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Abstract

When using a lattice Boltzmann method on an unbounded (or very large)
domain one has to confine this spatial domain to a computational domain.
This is realized by introducing so-called artificial boundary conditions. Un-
til recently, characteristic boundary conditions for the Euler equations were
considered and adapted to the lattice Boltzmann method.

In this work we propose novel discrete artificial boundary conditions
which are derived directly for the chosen lattice Boltzmann model, i.e., on
the discrete level. They represent the first exact artificial boundary con-
ditions for lattice Boltzmann methods. Doing so, we avoid any detour of
considering continuous equations and obtain boundary conditions that are
perfectly adapted to the chosen numerical scheme. We illustrate the idea for
a one dimensional, two velocity (D1Q2) lattice Boltzmann method and show
how the computational efficiency can be increased by a finite memory ap-
proach. Analytical investigations and numerical results finally demonstrate
the advantages of our new boundary condition compared to previously used
artificial boundary conditions.
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1. Introduction

Numerical methods for computational fluid dynamics (CFD) convention-
ally aim to solve an according model of partial differential equations in terms
of macroscopic fluid quantities. Typically, these are equations for the mass
density, velocity, pressure and/or temperature, like in the case of the Euler
equations or the Navier-Stokes equations. In contrast, when using the lat-
tice Boltzmann method (LBM) a mesoscopic description of the fluid is used.
This approach is based on a particle model, in which fictitious particles can
move with discrete velocities on a prescribed lattice. In LBM, particles with
same properties are gathered to populations. It is not the evolution of single
particles which is considered, but the evolution of these populations. For
an introduction to the LBM see, e.g., [1, 2]. The LBM can be applied to
a wide range of applications in CFD (e.g., [3]), such as acoustics (e.g., [4]),
blood flow (e.g., [5]) or flows with complex physical interactions (e.g., fluid
structure interaction [6]).

The boundary conditions in LBM are generally derived from known macro-
scopic physical conditions, which have to be transferred to the mesoscopic
level of populations, e.g., by lifting operator approaches [7]. Now, in simula-
tions often non-physical boundaries occur, e.g., a large fluid domain shall be
confined to the most interesting region. These are so-called artificial bound-
aries and there it is often unclear how to specify boundary conditions, which
do not interact with the fluid in an undesired way. This problem appears
on both the macroscopic and the mesoscopic scale. For instance, a velocity
outflow boundary condition leads to unphysical reflections at the artificial
boundary. Ideally, the artificial boundary condition should be chosen such
that no spurious effects influence the simulation results.

There exist only a small number of studies for artificial boundary condi-
tions (ABCs) for the LBM. Related publications originate from Tekitek et
al. [8] as well as Najafi-Yazdi and Mongeau [9]. They both developed an ab-
sorbing layer boundary condition with the concept of the perfectly matched
layer (PML) approach. An alternative approach was proposed in the work
of Izquierdo and Fueyo [10], in which they analyze the characteristics of a
system for macroscopic quantities. Thus, they are able to construct a sys-
tem with reduced non-reflecting properties. Solving this system numerically
leads to a Dirichlet condition in macroscopic quantities which has to be trans-
ferred to the LBM. Recently, this work was extended in [11], where additional
terms were taken into account to improve the accuracy of these characteristic
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boundary conditions (CBCs).
The purpose of the present work is to derive a boundary condition for

artificial boundaries on the discrete level. To the author’s best knowledge,
such results do not exist for the discrete level of LBM yet. The transfer of
macroscopic information to the discrete level of populations is always con-
nected with errors. Hence, an exact boundary condition can be derived on
the discrete level only. The concept of finite memory allows a very flexible
adaptation of the computational effort to the needed accuracy in the ABC.

This article is structured as follows. In Section 2 we discuss a one dimen-
sional LBM with two velocities. In the third section we focus on the evolution
of populations. Our derivation can be used to compute populations purely
from initial data in a Cauchy problem. This description is used in Section 4
to construct an exact ABC. Furthermore, we derive an efficient approxima-
tion of the exact ABC by introducing a history depth (finite memory). Then
numerical results are presented in Section 5, which illustrate our findings.
Finally, the article is completed by conclusions.

2. The D1Q2 LBM-Model

To study for the first time exact artificial boundary conditions (ABCs),
we choose one of the simplest models in LBM. We consider only one spatial
dimension with a grid spacing h > 0, grid points xn = nh (n ∈ Z) and related
time points ts = sh (s ∈ N0), defining a regular lattice. The populations fi
describe the distribution of fictitious particles moving on that lattice with
velocity ci. By a slight abuse of notation, we employ fi(n, s) := fi(xn, ts)
to denote the populations at the lattice node (xn, ts). Here, we consider a
two velocity model (D1Q2, notation by [12]) with velocities c1 = −1 and
c2 = 1, cf. [13]. The evolution process of the populations is given by the
lattice Boltzmann equation (LBE):

fi(n+ ci, s+ h) = fi(n, s)− C(f)i, for i = 1, 2. (1)

The term C(f)i denotes the collision operator, which models the local parti-
cle interaction. Thus, the LBE can be seen as consisting of two basic steps:
collision (evaluation of the right-hand side) and streaming/transport (as-
signment to left-hand side). For simplicity and feasibility of the proceeding
development, we choose a linear model for the collision operator :

C(f) =

(
C(f)1

C(f)2

)
=
ω

2

(
−(a+ 1) −(a− 1)
a+ 1 a− 1

)(
f1

f2

)
(2)
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with parameters a ∈ (−1, 1) and ω ∈ (0, 2). This choice is equivalent to a
single time BGK (due to Bhatnagar, Gross and Krook) collision term [14]

C(f)i = −ω(fi − Ei),

with relaxation parameter ω, equilibrium distribution

Ei(ρ) :=
1

2
ρ(1 + aci),

and mass momentum ρ(n, s) :=
∑

i fi(n, s). The equilibrium distribution
E = (E1, E2)> is characterized by

C(E)i = 0. (3)

For the LBE (1), we employ a Chapman-Enskog expansion [15] with ex-
pansion parameter ε. In this way we find the underlying macroscopic evolu-
tion equation:

∂tρ+ a∂xρ = εµ∂xxρ+ ε2λ∂xxxρ+O(ε3),

with parameters

µ :=
( 1

ω
− 1

2

)(
1− a2

)
, λ := 2a

( 1

ω2
− 1

ω
+

1

6

)(
1− a2

)
.

Let us remark that similar results were obtained by Junk and Rheinländer
in [13], in which the model was precisely analyzed using a more general
asymptotic expansion. The authors showed that ρ = ρ(0) + hρ(1) + h2ρ(2) +
O(h3) evolves according to an advection equation (up to zeroth order in h)
with constant advection velocity a. Higher order terms introduce numerical
diffusion. In fact, for an initial profile of the mass momentum ρ(n, 0) = v0(n),
Junk and Rheinländer [13] have shown that it holds:

∂tρ
(0) + a∂xρ

(0) = 0, ρ(0)(n, 0) = v0(n),

∂tρ
(1) + a∂xρ

(1) = µ∂xxρ
(0), ρ(1)(n, 0) = 0,

∂tρ
(2) + a∂xρ

(2) = µ∂xxρ
(1) + λ∂xxxρ

(0), ρ(2)(n, 0) = 0.

To simplify the presentation in the current work, we introduce the fol-
lowing abbreviations for the coefficients of the collision operator (2):

α = −1

2
ω(1 + a), β =

1

2
ω(1− a), γ =

1

2
ω(1 + a), δ = −1

2
ω(1− a). (4)
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Doing so, we can rewrite the equilibrium condition (3) as

0 = αE1 + βE2, 0 = γE1 + δE2.

We note that both equations are equivalent and that they imply

E2 =
1 + a

1− a
E1. (5)

3. Explicit Formula for Several Time Steps

Within this work, the populations fi denote the pre-collision populations,
i.e., the populations directly after streaming (of the preceding time step).
Furthermore we denote by

f̃i(n, s) := fi(n, s) + C(f)i

the post-collision populations, cf. (1). In the D1Q2 model with collision
operator (2), the populations after one time step can be formulated explicitly:

f1(n, s) = f̃1(n+ 1, s− 1)=(1 + α)f1(n+ 1, s− 1) + βf2(n+ 1, s− 1),

f2(n, s) = f̃2(n− 1, s− 1)=γf1(n− 1, s− 1) + (1 + δ)f2(n− 1, s− 1)
(6)

using abbreviations (4).
In the sequel, we focus on the populations f1. The populations f2 can be

treated analogously. The deterministic LBE approach of (1) implies that all
future populations are uniquely prescribed by the initial populations f 0

i (n) :=
fi(n, 0) if a Cauchy problem is considered. From (6) we conclude that the
population f1(n, s) is computed by both pre-collision populations from the
node (n+1, s−1). These populations themselves are computed from the two
populations fi(n, k − 2) as well as the two populations fi(n+ 2, k − 2). The
repeated application of this recursion can be illustrated by a tree as shown
in Fig. 1. In this context, we consider this tree as a directed graph, where
the directions of the edges are positive in time. In Fig. 1 a set of nodes is
marked with squares (the sources in the graph). They describe a sufficient
set of populations to compute f1(n, s) (at the node with diamond marker).
Furthermore, the set contains no redundant information, since there is no
path which connects two sources (a feasible set). Any set of nodes fulfilling
both criteria are referred to as a set of feasible and sufficient (FaS) nodes.
Obviously, given a node (n, s) the set of FaS nodes is not unique; each sub-
tree and super-tree with the same leaf (n, s) gives rise to a set of FaS nodes.
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time

space

Figure 1: A set of FaS nodes (square marker) and their paths to the node of interest
(diamond marker), the leaf (n, s).

Remark 1. The sole dependence on initial populations can be considered as
a special case of the above explanation. Thus, any population f1(n, s) can
be computed in terms of given initial populations.

Remark 2. As one can see in Fig. 1, only every second node has a contri-
bution to the node of interest (n, s). Thus, the above D1Q2 model computes
the evolution of two separate sets of populations, where information is never
exchanged. The two groups of nodes are shuffled in space, such that every
second node belongs to the same group. It is possible to completely disre-
gard one group and to combine two subsequent time steps (1) into a single
step (with doubled step size and modified collision term). The separation
of the two groups can be avoided by including a third population, which
corresponds to velocity c3 = 0. This would yield the D1Q3 model.

The population at the node of interest (n, s) can be computed in terms of
populations at nodes of a FaS set {(m1, u1), . . . , (mk, uk)} using some weights
Wi(mj, uj):

f1(n, s) =
k∑
j=1

2∑
i=1

Wi(mj, uj)fi(mj, uj). (7)

Since each path
(
from (mj, uj) to (n, s)

)
contributes to the weight, we in-

troduce the set of all such paths pj = {pj1, . . . , p
j
`j
} and their corresponding

6
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partial weights Wi(mj, uj, p
j
q). It holds:

Wi(mj, uj) =

`j∑
q=1

Wi(mj, uj, p
j
q). (8)

Next we discuss these partial weights. They are products of four different
terms 1 + α, β, γ and 1 + δ, cf. (6). For each edge of a path we obtain ex-
actly one factor. Equations (6) express new populations in terms of previous
populations: Each leftward arrow – as depicted in Fig. 1 – represents both
populations from its origin node, which are needed to express the f1 popu-
lation at the destination of that arrow. Analogously, each rightward arrow
represents both populations needed for the f2 population at its destination.
In the computation of partial weights, we track for a path only one previous
population each, thus we need to pick the corresponding weight factor for
the current edge. As (6) states, this factor depends on the previous and
current population, hence in the perspective of a path: on the previous and
current edge direction. This is visualized in Fig. 2; previous edges are indi-
cated by dashed lines, current edges by solid lines. Now, the partial weight

previous
current

left right

left 1 + α γ
right β 1 + δ

(a) Table defining the factors

ti
m

e

space

1 + α γ

(b)

space

β 1 + δ

(c)

Figure 2: Weight factors. In (b) the previous edge was leftward illustrating the first row
of the table (a). In (c) the previous edge was rightward, which represents the second row.

Wi(mj, uj, p
j
q) is computed by traversing the path pjq edge by edge: To com-

pute the weight W1 = W1(mj, uj, p
j
q), we start at (mj, uj) with the previous

fictitious edge having leftward direction (since we track an old f1 popula-
tion). To compute the weight W2 = W2(mj, uj, p

j
q), we add a rightward edge.

The factors introduced by each edge (corresponding to the table in Fig. 2)
are multiplied.

Example 3. We consider one path from node (n+1, s−5) to (n, s) as shown

7
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in Fig. 3. The corresponding weights are given by

W1 = (1 + α)2 · β · γ · (1 + δ), W2 = (1 + α) · β2 · γ · (1 + δ).

time

space

1 + α

γ

1 + δ

β

1 + α

time

space

β

γ

1 + δ

β

1 + α

Figure 3: Tree with weight factors: left for the partial weight W1, right for W2.

Lemma 4. Let pj be a path connecting nodes (mj, uj) and (n, s) with length
k = s− uj. To compute Wi, let pj, i denote the extension of pj by a fictitious
edge from (a possibly fictitious node) (mj − ci, uj − 1). Let v̄ denote the total
number of directional changes of pj, i and m denote the number of leftward
edges of pj, for which the previous edge was also leftward. Then we have for
the partial weights in (7) and (8), respectively:

W1(mj, uj, p
j
q) = (1 + α)m · β

v̄
2 · γ

v̄
2 · (1 + δ)k−v̄−m,

W2(mj, uj, p
j
q) = (1 + α)m · β

v̄+1
2 · γ

v̄−1
2 · (1 + δ)k−v̄−m.

Remark 5. a) In the previous Lemma, the last edge of the path pj, i is
always leftward, the same holds for the first edge if i = 1, hence v̄ is
always an even number if i = 1. On the other hand, if i = 2 the first
edge of pj, i is of opposite direction than the last edge, therefore v̄ is
always an odd number if i = 2.

b) If one considers (instead of a f1 population like in (7)) the computation
of a new f2 population and its corresponding weights, the last edge
would always be leftward. Modifications to the factors of Fig. 2 are not
necessary.

8
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4. Construction of Artificial Boundary Conditions

In the general description of the previous section, we did not consider
the presence of boundaries. Without loss of generality there shall be only
a right boundary of the computational domain. We assume that this right
boundary is located at a lattice point with position xN . Moreover we assume
that there are fictitious nodes in the exterior domain x > xN and that the
corresponding populations are homogeneously initialized in equilibrium, i.e.,
f 0
i (n) = Ei, i = 1, 2, for n > N .

The task of a (right) boundary condition is to compute f1(N, k) (inward
directed populations) for all k ∈ N+. Theoretically, these populations can be
computed purely from the initial populations (as FaS set of nodes) using (7).
However, this cannot be done efficiently, since the effort for the evaluation of
(7) increases rapidly with the number of time steps simulated. In the k−th
time step a total number of 2k−1 different paths has to be considered in the
computation of f1(N, k). Hence, another set of FaS nodes is required. It is
reasonable to make use of previously computed populations. Also one should
take into account that the exterior domain was initialized homogeneously in
equilibrium.

4.1. Boundary adapted set of feasible and sufficient nodes

To compute f1(N, k), we aim at constructing an expression which depends
at most on fi(N, `) with 0 ≤ ` < k and on Ei. That is, we consider the tree
and set of FaS nodes (marked with squares and triangles) as shown in Fig. 4.
Note that due to the initialization of the exterior domain, all the populations
within the (dashed) triangle are Ei.

In the following, a superscript A refers to the nodes on the boundary,
x = xN (square nodes in Fig. 4), and a superscript B refers to the exterior
equilibrium nodes (triangle nodes). For the required population at the leaf
(N, k), we need the number of paths connecting each FaS node with the leaf.
Unlike the square nodes, for the triangle nodes, this number depends on time
level k. Additionally, the number for all FaS nodes depends on the actual
FaS node ` and on the number of directional changes (related variable is v).

Given the number of paths P with the same properties p (such as direc-
tional changes) from a certain node (mj, uj), we can compute the weights
(cf. (7)) by

Wi(mj, uj) =
∑
p

P (mj, uj, p) ·W (mj, uj, p),

9
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computational part
of the fluid domain
(interior)

b
ou

n
d
ar

y

not computed part of the
fluid domain (exterior) /
fictitious nodes

` = 1

` = 2

` = bk
2
c

` = 1

` = 2

` = bk
2
c

ti
m

e
space

inside triangle:
all populations
in equilibrium

Figure 4: The square (A) and triangle nodes (B) define a set of FaS nodes and are used
in the computation of the artificial boundary condition at the diamond node.

provided the weight W (·, ·, p) of one path corresponding to P (·, ·, p) is
uniquely given by the property p. The sum is taken over all possible proper-
ties.

Let PB(k, `, v) denote the total number of paths starting in the triangle
node (N + bk

2
c+ 2− `, dk

2
e − `), ending in (N, k) and having 2v directional

changes, where ` = 1, . . . , bk
2
c.

Lemma 6. For PB holds:

a) Provided k is even, PB(k + 1, `, v) = PB(k, `, v).

b) v = 0 is only possible for the node labeled ` = 1 and we have

PB(k, 1, 0) = 1, k ≥ 2. (9)

c) The remaining non-zero values are given for k ≥ 4, ` = 2, . . . , bk
2
c and

10
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v = 1, . . . , `− 1:

PB(k, `, v) =

(
1− `− 1

bk
2
c

)
·
(
bk

2
c
v

)
·
(
`− 2
v − 1

)
. (10)

Proof. For a) and b), one can inspect Fig. 4. Case c) can be proven by
showing that (9) and (10) fulfill the recursion

PB(k, `, v) = PB(k − 2, `, v) +
`−1∑
p=1

PB(k − 2, p, v − 1), ` = 1, . . . ,

⌊
k

2

⌋
− 1,

PB(k, `, v) =
`−1∑
p=1

PB(k − 2, p, v − 1), ` =

⌊
k

2

⌋
.

The recursion itself can be directly deduced. �

Corollary 7. The corresponding weights WB
i (k, `, v) are computed as

WB
1 (k, `, v) = (1 + α)bk/2c+1−v · βv · γv · (1 + δ)`−v−1,

WB
2 (k, `, v) =

β

(1 + α)
WB

1 (k, `, v). (11)

= (1 + α)bk/2c−v · βv+1 · γv · (1 + δ)`−v−1.

Analogously, let PA(`, v) denote the total number of paths starting in
node (N, k − 2`) and having 2v − 1 changes of directions.

Lemma 8. It holds:

a) For ` = 1:

PA(1, 1) = 1. (12)

b) For ` ≥ 2 the remaining non-zero values read:

PA(`, v) =
1

`− v

(
`− 1
v

)(
`− 2
v − 1

)
, v = 1, . . . , `− 1. (13)

11
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Proof. One can argue the validity of

PA(`, v) =
∑̀
p=2

PB(2`− 2, `+ 1− p, v − 1),

which gives rise to (13). �

Corollary 9. The corresponding weights are computed as

WA
i (`, v) = (1 + α)`−v · βv · γv+1−i · (1 + δ)`−v−1+i. (14)

Now, having the number of paths and weights for the set of FaS nodes,
the general evolution can be summarized as:

Theorem 10. For the boundary adapted set of FaS nodes, Fig. 4, the evo-
lution expression (7) with (9)-(14) is given as

f1(N, 1) = E1,

f1(N, k) =
2∑
i=1

 b k2 c∑
`=1

Ai(`)fi(N, k − 2`) +Bi(k)Ei

 , k ≥ 2,
(15)

where

Ai(1) = WA
i (1, 1) = β · γ2−i · (1 + δ)i−1,

Ai(`) =
`−1∑
v=1

PA(`, v) ·WA
i (`, v), ` = 2, . . . ,

⌊
k

2

⌋
,

(16)

Bi(k) = WB
i (k, 1, 0) +

b k
2
c∑

`=2

`−1∑
v=1

PB(k, `, v) ·WB
i (k, `, v). (17)

Remark 11. Given the assumption that the exterior domain was initialized
in equilibrium, the evolution of the inward directed boundary population
according to (15) (deduced in Thm. 10) is an exact artificial boundary con-
dition.

However, the effort for computing the sums in (15)-(17) increases signifi-
cantly while proceeding in time. Thus the next step is to modify (15), such
that the increasing computational effort can be avoided. This is realized by
a truncation of the involved sums.
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4.2. Consistency with equilibrium

If all populations are homogeneously initialized in equilibrium, i.e.,

f 0
i (n) = Ei, for any n ∈ Z (18)

and if there are no boundaries, then the equilibrium will be conserved, due
to (3). Thus, a boundary condition should also conserve the equilibrium
populations. That is the requirement

f1(N, k) = E1, for k ≥ 0. (19)

The assumption (18) simplifies (15) to the expression:

f1(N, k) =

 b k2 c∑
`=1

A1(`) +B1(k)

E1 +

 b k2 c∑
`=1

A2(`) +B2(k)

E2. (20)

The requirement (19) is fulfilled for (20) if Ai and Bi are computed by (16)
and (17). However, the requirement can be used to compute Bi for other
values of Ai than (16). To this end, we use the short-hand notation:

TAi (q) :=

q∑
`=1

Ai(`). (21)

Substituting (5) into (20) yields

f1(N, k) =

[
TA1

(⌊
k

2

⌋)
+

1 + a

1− a
TA2

(⌊
k

2

⌋)
+B1(k) +

1 + a

1− a
B2(k)

]
E1.

In order to fulfill (19) we derive the condition

B1(k) +
1 + a

1− a
B2(k) = 1− TA1

(⌊
k

2

⌋)
− 1 + a

1− a
TA2

(⌊
k

2

⌋)
. (22)

Moreover, (11) implies the relation

B2(k) =
β

1 + α
B1(k). (23)

Thus, if the values Ai were not computed by (16) or if the sums (21) in (15)
are truncated, then one can compute corresponding values Bi(k) by solving
the system (22) and (23).
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4.3. Reduction of computational effort by truncation

We consider the exact ABC (15)-(17) and aim at reducing the compu-
tational effort. If the boundary population f1(N, k) depends on a number
of h(k) past boundary populations, we refer to h(k) as history depth of the
boundary condition at time level k. More precisely, h(k) shall indicate that
we need the following past time levels:

k − 2` with ` = 1, . . . , h(k).

For the populations of the exact ABC we have h(k) = bk
2
c. To reduce the

computational effort of the sum in (15), we suggest to use a bounded history
depth (“finite memory”):

h(k) = min

{⌊
k

2

⌋
, H

}
, H ∈ N fixed.

This truncation strategy is motivated by the following conjecture. For
simplicity, in the sequel we abbreviate the full parameter domain for (ω, a)
by

F := (0, 2)× (−1, 1).

Conjecture 12. For any (ω, a) ∈ F , the |Ai(`)| are decaying in `, and it
holds

lim
`→∞

A1(`) = 0 and lim
`→∞

A2(`) = 0.

Lemma 13. For any (ω, a) ∈ D ∪ D̃ (see Fig. 5) with

D :=

{
(ω, a) ∈ F

∣∣∣ 1 + |a| ≤ 2

ω

}
,

D̃ :=

{
(ω, a) ∈ F

∣∣∣ (1 +

√
(2− ω)2 − a2ω2

(a2 − 1)ω2

)2

≤ 4

(1− a2)ω2

}
the Conjecture 12 is true.

Proof. The convergence of A1 implies the convergence of A2, and vice versa,
due to

A2(`) =
1 + δ

γ
A1(`),

14



P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt

which follows from the definitions (14). We note that β and γ are positive for
all (ω, a) ∈ F , whereas 1 + α and 1 + δ are simultaneously positive only for
(ω, a) ∈ D. The convergence of A1 can be proven for (ω, a) ∈ D by writing
A1(`) as

A1(`) = [(1 + α)(1 + δ)]`
`−1∑
v=1

PA(`, v)

(
βγ

(1 + α)(1 + δ)

)v
,

and applying the general estimate

`−1∑
v=1

PA(`, v)p2(`−v)q2v <
(p+ q)2`

`
, ` ≥ 2, p, q ∈ R+. (24)

Thus, we obtain

A1(`) <
[(1 + α)(1 + δ)]`

(
1 +

√
βγ

(1+α)(1+δ)

)2`

`
,

where the numerator can be shown to be in (0, 1]. Negative values for the
weights occur if (ω, a) ∈ F \ D, more precisely, exclusively either 1 + α or
1 + δ is negative. In this case, one can prove the convergence of |Ai(`)| by
applying the estimate (24) to

|A1(`)| ≤ [βγ]`
`−1∑
v=1

PA(`, v)

∣∣∣∣(1 + α)(1 + δ)

βγ

∣∣∣∣v
and proceeding analogously. �

Remark 14. Numerical evidence shows that the decay in Conjecture 12
seems to hold for all (ω, a) ∈ F , however we have no analytical proof for the
the missing part in Fig. 5 (F \D ∪ D̃).

In the exact ABC (15) the weights of the boundary populations fi(N, k−
2`) are decreasing for increasing `. This is a motivation to disregard popu-
lations with large ` to obtain an efficient approximation.

When the history depth is truncated, the relation of the previous section
has to be used to get a consistent boundary condition. Instead of using (17)

15
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Figure 5: The colored region shows the domain for which lim
`→∞

Ai(`) = 0 was proven

analytically.

the system (22) and (23) has to be solved, which yields explicitly:

B1(k) =

(
1 +

1 + a

1− a
β

1 + α

)−1(
1− TA1

(
h(k)

)
− 1 + a

1− a
TA2
(
h(k)

))
,

B2(k) =

(
1 + α

β
+

1 + a

1− a

)−1(
1− TA1

(
h(k)

)
− 1 + a

1− a
TA2
(
h(k)

))
.

(25)

Altogether, the approximate artificial boundary condition is given by

f1(N, k) =
2∑
i=1

h(k)∑
`=1

Ai(`)fi(N, k − 2`) +Bi(k)Ei

 , k ≥ 2, (26)

where the required Ai(`) and Bi(k) are computed by (16) and (25), respec-
tively.
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5. Numerical Results

Next, we numerically test the approximate ABC (26) and discuss the
results. In our test setup, the mass momentum is initialized at t = 0 as [13]

v0(x) =


1 for x ≤ 0.3,

1 + 0.4 · exp
(
−15−2

(x−0.3)2

)
· exp

(
−15−2

(x−0.7)2

)
for 0.3 < x < 0.7,

1 for 0.7 ≤ x,

such that v0 ∈ C∞(R). Corresponding populations are initialized via an
evaluation of the equilibrium distribution,

fi(n) =
1

2
v0(xn)(1 + aci).

We consider the spatial interval [0, 1], which is discretized with step sizes
h1 = 0.025 and h2 = 0.005. Hence, the computational grid is given by
Gx := {x0, x1, . . . , xN} with N = 1/h1 or N = 1/h2. The free parameters
are the advection velocity a, the collision parameter ω and the maximal
history depth H. For a measurement of the accuracy we compute a reference
solution ρref by assigning the exact ABC. This is equivalent to a simulation
on a sufficiently larger interval than [0, 1]. We measure the accuracy of the
approximate ABC by the maximal absolute error:

Err(t) := max
x∈Gx

|ρ(x, t)− ρref(x, t)| . (27)

In the plots below we kept all parameters fixed except for one parameter
in each case. By this procedure one can see that the error depends on all
parameters. In Fig. 6 the varying parameter is the maximal history depth
H and we see that the error is decreasing when we take a larger H (left plot
with h1 = 0.025, right plot with h2 = 0.005). Subsequently in Fig. 7, we kept
all parameters except for the advection velocity a. The higher the advection
velocity, the faster does the initial peak arrive at the artificial boundary.
Finally, the plots in Fig. 8 show the dependence on the relaxation parameter
ω. The larger the value of ω the smaller absolute errors are observed.

Any acoustic wave or a simple sine wave is composed of peaks and troughs.
The above excitation v0 gives a simple peak. Changing the sign of the factor
0.4 in v0 results in a single trough. Due to the symmetry, the errors depicted
in Figs. 6-8 holds for both initial data.
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Figure 6: Maximal absolute error for a simulation with fixed parameters a = 0.2 and
ω = 1.1 (left h1 = 0.005, right h2 = 0.025). Notice the different scaling of the ordinates.
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Figure 7: Maximal absolute error for a simulation with fixed parameters H = 20 and
ω = 1.1 (left h1 = 0.005, right h2 = 0.025). Notice the different scaling of the ordinates.

To achieve a qualitative evaluation of the errors we compare errors of
our approximate ABC and non-reflecting characteristic boundary conditions
(CBCs) [10, 11]. For the given D1Q2 model, the CBC method requires to
solve the advection equation

∂tρ(x, t) + a∂xρ(x, t) = 0

at the boundary. To this end, we approximate the spatial derivative with a
one-sided second order finite difference quotient, which gives the ODE

∂tρ(xN , t) = − a

2h
[3ρ(xN , t)− 4ρ(xN−1, t) + ρ(xN−2, t)] .

Then in each iteration of the LBE, one step of the explicit Euler method is
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Figure 8: Maximal absolute error for a simulation with fixed parameters H = 20 and
a = 0.25 (left h1 = 0.005, right h2 = 0.025). Notice the different scaling of the ordinates.

used to obtain ρ at the boundary:

ρ(xN , tk) = ρ(xN , tk−1)− a

2
[3ρ(xN , tk−1)− 4ρ(xN−1, ti) + ρ(xN−2, tk−1)] .

This new macroscopic boundary quantity is transferred to the populations
by an appropriate evaluation of the equilibrium distribution:

fi(N, k) =
1

2
ρ(xN , tk)(1 + aci), i = 1, 2.

We choose parameters to be a = 0.15, ω = 1.4 and h = 0.01 and compare
maximal absolute errors (27) for both boundary conditions in Fig. 9. We
stress again that the approximate ABC can be arbitrarily accurate by in-
creasing the maximal history depth H. For the given test case, a value of
H = 25 is sufficient to obtain smaller errors compared to a CBC. In Fig. 9
one can see that the novel approximate ABC leads to smaller errors.

When comparing the plots of Figs. 6-8 with respect to the step size h
(left and right plots each), one can see that the magnitude of the errors is
different. Note the different scales of the axis. Strikingly, the errors are
decreasing when the step size h is enlarged (compare left and right plots).
A similar observation is possible when inspecting relative errors instead of
absolute errors (27). Given a maximal history depth H and a step size h the
boundary condition uses information from past boundary populations up to
time t = kh − 2Hh. Hence, for the boundary condition (26) information
from the time interval [kh− 2Hh, (k− 1)h] is used. Furthermore, the larger
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Figure 9: Comparison of absolute errors in CBC and the approximate ABC (with para-
meters a = 0.15, ω = 1.4 and h = 0.01).

the spatial grid size h, the longer the employed history. This can explain
the smaller errors for larger grid sizes (and step sizes). In order to see the
dependence of the step size (grid size) in a more consistent manner, we choose
the maximal history depth H according to the step size, such that the length
of the interval remains constant, i.e.,

2Hh = C = const. (28)

Since in the limit h to zero, the history depth has to tend to infinity, the
approximate ABC tends to the exact ABC. Next, we show the results for
two different choices of parameters a, ω as well as the constant C. The
maximal relative error Rel(h) is given as

Rel(h) := max
t

( ∑
x∈Gx

rh(x, t)
2

)1/2

with rh(x, t) :=

∣∣∣∣ρh(x, t)− ρhref(x, t)

ρhref(x, t)

∣∣∣∣ ,
where rh(x, t) is the local relative error and superscripts h indicate solutions
computed on the lattice corresponding to step size h. In Figs. 10 and 11
the maximal relative error is plotted for different step sizes and we see the

20



P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt
–

P
re

p
ri

nt

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

step size  h

R
el

(h
)

O(h2)

O(h)

Figure 10: Maximal relative error for different step sizes h. Parameters in this simulation
are: a = 0.4, ω = 0.3 and C = 0.3

expected behavior: A smaller step size h results in a smaller relative error.
For the parameter set of Fig. 10 the decay is as fast as of h2. With the
choice of parameters of Fig. 11 the decrease is even of order ten (and seems
to increase further). For smaller step sizes to fulfill (28) the history depth
H has to be increased. By this change we obtain a higher level of accuracy,
therefore the error is plotted not only for different step sizes but indirectly
also for boundary conditions of different levels of accuracy. This can explain
the increasing slopes seen in Figs. 10-11.

6. Conclusions

In this article, we considered the lattice Boltzmann model D1Q2. First,
we derived the evolution of populations depending on a set of nodes (which
are feasible and sufficient), as for example initial values only. We showed how
trees can be used to visualize the evolution of populations over several time
levels: All paths of the tree have to be considered, since each path gives a
path-dependent contribution. Then, this knowledge was used to construct an
exact artificial boundary condition. The exact artificial boundary condition
was based on the assumption that the exterior domain is in a homogeneous
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Figure 11: Maximal relative error for different step sizes h. Parameters in this simulation
are: a = 0.6, ω = 1.1 and C = 0.1

equilibrium at t = 0. To reduce the effort, an approximation to the exact
boundary condition was derived. This approximation is based on a truncated
history depth, where corresponding sums are truncated. In order to retain
an equilibrium, we developed a general consistency condition.

Finally, we tested numerically the approximate artificial boundary con-
dition. The error was compared to the exact artificial boundary condition,
where we investigated and visualized its dependence on the model param-
eters (a and ω), the step size h and the maximal history depth H. The
latter parameter H controls the level of accuracy of the approximation. A
common approach of non-reflecting boundary conditions is to analyze char-
acteristics of a hyperbolic PDE system. We made a numerical comparison
of the approximate artificial boundary condition and characteristic boundary
conditions and we showed that we can in fact improve upon the characteristic
boundary condition.

The formulas of the exact artificial boundary condition can be interpreted
as a convolution. Thus, another ansatz for an approximation may be given
by employing sums of exponentials, cf. [16].

Furthermore, we plan to extend this first exact artificial boundary condi-
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tion for the lattice Boltzmann method (D1Q2) to more advanced discretiza-
tions models. Thereby challenges will appear, such as a much higher number
of paths or nonlinearities in the collision operator.
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