (for the semiconductor device).
And we will need to determine conditions under which the additional source terms has no further
structural consequences. The second aim of this paper, is to establish an existence result for an
index-2 system, according to the generalization above described. This is the main result of this
paper, since to our knowledge no existence results are available in literature for index-2 systems in
the class of our study.

The work is organized as follows. Section 2 covers the modeling of the coupled system; both
subsystems are described in details and the coupling terms are defined. In Section 3 we recapitulate
the tractability index concepts. We describe its application to the MNA equations and we give also
a topological interpretation of the index conditions. In Section 4 we state the main result, whose
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2 G. Al̀ı, A. Bartel, N. Rotundo

proof is presented in the following Section 5. First, we establish necessary a priori estimates for the
network equations, next we define an iteration map for the device equation. It will be used later
to define an iteration map for the coupled problem, which allows to conclude the proof of the main
theorem by applying Schauder’s fixed point theorem.

2. Coupled circuit-device model. We consider electric networks which include some com-
ponents described by distributed equations. The specific application we have in mind is a model for
an integrated circuit with semiconductor devices. Nevertheless, this model is susceptible of different
generalizations and extensions.

In this section we present the general coupled model, while we postpone the clarification of the
needed mathematical assumptions to a later section.

An electric network is described by the electrical potentials at the nodes and by the currents
through the branches. Using the approach of Modified Nodal Analysis (MNA) [6, 11], the electric
network equations can be obtained by the Kirchhoff current law, replacing the constitutive equations
for the currents through branches with capacitors and resistances, and by the constitutive equations
for the remaining components. We consider a linear RLC network, that is, a network which connects
linear capacitors, inductors and resistors, and independent voltage and current sources. We refer
to the respective number of elements as nC , nL, nR, nV , and nI . We assume that the network
additionally connects semiconductor devices. Let the network has m nodes plus the ground node,
where the potential is zero. We denote by e(t) ∈ Rm the node potentials, by iL(t) ∈ RnL the
currents through inductors, by iV (t) ∈ RnV the currents through voltage sources, by vV (t) ∈ RnV

the given input of independent voltage sources, and by iI(t) ∈ RnI the input of independent current
sources. The resulting MNA equations can be written in the form

(2.1) Eẋ = Ax+ σ + b(t).

This is a differential-algebraic equation for the unknown

x> =
[
e>, i>L, i>V

]
∈ Rn, n = m+ nL + nV ,

where the matrices E,A ∈ Rn×n and the input data b ∈ Rn are given by

E =

ACCA>C O O
O L O
O O O

 , A = −

ARGA>R AL AV
−A>L O O
−A>V O O

 , b(t) = −

AI iI(t)O
vV (t)

 .
Here, AC ∈ Rn×nC , AR ∈ Rn×nR , AL ∈ Rn×nL , AV ∈ Rn×nV , AI ∈ Rn×nI , are incidence matrices,
which describe the topology of the network. Moreover C ∈ RnC×nC , G ∈ RnG×nG and L ∈ RnL×nL

denote the capacitance matrix, the conductance matrix and the inductance matrix, respectively,
which are regular. The term σ in (2.1) represents the coupling with the devices which we treat
below.

We need to supplement equation (2.1) with consistent initial data

(2.2) x(t0) = x0.

The consistency of the initial data will be discussed in the next section.
For a detailed expression of σ, we need to introduce the device model. For simplicity we consider

a network containing only one semiconductor device. The case of circuits with many devices can
be dealt using the same arguments, but the notation would be much heavier. We assume that the
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Index-2 partial differential-algebraic models 3

device occupies a bounded domain Ω ⊂ Rd, and has nD+1 terminals. In other words, the boundary
∂Ω of Ω contains nD + 1 open (in Rd−1), disjoint, nonempty subsets Γi, i = 0, 1, . . . , nD, which
represent the terminals of the device, and we can write

∂Ω = Γ ∪ ΓN , Γ =

nD⋃
i=0

Γi, ΓN = ∂Ω \ Γ.

We neglect all thermal effects, and assume that two carriers are responsible for the device’s output
current, that is, electrons with negative charge −q, and holes with positive charge q. The behavior
of the device is described in terms of quasi-Fermi potentials for electron and holes, denoted by
φn(x, t) and φp(x, t) and electrostatic potential, denoted by φ(x, t), with (x, t) ∈ Ω × [t0, t1]. The
unknown u = (φ, φn, φp) satisfies the drift-diffusion equations [8]:

−∇ · (ε∇φ) = ρ, −∇ · (an∇φn) = H, −∇ · (ap∇φp) = −H.(2.3)

Here ε(x) is the dielectric constant, ρ(x, u) is the total charge density, an(x, u) and ap(x, u) are
the product of the mobilities times the respective carrier densities, and H(x, u) is the generation-
recombination term. A more detailed description of these functions will be given later. The drift-
diffusion equations are supplemented with Dirichlet boundary conditions on Γ, and homogeneous
Neumann conditions on ΓN :

φ− φbi = φn = φp = eD,k(t), on ΓD,k, k = 0, . . . , nD,(2.4a)

∂φ

∂ν
=
∂φn
∂ν

=
∂φp
∂ν

= 0, on ΓN ,(2.4b)

where φbi(x) is the built-in potential [8] (defined by ρ(x, ubi) = 0, ubi = (φbi, 0, 0)), eD,k(t) is
the applied potential at Γk, k = 0, 1, . . . , nD, and ∂/∂ν = ν · ∇ is the normal derivative along the
external unit normal to the boundary, ν. The time dependence of the device’s unknown is caused
by the time dependence of the external applied potentials, e>D = [eD,0, eD,1, . . . , eD,nD

].

The external potentials eD coincide with the electric potentials at the nodes of the network
which correspond to the terminals. The identification between external potential and node potential
can be accomplished by using a selection matrix SD = (sD,kh) ∈ Rm×mD , where mD = nD + 1 is
the total number of device terminals connected to the network, and sD,kh is equal to 1 if the node
k is connected to the terminal h, and equal to 0 otherwise. We can write

(2.5) eD = S>De = Ŝ>x with Ŝ =

SDO
O

 ∈ Rn×mD .

Notice the typographic difference to the space variable x. This coupling relation will be called
network-to-device coupling, since it says how the network variables x affect the device variables u.

On the other hand, once we know a solution u to the drift-diffusion equations we can compute
the currents through the terminals of the device (Ohmic contacts). At the terminal Γk (k =
0, 1, . . . , nD), we define (e.g. [2])

jD,k(t) =

∫
Γk

ν · j(x, t) dΣ(x), with j = −an∇φn − ap∇φp.
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4 G. Al̀ı, A. Bartel, N. Rotundo

For our purpose, this terminal currents can also be computed via space integrals. To this end,
we introduce the auxiliary functions ψk, k = 0, 1, . . . , nD, defined by the unique solution of the
following elliptic boundary value problem:

(2.6)

{
−∇ · (ε∇ψk) = 0, in Ω,

ψk = δik, on Γi, i = 0, 1, . . . , nD,
∂ψk

∂ν = 0, on ΓN ,

where δik is Kronecker’s delta (δik = 1 if i = k, δik = 0 if i 6= k). Then, the electric current jD,k
through Γk is also given by

(2.7) jD,k = −
∫

Ω

∇ψk · (an∇φn + ap∇φp) dx.

This is indeed compatible with the first definition above: from (2.3) we have ∇·(an∇φn+ap∇φp) =
0; using Gauss’ divergence theorem and recalling the boundary values of ψk, we recover the former
definition (if φn, φp are sufficiently regular on the boundary). The device currents jD,k (2.7) then
enter the current balances of the network. Thus the term σ in (2.1) takes the form

(2.8) σ = −ŜjD, j>D = [jD,0, jD,1, . . . , jD,nD
] ∈ RmD

This coupling relation will be called device-to-network coupling, since it says how the device variable
u affect the network variable x.

The network-to-device coupling condition and the device-to-network coupling condition can be
relaxed. First, we observe that the current jD is unchanged if the electric potential φ is shifted by
a constant in space, possibly depending on time. Thus, we can modify the boundary values for u,
replacing the applied potentials eD,k with the applied voltages vD,k = eD,k−eD,0, k = 0, 1, . . . , nD,
with respect to the ground terminal 0,

φ− φbi = φn = φp = vD,k(t), on ΓD,k, k = 0, . . . , nD,(2.9a)

∂φ

∂ν
=
∂φn
∂ν

=
∂φp
∂ν

= 0, on ΓN .(2.9b)

We have vD,0 = 0, and we introduce the vector of applied voltages

vD =

 vD,1
...

vD,nD

 =

 eD,1 − eD,0
...

eD,nD
− eD,0

 .
In compact form we can write

(2.10) vD = Â>DeD, ÂD =


−1 · · · −1
1 · · · 0
...

. . .
...

0 · · · 1

 ∈ RmD×nD .

The applied voltages vD depend on the node potentials of the network by means of an incidence
matrix AD, defined by using the selection matrix SD,

(2.11) vD = A>D e, AD = SDÂD.
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Index-2 partial differential-algebraic models 5

We introduce also the matrix

(2.12) Â =

ADO
O

 ∈ Rn×mD .

Then we can write

(2.13) vD = A>D e = Â>x.

This modified network-to-device coupling relation will be used throughout this paper.
Next, for any electric network element the sum of currents leaving it is zero. Of course this can

also be proven for the considered semiconductor device, that is,

nD∑
i=0

jD,i = 0.

Hence we can express jD,0 as a linear combination of the current through the other terminals, so
that we can write

(2.14) jD = ÂDiD, iD =
[
jD,1, . . . , jD,nD

]
∈ RnD .

Then we can recast (2.8) in the form

(2.15) σ = −ÂiD.

This modified device-to-network coupling relation will be used throughout this paper.
In the following section we investigate the structure of the coupled problem (2.1), (2.2), (2.3),

(2.9), (2.13), (2.15) from the viewpoint of the tractability index.

3. Tractability index. The full coupled problem presented in the previous section has the
following general structure:{

Eẋ = Ax+ σ + b(t), t ∈ [t0, t1],
x(t0) = x0,

(3.1a) {
F(x, u,∇u,∇2u) = 0, x ∈ Ω ⊂ Rd,
B(x, u, ∂u/∂ν, η) = 0, x ∈ ∂Ω,

(3.1b)

σ = Us(u),(3.1c)

η = V >x(3.1d)

for the unknown (x, σ, u, η). In the following we explain all ingredients and their relation to the
special case of an electric network with a distributed semiconductor device as described in the
previous section.

(a) The first subproblem (3.1a) is a system of differential algebraic equations (DAE) for the
unknown x : [t0, t]→ Rn, in a functional spaceWx, with initial data x0. The vector function
b(t) ∈ Rn is a given input, while σ ∈ Rn expresses the coupling with the remaining part of
the problem. — This system represents the electric network equations.
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6 G. Al̀ı, A. Bartel, N. Rotundo

(b) The subproblem (3.1b) is a boundary value problem for a system of elliptic partial dif-
ferential equations (PDE), for the unknown u in a functional space Wu (see below). The
boundary data in (3.1b) depend on a vector η ∈ Rk. — This system gives the relation for
a distributed, static device (semiconductor), where η ∈ Rk expresses the coupling with the
first part of the problem.

(c) The condition (3.1c) is the PDE-to-DAE coupling condition, which represents how the PDE
unknown u affects the DAE problem. We assume U ∈ Rn×` is a fixed matrix and s is a
vector valued function s :Wu → R`. — The term σ represents the device currents (through
its terminals) padded with zeros.

(d) The condition (3.1d) is the DAE-to-PDE coupling condition, which represents how the
DAE unknown x affects the PDE problem. We assume V ∈ Rn×k to be a given matrix. —
The term η represents the applied node potential.

In the following, we will use that the matrices E and A ∈ Rn×n are positive and negative
semidefinite, respectively. Moreover, we assume that the matrix pencil A − λE ∈ Rn×n[λ] is
regular.

The structure of the coupling term σ depends on the solution of the PDE system, in the
following sense. If the system (3.1b) admits a solution uniquely determined from given boundary
data η, then applying the coupling condition (3.1d) we can write

u = ũ(V >x),

i.e., u as function of the DAE (3.1a) unknown x. Thus in the perspective of the DAE, the coupling
to the PDE can be written as the following relation:

(3.2) σ = %(x), %(x) := Ur(V >x),

using the coupling condition (3.1c) and r(V >x) := s(ũ(V >x)). On the other hand, if the solution
u is not uniquely determined by the boundary data η, then the PDE system (3.1b) defines a
multivalued function u = ũ(η), which leads to a multivalued version of (3.2). We can give meaning
to this coupled problem also in the case of a multivalued function %(x). We say that (x, u) is
a solution of the PDAE (3.1) if x belongs to Wx, u belongs to C([t0, t1];Wu) and they satisfy,
respectively, the DAE (3.1a), the PDE (3.1b) and the coupling conditions (3.1c), (3.1d). The PDE
variable u depends parametrically on time through the boundary data η, that is, through x(t). The
concept of solution to (3.1) will be clarified in details when we will specialize the generic system for
application to electric networks containing semiconductor devices.

3.1. Tractability index of DAEs with a nonlinear term. In the following we investigate
the index of the coupled problem from the electric network perspective, by using a perturbative
approach. The main idea is that the nonlinearity is confined only to the PDE part of the equations
and, thus, to the PDE-to-DAE coupling term. The impact of the nonlinearity to the DAE is
controlled by the matrix U , so we wish to find additional conditions on this matrix so that the
nonlinearity does not alter the structure of the DAE in terms of differential and algebraic variables
splitting.

From the viewpoint of the tractability index [9] of the PDAE system (3.1) we will concentrate
formally on the DAE system (3.1a), with σ given by (3.2). Thus, given a regular matrix pencil
A− λE, we consider the nonlinear system

(3.3) Eẋ = Ax+ %(x) + b(t), %(x) = Ur(V >x).
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Index-2 partial differential-algebraic models 7

for the sole unknown x. We will not derive a general theory of tractability index of a nonlinear
system of the form (3.3). Instead we will follow a different approach: we wish to determine addi-
tional structural conditions, depending on the coupling matrices U , V , which allow to extend the
tractability index from the matrix pencil A− λE to the nonlinear problem (3.3) only.

3.1.1. Basics of the tractability index and related projectors. Thus our starting point
is the notion of tractability index of the matrix pencil A− λE. There are several ways of defining
this concept. We follow the approach described in [9], which is based on the construction of an
appropriate sequence of matrices. We proceed by induction. The basis are the initial matrices

E0 := E, A0 := A.

Assuming that the matrices Ei, Ai are already defined up to k − 1 ≥ 0, we need to define the
matrices corresponding to k. To this end, we denote by Qi a projector onto the kerEi, and by
Pi = I −Qi, its complementary projector for i = 0, . . . , k − 1. Thereby we assume that it holds

(3.4) QiQj = O, j = 0, . . . , i− 1,

which is indeed always feasible. Then the matrices Ek, Ak are defined by

(3.5) Ek = Ek−1 −Ak−1Qk−1, Ak = Ak−1Pk−1.

This procedure (3.5) can be continued indefinitely, but after a finite number of µ iterations,
we will end up with a nonsingular matrix Eµ with Ek singular for k < µ (unless the matrix pencil
A − λE was singular). Then, of course, the sequence will stagnate: Eµ+i = Eµ for all i ≥ 0. The
number µ is called tractability index of the matrix pencil A− λE.

The sequence of matrices (matrix chain) (3.5) derived for the matrix pencil A − λE has an
immediate application to the system (3.3) of DAEs. Using the matrix chain properties, one can
show that (3.3) is equivalent to

Ek(Pk−1 · · ·P0ẋ+Q0x+ · · ·+Qk−1x) = Akx+ %(x) + b(t)

for any k. In particular for k = µ, we have Eµ is nonsingular and we can write

(3.6) Pµ−1 · · ·P0ẋ+Q0x+ . . .+Qµ−1x = E−1
µ (Aµx+ %(x) + b(t)).

This equation enables us to decouple the original system into a differential equation for the variable
P0 · · ·Pµx, and algebraic equations for the variables [9]

P0 · · ·Pµ−1Qµx, . . . , P0Q1x,Q0x

if %(x) were not present.

Furthermore we introduce Q̂i as a projector onto ker(E>i ) and its complementary version P̂i =

I−Q̂i, for i = 0, 1. Next, we wish to find additional conditions, depending on the coupling matrices
U , V , such that this decoupling is preserved also for the nonlinear equation (3.3). A general
discussion can be found in [3]. In the following we derive appropriate additional conditions for
index-1 and index-2 matrix pencils with a nonlinear coupling term.
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8 G. Al̀ı, A. Bartel, N. Rotundo

3.1.2. Index-1 matrix pencil A − λE. Let us assume that the matrix pencil A − λE has
index 1 (µ = 1), that is,

(3.7) E0 is singular, E1 is nonsingular.

Then (3.6) reads P0ẋ + Q0x = E−1
1 (A1x+ %(x) + b(t)) . Applying the projectors P0, Q0, and

observing that A1Q0 = O, we get the following projected equations

ẏ := P0ẋ = P0E
−1
1 (A1y + %(x) + b(t)) ,(3.8a)

z := Q0x = Q0E
−1
1 (A1y + %(x) + b(t))(3.8b)

for the components y = P0x and z = Q0x. The original unknown can be recovered by the relation
x = y + z.

In absence of the nonlinear term %(x) we could solve the first equation for y and use the solution
to determine z from the second equation. Now, we wish to find a condition which ensures the same
behavior also in the presence of %(x). The unknown x can be expressed in terms of y, b and %(x)
only, by inserting (3.8b):

x = y + z = y +Q0E
−1
1 (A1y +%(x) + b) = (I +Q0E

−1
1 A1)y +Q0E

−1
1 b+Q0E

−1
1 %(x)

= M∗1 y +M1b+M1%(x),

with M1 = Q0E
−1
1 , M∗1 = I +M1A1. Recalling that %(x) = Ur(V >x), we have

r(V >x) = r
(
V >M∗1 y + V >M1b+ V >M1Ur(V

>x)
)
.

Thus, to avoid recursion in z, it is sufficient to assume the condition

(3.9) V >M1U ≡ V >Q0E
−1
1 U = O.

Under this condition, the system (3.8) becomes

ẏ = P0E
−1
1 [A1y + %(M∗1 y +M1b) + b] ,(3.10a)

z = Q0E
−1
1 [A1y + %(M∗1 y +M1b) + b] ,(3.10b)

and we find that (3.8) has an index-1 structure.
We notice that (3.9) is implied by either of the following conditions:

V >Q0 = O,(3.11)

Q0E
−1
1 U = O.(3.12)

Proposition 3.1. Let A−λE ∈ Rn×n[λ] be an index-1 matrix pencil, and let U ∈ Rn×`. Then
the condition (3.12) is equivalent to:

(3.13) Q̂>0 U = O.

for any projector Q̂0 onto kerE>0 .
Proof. From (3.12) we have that Q0U

′ = O with U ′ = E−1
1 U , that is, there exists a matrix

U ′ ∈ Rn×` such that U = E1U
′ = E0U

′. Multiplying from the left-hand side by the transpose of
the projector onto the kerE>0 , we obtain immediately (3.13).
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Index-2 partial differential-algebraic models 9

On the other hand, given Q̂>0 U = O, thus P̂>0 U = U . Then we have E1P0 = E0 = P̂>0 Ê1, with
Ê1 = E0 + Q̂>0 Q̂0. Then E−1

1 P̂>0 = P0Ê
−1
1 . From (3.13) we have E−1

1 U = E−1
1 P̂>0 U = P0E

−1
1 U

that, multiplied by Q0, gives (3.12).
If % is a function, it is possible to apply the notion of tractability index for nonlinear DAEs,

introduced by März [10]. It is possible to prove that the additional condition (3.11), together with
the index-1 conditions for the matrix pencil A−λE, imply that (3.8), with algebraic %, is an index-1
system [3]. Condition (3.12), or equivalently condition (3.13), is in general different from (3.11),
even when U = V , unless we can choose Q̂0 = Q0. This is possible only if kerE0 = kerE>0 .

3.1.3. Index-2 matrix pencil A − λE. Let us assume that the matrix pencil A − λE has
index 2 (µ = 2), that is,

(3.14) E0 is singular, E1 is singular, E2 is nonsingular.

Then equation (3.6) becomes

P1P0ẋ+Q1x+Q0x = E−1
2 (A2x+ %(x) + b(t)) .

Using the projectors P0P1, P0Q1 and Q0P1 on equation (3.6), we obtain the three projected equa-
tions

ẏ = P0P1E
−1
2 (A2y + %(x) + b(t)) ,(3.15a)

w = P0Q1E
−1
2 (A2y + %(x) + b(t)) ,(3.15b)

z = Q0Q1ẇ +Q0P1E
−1
2 (A2y + %(x) + b(t)) ,(3.15c)

for the components of the unknown y = P0P1x, w = P0Q1x, and z = Q0x. The original unknown
x can be recovered from the relation x = y + w + z.

In absence of the nonlinear term %(x) this is an index-2 system, since we can solve the equation
(3.15a) for y, then compute w by (3.15b), and finally compute z by (3.15c). We see that in the
solution appears the time derivative of the source term b(t), because of the term ẇ in (3.15c). To
keep the same structure also when %(x) is present, we proceed as before. We can compute

x = y + w + z

= y + P0Q1E
−1
2 (A2y + %(x) + b) + [Q0Q1ẇ +Q0P1E

−1
2 (A2y + %(x) + b(t))]

= M∗2 y +M2b+M2%(x) +Q0Q1ẇ,

with

(3.16) M2 = (P0Q1 +Q0P1)E−1
2 , M∗2 = I +M2A2.

To avoid recursion in z and w as in the index-1 case, it is sufficient to have:

V >Q0Q1 = O,(3.17a)

V >M2U ≡ V >(P0Q1 +Q0P1)E−1
2 U = O.(3.17b)

Under these conditions, system (3.15) becomes

ẏ = P0P1E
−1
2 [A2y + %(M∗2 y +M2b) + b] ,(3.18a)

w = P0Q1E
−1
2 [A2y + %(M∗2 y +M2b) + b] ,(3.18b)

z = Q0Q1ẇ +Q0P1E
−1
2 [A2y + %(M∗2 y +M2b) + b] .(3.18c)
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10 G. Al̀ı, A. Bartel, N. Rotundo

We notice that (3.17b) is implied by either of the following conditions:

V >(P0Q1 +Q0P1) = O,(3.19)

(P0Q1 +Q0P1)E−1
2 U = O.(3.20)

The first condition is equivalent to [3]

(3.21) V >Q0 = V >Q1 = O.

Thus, (3.19) implies both (3.17a) and (3.17b). Moreover, if % is a nonlinear function and A − λE
is an index-2 matrix pencil, then the additional condition (3.19) implies that (3.18) is an index-2
system according to the definition given in [10] (see [3]).

The following Proposition 3.4 explores the topological implications of condition (3.20). This
proposition requires as prerequisite the following two lemmas.

Lemma 3.2. Let A− λE ∈ Rn×n[λ] be an index-2 matrix pencil, and let U ∈ Rn×`. Then the
following conditions are equivalent:

(i) There exist a matrix U ′ ∈ Rn×` such that

(3.22) (I − P0P1)E−1
2 U = Q0Q1U

′.

(ii) There exist a matrix U ′ ∈ Rn×` such that

(3.23) U = E0U
′,

that is, for any projector Q̂0 onto kerE>0 we have

(3.24) Q̂>0 U = O.

(iii) There exist a matrix U ′ ∈ Rn×` such that

(3.25) Q0E
−1
2 U = Q0Q1U

′,

and we have

(3.26) Q1E
−1
2 U = O.

Proof. First we prove that (i) implies (ii). Let (I − P0P1)E−1
2 U = Q0Q1U

′. Since Q0Q1 =
−(I − P0P1)P1P0, we find

(I − P0P1)(E−1
2 U + P1P0U

′) = O,

that is, (I − P0P1)U ′′ = O, with U ′′ = E−1
2 U + P1P0U

′. Hence, U = E2(−P1P0U
′ + U ′′) =

E2(−P1P0U
′ + P0P1U

′′). And since (P1P0)(P0P1) = P0P1, we get U = E2P1P0(−U ′ + P0P1U
′′) =

E0(−U ′ + P0P1U
′′), that is, (3.23).

To prove that (ii) implies (iii), we note that E2P1P0 = E0 = P̂>0 Ê1, with Ê1 = E0 + Q̂>0 Q̂0

and P̂0 = I − Q̂0. Since Ê1 is invertible, we get the identity

(3.27) P1P0Ê
−1
1 = E−1

2 P̂>0 .

Then we find from (3.23) in (ii):

E−1
2 U = E−1

2 E0U
′ = E−1

2 P̂>0 E0U
′ = P1P0Ê

−1
1 E0U

′,
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Index-2 partial differential-algebraic models 11

where the last equality follows from (3.27). Multiplying this identity by Q0 and Q1, observing that
Q0P1P0 = −Q0Q1, we find (3.25) and (3.26).

Finally, to prove that (iii) implies (i) it is sufficient to note that I − P0P1 = Q0 +Q1 −Q0Q1.
This concludes the proof of the lemma.

Lemma 3.3. Let A− λE ∈ Rn×n[λ] be an index-2 matrix pencil, and let U ∈ Rn×`. Then the
following conditions are equivalent:

(i) It holds

(3.28) Q1E
−1
2 U = O.

(ii) It holds

(3.29) U = E1E
−1
2 U.

(iii) There exist a matrix U ′ ∈ Rn×` such that

(3.30) U = E1U
′,

that is, for any projector Q̂1 onto kerE>1 , we have

(3.31) Q̂>1 U = O.

Proof. If U satisfies (3.28), then E−1
2 U = P1E

−1
2 U . Then, U = E2P1E

−1
2 U , and (3.29) follows

from E2P1 = E1. Thus, (i) implies (ii). Moreover (ii) implies trivially (iii). It remains to show
that (iii) implies (i). For Q̂1 and P̂1 = I − Q̂1, we have E2P1 = E1 = P̂>1 Ê2 with the invertible
matrix Ê2 = E1 + Q̂>1 Q̂1. Then it holds E−1

2 P̂>1 = P1Ê
−1
2 . Now using Q̂>1 U = O, it follows

E−1
2 U = E−1

2 P̂>1 U = P1E
−1
2 U.

Multiplying by Q1 we obtain (3.28), which concludes the proof.
Proposition 3.4. Let A−λE ∈ Rn×n[λ] be an index-2 matrix pencil, and let U ∈ Rn×`. Then

the following conditions are equivalent:
(i) The matrix U satisfies the condition (3.20).

(ii) It holds

(3.32) Q0E
−1
2 U = O, Q1E

−1
2 U = O.

(iii) It holds

(3.33) U = E0E
−1
2 U = E1E

−1
2 U.

Proof. First, we prove that (i) is equivalent to (ii). Given (i) for U , then U satisfies (3.22) with
U ′ = E−1

2 U , since P0Q1 +Q0P1 = I − P0P1 −Q0Q1. Hence all statements of Lemma 3.2 hold, in
particular, we have Q1E

−1
2 U = O. Together with (3.20), this implies Q0E

−1
2 U = O, and thus holds

(3.32). On the other hand, (i) follows immediately from (ii).
Next, we prove that (ii) is equivalent to (iii). First, using Lemma 3.3 we observe that the

equality Q1E
−1
2 U = O, is equivalent to U = E1E

−1
2 U . In a similar way, the equality Q0E

−1
2 U = O

is equivalent to U = E2P0E
−1
2 U = E0E

−1
2 U −A1Q1E

−1
2 U . It follows that (3.32) is equivalent to

U = E1E
−1
2 U, U = E0E

−1
2 U −A1Q1E

−1
2 U.
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12 G. Al̀ı, A. Bartel, N. Rotundo

Using the equivalence of Q1E
−1
2 U = O and U = E1E

−1
2 U , the above equalities are equivalent to

(3.33).
In conclusion, condition (3.19) is equivalent to V >Q0 = V >Q1 = O, while condition (3.20) is

equivalent to Q̂>0 U = Q̂>1 U = O. Thus, even if U = V , the two conditions are equivalent only if
kerE>i = kerEi, which is not true in general.

In the following we will assume the conditions

V >Q0Q1 = O,(3.34a)

(P0Q1 +Q0P1)E−1
2 U = O,(3.34b)

which imply (3.17). By Prop. 3.4, the conditions (3.34b) and (3.32) are equivalent. Thus by (3.34b),
the split equations (3.18) simplify as follows: (since % = Ur)

ẏ = P0P1E
−1
2 [A2y + %(M∗2 y +M2b) + b] ,(3.35a)

w = P0Q1E
−1
2 [A2y + b] ,(3.35b)

z = Q0Q1ẇ +Q0P1E
−1
2 [A2y + b] .(3.35c)

3.2. Application to MNA equations and topological interpretation of the index
conditions. Here we go back to problem (3.3) and we discuss the additional conditions and their
topological interpretation for the MNA equations in both index-1 and index-2 case. Thus we
consider matrices E and A as in equation (2.1).

To make explicit the additional condition we also need the coupling matrices U , V . In the
MNA case both U and V coincide with the matrix Â, introduced in (2.12),

(3.36) U = V = Â =

ADO
O

 ,
where AD is defined in (2.11).

3.2.1. Topological interpretation of the index-1 conditions. In our index-1 case, E0 is
singular while E1 = E0 − A0Q0 is nonsingular and the additional condition (3.12) is satisfied. It
is simple to see that kerE0 = kerA>C × {0} × RnV = kerE>0 (since E0 is symmetric). Thus it is

possible to choose Q̂0 ≡ Q0. Let QC be a projector onto the kernel of A>C and PC = I −QC . Then
we can choose

Q0 =

QC O O
O O O
O O I

 , P0 =

PC O O
O I O
O O O

 .(3.37)

Furthermore the matrix chain is continued by

(3.38) E1 =

ACCA>C +ARGA
>
RQC O AV

−A>LQC L O
−A>VQC O O

, A1 = −

ARGA>RPC AL O
−A>LPC O O
−A>V PC O O

.
The text proposition, which is derived from [5, 12], characterizes the kernel of E1.
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Index-2 partial differential-algebraic models 13

Proposition 3.5. Let E1 be the matrix defined in (3.38). Then

kerE1 =
{

[e>, i>L , i
>
V ]> ∈ Rn : QCe ∈ ker(AC , AV , AR)>, iV ∈ ker(Q>CAV ),

PCe = −M−1
C AV iV , iL = L−1A>LQCe

}
,

where MC = P>C ACCA
>
CPC +Q>CQC , and

kerE>1 =
{

[e, iL, iV ]> ∈ Rn : QCe ∈ ker(AC , AV , AR)>, PCe = 0,

iL = 0, iV ∈ ker(Q>CAV )
}
.

Using this proposition, we find [12, 5, 1]:
Proposition 3.6. For the nonlinear problem (3.3), the index-1 conditions (3.7) and the addi-

tional condition (3.12) are satisfied if and only if all of the following topological conditions hold:

(3.39) ker(AC , AV , AR)> = {0}, ker(Q>CAV ) = {0}, Q>CAD = O.

Proof. By Proposition 3.5, the first two conditions are equivalent to kerE1 = {0}, i.e., to the
index-1 condition (3.7). Then by Proposition 3.1 and the symmetry of E0, (3.12) is equivalent to
the last condition.

Remark 1. The topological conditions (3.39) have simple physical interpretations [1, 5, 12].
The first condition forbids cutsets composed of independent current sources and inductors. The
second condition states that loops containing at least one voltage source and any number of capacitors
and diodes are forbidden. The third conditionstates that any device terminal is connected to ground
by a path of capacitors.

For an index-1 MNA system, using the projector Q0 defined in (3.37), the differential and
algebraic variables are:

y = P0x =

PCeiL
O

 , z = Q0x =

QCeO
iV

 .
Under the conditions in Proposition 3.6, they satisfy equations (3.10).

3.2.2. Topological interpretation of the index-2 conditions. The pencil A − λE has
tractability index-2 if and only if E1 is singular and E2 is nonsingular. Thus, system (3.3) is
index-2 if kerE1 6= {0}, kerE2 = {0}, and the additional conditions in (3.34) are satisfied. Due to
Lemma 3.2 and Lemma 3.3, the additional conditions are equivalent to (3.34a), (3.24), (3.31).

We render explicit the index-2 conditions for the MNA equations using the following proposition
[12, 5].

Lemma 3.7. Let QCV R denote a projector onto the ker(AC , AV , AR)> (with QCV R = QCQCV R)
and Q∗CV denote a projector onto the ker(Q>CAV ). Then

Q∗1 =

 QCV R O −PCM−1
C AVQ

∗
CV

L−1A>LQCV R O O
O O Q∗CV

,
with MC = P>C ACCA

>
CPC +Q>CQC , is a projector onto kerE1. Moreover,

(3.40) Q1 = −Q∗1(E1 −A1Q
∗
1)−1A1,



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

14 G. Al̀ı, A. Bartel, N. Rotundo

is a projector onto kerE1, which satisfies condition (3.4).
Proof. First we observe that Q∗1

2 = Q∗1, since QCV RPC = 0. Moreover, since PCQCV R = O,
we have also E1Q

∗
1 = O, thus Q∗1 is a projector onto kerE1. Next, using A1Q

∗
1 = −(E1−A1Q

∗
1)Q∗1,

it holds

Q2
1 = −Q∗21 (E1 −A1Q

∗
1)−1A1 = Q1.

Since E1Q1 = O, Q1 is also a projector onto kerE1, and recalling that A1 = A0P0, we immediately
have that it satisfy the condition (3.4).

It remains to see which are the additional conditions for the MNA equations. By the results
from Section 3.1, the conditions to be satisfied are

Â>Q0Q1 = O, Q̂>0 Â = O, Q̂>1 Â = O.

As noted above, we can choose Q̂0 = Q0, so the first condition is implied by the second one, i.e., we
have the conditions Q>0 Â = O, Q̂>1 Â = O. Using the characterization of kerE>1 in Proposition
3.5, it follows that we can choose

Q̂1 =

QCV R O O
O O O
O O Q∗CV

 .
Summing up, we have only to assume the following additional topological conditions:

Proposition 3.8. Given the DAE (3.3), such that E and A are symmetric and condition

Q>CAD = O

holds. Then this DAE is index-2 if and only if one of the following conditions hold:

ker(AC , AV , AR)> 6= {0}, ker(Q>CAV ) 6= {0}.

Proof. We notice Q>CAC = 0 implies Q>CV RQ
>
CAD = 0 and this implies Q>CV RAD = 0 (since

QCV R = QCQCV R).
This completes the more abstract index and matrix investigations. We now come to the a priori

estimates for the coupled system.

4. Main result. Next we tackle a core result of this paper, which is an existence result of
the above introduced coupled system of a linear network DAE with a semiconductor (3.1). This
problem is restated with more model details for the semiconductor device in the box below (4.1–4.4)

The main assumptions on the coupled problem are as follows: The MNA equation behind (4.1)
employs positive definite matrices:

(4.5) the matrices C, L and G are symmetric and positive definite.

This assumption implies that E is positive semi-definite and A is negative semi-definite. Moreover,
we assume that our electric networks is connected. Then for σ = 0 the pencil A − λE is regular
and the tractability index is at most 2 [5]. Thus we assume the topological conditions (Prop. 3.8):

(4.6) Q>CAD = O, ker(AC , AV , AR)> 6= {0}, ker(Q>CAV ) 6= {0}
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Index-2 partial differential-algebraic models 15

MNA network equations for x(t):

(4.1)

{
Eẋ = Ax+ σ + b(t), in [t0, t1],
x(t0) = x0,

Device equations for u(x, t) = (φ, φn, φp)(x, t):

(4.2)



−∇·(ε(x)∇φ) = ρ(x, u), in Ω,

−∇·(an(x, u)∇φn) = H(x, u), in Ω,

−∇·(ap(x, u)∇φp) = −H(x, u), in Ω,

φ− φbi = φn = φp = eD,k(t), on Γk (k = 0, 1, . . . , nD),

∂φ

∂ν
=
∂φn
∂ν

=
∂φp
∂ν

= 0, on ΓN ,

Network-to-device coupling conditions:

(4.3) eD = V >x,

Device-to-network coupling conditions: (k = 0, 1, . . . , nD)

σ = −UiD, with iD,k = −
∫

Ω

∇ψk · (an∇φn + ap∇φp) dx.(4.4)

(i.e., the existence of an LI-cutset or a CV-loop [5]), such that by Prop. 3.8 A−λE has tractability
index 2. As regards the independent voltage source vV (t) and current source iI(t), we assume that

(4.7) vV (t) ∈ C1([t0, t1];RnV ), iI(t) ∈ C1([t0, t1];RnI ),

i.e., the source term b(t) is continuously differentiable.
For the drift-diffusion problem (4.2) with unknown u = (φ, φn, φp), The source term ρ(x, u)

represents the total charge density,

(4.8) ρ(x, u) = qN(x)− qn(u) + qp(u),

where N(x) is the doping profile and n(u), p(u) are the electron and hole number densities. They
are given by the Maxwell-Boltzmann relations

n(u) = ni exp

(
φ− φn
φth

)
, p(u) = ni exp

(
φp − φ
φth

)
,

with ni intrinsic concentration, and φth thermal potential. For the doping profile N(x) in ρ, and
for the dielectric constant ε(x), we assume

(4.9) N, ε ∈ L∞(Ω), ε(x) ≥ ε > 0 for all x ∈ Ω,

for a real constant ε. The functions an(x, u) and ap(x, u) are related to the mobilities µn, µp by

(4.10) an(x, u) = qn(u)µn(x, n(u)), ap(x, u) = qp(u)µp(x, p(u)),
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16 G. Al̀ı, A. Bartel, N. Rotundo

where the mobilities are continuous functions of the space and of the carrier concentration. Com-
monly, the mobilities are assumed to be strictly positive and continuous functions. This leads to
the model assumptions:

(4.11)
(i) an(x, u), ap(x, u) are continuous functions,
(ii) for any compact set K ⊂ R3 there exist a constant aK such

that an(x, u), ap(x, u) ≥ aK > 0 for all x ∈ Ω, u ∈ K.

The generation-recombination term H(x, u) is assumed to take the form

(4.12) H(x, u) = H ′(x, n(u), p(u))
(
n(u)p(u)− n2

i

)
=: h(x, u)

(
n(u)p(u)− n2

i

)
,

for some regular functionH ′(x, n, p). This expression covers the most common generation-recombination
mechanisms with the exception of impact ionization. We note that

n(u)p(u)− n2
i = n2

i exp

(
φp − φn
φth

)
− n2

i =: g(φp − φn).

Based on these considerations, we assume that

(4.13)

(i) H(x, u) = h(x, u)g(φp − φn),
(ii) h(x, u), g(v) are continuous functions,
(iii) g(v)v > 0 for all v ∈ R,
(vi) h(x, u) ≥ 0 for all x ∈ Ω, u ∈ R3.

To introduce our existence result for the coupled problem, we need the spaces

Wx := {x ∈ C0([t0, t1];Rn) : P0x ∈ C1([t0, t1];Rn},
Wu :=

(
H1(Ω) ∩ L∞(Ω)

)3
,

and we employ in Rm the Euclidean vector norm | · |.
Theorem 4.1. Under the assumptions (4.5)–(4.13), the index-2 coupled problem (4.1)–(4.4)

admits a solution, (x, u) ∈ Wx × C0([t0, t1];Wu). Moreover, any solution satisfies the estimates:

|P0P1x(t)|2 ≤ cyek(t−t0)
(
|y0|2 + |b0|2 + ‖b‖H1([t0,t1])

)
,(4.14)

|P0Q1x(t)|2 ≤ cwek(t−t0)
(
|y0|2 + |b0|2 + ‖b‖H1([t0,t1])

)
,(4.15)

|Q0x(t)|2 ≤ cz
(
|y(t)|+ |ẏ(t)|+ |b(t)|+ |ḃ(t)|

)
,(4.16)

inf
ΓD

φbi + min
i
eD,i ≤ φ ≤ sup

ΓD

φbi + max
i
eD,i,(4.17)

min
i
eD,i ≤ φn ≤ max

i
eD,i, min

i
eD,i ≤ φp ≤ max

i
eD,i,(4.18)

for some positive constants cy, cw, cz and k depending only on E0, A0.

5. Proof of the main theorem. The proof of Thm. 4.1 is based on an iteration map argument
and it is an extension of the proof used in [2], where an index-1 coupled network-device systems
is studied. The derivation requires several steps: passivity of the semiconductor device, a priori
estimates and an iteration map. Most preliminary results are common in the index-1 and the index-2
case, thus we report on all needed lemmas and present full details of index-2 specific aspects.
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Index-2 partial differential-algebraic models 17

Passivity. The following a priori estimates rely essentially on the passivity of the semiconduc-
tor model (i.e., the coupling term σ):

Lemma 5.1. Let the assumption (4.13) for the generation-recombination term hold. Given
x ∈ Wx, let u ∈ Wu satisfy the boundary value problem (4.2)–(4.3), Then the coupling term σ (4.4)
satisfies the passivity condition

(5.1) x>σ ≤ 0.

This lemma was proven in [2]. The dissipativity condition (5.1) is equivalent to the usual passivity
condition, since it holds:

e>DjD = x>V jD = x>UiD = −x>σ ≥ 0.

A priori estimates for the network equation. Passivity (5.1) allows us to obtain estimates
for the network variables, independently of the device variables.

Proposition 5.2 (A priori estimates for the network). Let the network
assumptions (4.5)–(4.7) be given and let x ∈ Wx satisfy the network equation (4.1) with consistent
initial value x0. Let σ be given such that the passivity condition (5.1) holds. Then, for all t ∈ [t0, t1],
the differential part y = P0P1x, and the algebraic parts w = P0Q1x, z = Q0x of the solution, satisfy
the estimates

|y(t)|2 ≤ cyek(t−t0)
(
|y0|2 + |b0|2 + ‖b‖H1([t0,t1])

)
,(5.2)

|w(t)|2 ≤ cwek(t−t0)
(
|y0|2 + |b0|2 + ‖b‖H1([t0,t1])

)
,(5.3)

|z(t)| ≤ cz
(
|y(t)|+ |ẏ(t)|+ |b(t)|+ |ḃ(t)|

)
,(5.4)

for some positive constants cy, cw, cz and k depending only on E, A.
Proof. Multiplying (4.1) by x>, using the passivity condition (5.1) and the assumption (4.5),

we obtain

x>Eẋ ≤ x>b(t).

Due to the symmetry of E, we have Q>0 E = O. Then the inequality becomes

(P0x)>E(P0ẋ) ≤ x>b(t).

since x = P0x+Q0x. Integrating this result on [t0, t] with t ≤ t1, we find

(5.5)
1

2
(P0x)>E(P0x) ≤ 1

2
(P0x0)>E(P0x0) +

∫ t

t0

x>(τ)b(τ) dτ

(using also E> = E). On the one hand, E is positive definite when restricted to P0Rn. Recalling
P0x = P0P1x+ P0Q1x, we can find a positive constant cE such that

(5.6)
1

2
(P0x)>E(P0x) ≥ cE |P0x|2 ≥ cE(|y|2 + |w|2).
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On the other hand, the hypothesis (4.6) and the decomposition (3.35) imply

x>b = y>b+ w>b+ z>b

= y>b+ [P0Q1E
−1
2 (A2y + b)]>b+ [Q0Q1ẇ +Q0P1E

−1
2 (A2y + b)]>b

= y>M∗>2 b+ b>M>2 b− w>(Q0Q1)>ḃ+
d

dt
[w>(Q0Q1)>b]

with M2 and M∗2 defined in (3.16). The last equality contains no quadratic terms in the terms of
x. Then, using the Schwarz inequality, we obtain∫ t

t0

x>(τ)b(τ) dτ

≤ c
∫ t

t0

(|y(τ)|2 + |b(τ)|2 + |w(τ)|2 + |ḃ(τ)|2) dτ + w>(Q0Q1)>b− w>0 (Q0Q1)>b0

≤ c
∫ t

t0

(|y(τ)|2 + |w(τ)|2) dτ + c‖b‖2H1([t0,t1])+ δ|w(t)|2+ c(δ)|b(t)|2− w>0 (Q0Q1)>b0,

where δ is a small positive real number which will be chosen later. Using the previous inequality,
(5.5), (5.6) and choosing δ = cE

2 , we get

1

2
cE(|y|2 + |w|2) ≤ 1

2
(P0x0)>E(P0x0)− w>0 (Q0Q1)>b0

+c‖b‖2H1([t0,t1]) + c

∫ t

t0

(|y(τ)|2 + |w(τ)|2) dτ.

From Gronwall’s lemma, we find the inequality

|y(t)|2 + |w(t)|2 ≤ C0e
c(t−t0)

with C0 = c(|y0|2 + |b0|2 + ‖b‖H1([t0,t1])), which proves both (5.2) and (5.3). Finally, we have

z = Q0Q1ẇ +Q0P1E
−1
2 [A2y + b]Q0Q1E

−1
2

[
A2ẏ + ḃ

]
+Q0P1E

−1
2 [A2y + b],

which proves (5.4).

Device iteration map. As known results for the device equations indicate [8], we consider
for the unknown function Φ := (φn, φp) the following set:

M(eD) = {ψ ∈ L2(Ω) | min
i
eD,i ≤ ψ ≤ max

i
eD,i a.e. in Ω}2

given any applied voltage eD ∈ RmD . For any e∗D ∈ RmD and Φ∗ = (φ∗n, φ
∗
p) ∈ M(e∗D) we partly

linearize the device equations (4.2) as follows. First the PDE for the electric potential is solved:

(5.7)

{ −∇· (ε∇φ∗) = ρ(φ, φ∗n, φ
∗
p), in Ω,

φ− φbi = e∗D,i, on ΓD,i,
∂φ

∂ν
= 0, on ΓN .
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It solution is denoted as φ∗ = φ∗(e∗D,Φ
∗). Then the the remaining PDEs for the device equations

are solved:

(5.8)


−∇· ( a∗n∇φn) = H∗1H2,

−∇· ( a∗p∇φp) = −H∗1H2, in Ω

φn = φp = eD,i, on ΓD,i,
∂φn
∂ν

=
∂φp
∂ν

= 0, on ΓN ,

where superscript ∗ denotes evaluation at u = u∗ = (φ∗, φ∗n, φ
∗
p). This gives rise to consider the

map

(5.9) Φ](eD; e∗D) : Φ∗ 7→ Φ = Φ](eD; e∗D)(Φ∗) =: Φ](eD; e∗D,Φ
∗).

The well-posedness of Φ](eD; e∗D) has been proven in [2]. In summary, it holds:
Lemma 5.3. Given e∗D ∈ RmD and Φ∗ ∈M(e∗D).
a) Problem (5.7) has a unique solution φ∗ ∈ H1(Ω) satisfying

inf
ΓD

φbi + min
i
e∗D,i ≤ φ∗ ≤ sup

ΓD

φbi + min
i
e∗D,i, a.e. in Ω.

b) For φ∗ = φ∗(e∗D,Φ
∗) solution of (5.7), problem (5.8) has a unique solution Φ = (φn, φp) ∈

(H1(Ω)2), which satisfies

min
i
eD,i ≤ φn ≤ max

i
eD,i, min

i
eD,i ≤ φp ≤ max

i
eD,i a.e. in Ω.

Thus given also eD ∈ RmD , the map

Φ](eD; e∗D) : M(e∗D)→M](eD) :=M(eD) ∩H1(Ω),

stated in (5.9), is well-defined. We note this Lemma gives also the estimates for the electric
potential, which appear in Theorem 4.1. — The map Φ](eD; e∗D) defines also a modified terminal

current i]D(eD; e∗D,Φ
∗) ∈ RmD with components

j]D,k(eD; e∗D,Φ
∗) = −

∫
Ω

∇ψk · (a∗n∇φn + a∗p∇φp) dx

for (φn, φp) = φ](eD; e∗D,Φ
∗) and auxiliary function ψk (2.6), k = 0, . . . , nD. In [2], it was proven:

Lemma 5.4. Given e∗D ∈ RmD and Φ∗ ∈M(e∗D), the map eD 7→ i]D(eD; e∗D,Φ
∗) (RnD → RnD )

is Lipschitz-continuous with respect to the applied voltage eD and i]D satisfies the passivity condition

v>Di
]
D(eD; e∗D,Φ

∗) ≥ 0, vD = Â>eD.

Iteration map for the coupled problem. Due to Lemma 5.4, we can consider a modified
coupled problem with the modified current i]D to construct an iteration map for the coupled on
an appropriate subset for e∗D. Since in the coupled problem the unknown function (eD, Φ) is time
dependent, we need to consider

C0
CP([t0, t1]) := C0([t0, t1],RmD )×

(
C0([t0, t1], L2(Ω))

)2
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as the function space and we need to extend the set M(eD) to

Mt0,t1(eD) ={ψ ∈ C0([t0, t1], L2(Ω)) |
min
i
eD,i ≤ ψ ≤ max

i
eD,i a.e. in Ω, ∀ t ∈ [t0, t1]}2

and consider boundary data e∗D ∈ C([t0, t1],RmD ). In fact, Lemma 5.3 can be extended to this
setting [2].

If x satisfies the a priori estimate (5.2)–(5.4), then the applied potentials eD = S>x are bounded:

(5.10) |eD(t)| ≤ CD(t0, t1), ∀ t ∈ [t0, t1],

where CD(t0, t1) depends on the time interval [t0, t1]. Thus we can consider the subset M of
C0

CP([t0, t1]):

M =
{

(eD,Φ) ∈ C0
CP([t0, t1]) : |eD| ≤ CD(t0, t1) ∀ t ∈ [t0, t1], Φ ∈M(eD)

}
.

Given (e∗D,Φ
∗) ∈ M, we solve the modified coupled problem

Eẋ = Ax+ σ] + b(t), in [t0, t1],(5.11)

P0P1x(t0) = y0,(5.12)

eD = V >x,(5.13)

σ] = −U i]D(eD; e∗D,Φ
∗),(5.14)

where the current i]D(eD; e∗D,Φ
∗) is defined from the quasi-Fermi potentials Φ = Φ](eD; e∗D,Φ

∗),
which solve the system (5.7)–(5.8).

The modified coupled problem (5.11)–(5.14) admits a unique solution, because of the Lipschitz

continuity of σ] = −U i]D(eD; e∗D,Φ
∗) with respect to eD (Lemma 5.4). Moreover, Lemma 5.3

applies, because passivity is given (Lemma 5.4), and the uniquely defined solution x satisfies the
estimates (5.2)–(5.4), and thus estimate (5.10). Hence, the coupled system (5.11)–(5.14) defines a
map from M to itself,

T : (e∗D,Φ
∗) 7→ (eD,Φ) = (V >x,Φ](eD; e∗D,Φ

∗))

and it holds:

Lemma 5.5 (Fixed-point map). The set M is a nonempty, bounded, closed, convex subset of
C0([t0, t1],RnD+1)× C0([t0, t1], L2(Ω)). The map T is a compact automorphism of M.

The proof from [2] applies also to our index-2 case. Hence by Schauder’s fixed point theorem,
T admit a fixed point (x,Φ, φ), which solves the original problem (4.1)–(4.4). Thus Theorem 4.1 is
proven.

Remark 2. Notice, the coupling term %(x) (3.2) does not occur explicitly in the a priori
estimates nor in the discussion of the fixed point map. This is due to the fact of the passivity, which
we maintain also in the modified problem for the fixed point argument. Also the algebraic variables
w and z do not occur in the fixed point argument, since we restrict ourselves to the inherent ODE-
part. And in fact, having found the differential solution y and the device solution φ, φn, φp, y is
also differentiable and we obtain bounds for the remaining terms (w and z).
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6. Conclusions. We have investigated a coupled problem of elliptic partial differential equa-
tions (PDE) and differential algebraic equations (DAE). Such systems occur in circuit simulation,
for example. Due to certain conditions, we are able to give meaning to the tractability index in
this setting. Furthermore, we were able to prove an existence result for the related index-2 coupled
system by using Schauder’s fixed point theorem and using previous results for coupled systems of
index-1.
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