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Abstract

We consider the probability of failure for components made of brittle mate-
rials under one time application of a load as introduced by Weibull and Batdorf
– Crosse and more recently studied by NASA and the STAU cooperation [19,
23] as an objective functional in shape optimization and prove the existence
of optimal shapes in the class of shapes with a uniform cone property. The
corresponding integrand of the objective functional has convexity properties
that allow to derive lower-semicontinuity according to [12]. These properties
require less restrictive regularity assumptions for the boundaries and state
functions compared to [13]. Thereby, the weak formulation of linear elasticity
can be kept for the abstract setting for shape optimization as presented in
[16].

Key words: Probabilistic failure of ceramic structures, shape optimization, optimal
reliability.

MSC (2010): 49Q10, 60G55

1 Introduction

This article introduces some objective functionals J(Ω, u) that have been known
to mechanical engineers in the design of ceramic components for quite some time
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[3, 17, 19, 23, 25, 27] to the field of shape optimization [1, 8, 9, 16, 21]. We will prove
that such functionals fulfil the requirements of [12] and thus are lower semicontinuous
in the weak topology of the Sobolev space H1(Ω̂,R3), where Ω̂ ⊆ R3 is some bounded
domain (constructed space) and the admissible shapes Ω ⊆ Ω̂ share parts of their
boundary with Ω̂, cf. Figure 1, and fulfil the uniform cone property. Denoting the
admissible shapes with Oad, we will conclude that

∃Ω∗ ∈ Oad such that J (Ω∗) = J(Ω∗, u(Ω∗)) ≤ J(Ω, u(Ω)) = J (Ω) ∀Ω ∈ Oad.
(1)

Here u(Ω) ∈ H1
∂ΩD

(Ω,R3) = {u ∈ H1(Ω,R3) : u ↾∂ΩD
= 0} is the solution to the

linear elasticity PDE on Ω (or, more precisely, its extension to Ω̂) with given loads
g ∈ H1(Ω̂,R3), f ∈ L2(Ω,R3) in the weak sense

BΩ(u(Ω), v) =

∫
Ω

f · v dx+

∫
∂ΩNfixed

g · v ds, ∀v ∈ H1
∂ΩD

(Ω,R3) (2)

where the boundary of Ω is the union of Dirichlet and Neumann boundaries

∂Ω = ∂ΩD ∪ ∂ΩNfixed ∪ ∂ΩNfree

with pairwise disjoint sets ∂ΩD, ∂ΩNfixed and ∂ΩNfree , where ∂ΩD has positive Le-
besgue surface measure and the derivative of v vanishes in normal direction on the
free Neumann boundary ∂ΩNfree , sample domains Ω and Ω̂ are sketched in 2d in
Figure 1. The left hand side of (2) is given by

BΩ(u, v) =

∫
Ω

tr(ε(Du)σ(Dv)) dx (3)

with ε(Du) = 1
2
(Du+Du∗) the elastic strain field, σ(Du) = λ tr(ε(Du))I+2µ ε(Du)

the elastic stress field and µ, λ > 0 Lamé’s constants. Du stands for the Jacobi
matrix of u and tr denotes the trace. As a consequence the elasticity tensor C =
(ci,j,k,l)

3
i,j,k,k=1 is defined by using

σi,j = ci,j,k,lε(Du)k,l

and
σi,j = λtr(ε(Du))δi,j + 2µε(Du)i,j

and thus it is symmetric in the sense that ci,j,k,l = cj,i,k,l = ck,l,i,j. Furthermore, the
elasticity tensor fulfils the following ellipticity condition: There exists a constant
q > 0 such that for all symmetric 3× 3 matrices (ξi,j)

3
i,j=1 we have

ci,j,k,lξi,jξk,l ≥ q ξi,jξi,j. (4)

Let us now turn to the definition and motivation of the objective functionals.
Ceramics frequently is chosen to construct mechanical components. Ceramics is
temperature resistant and does not react with oxygen, sulphur or hydrogen even at
high temperatures. On the negative side, the brittleness exposes ceramic structures
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Figure 1: Domains Ω and Ω̂ represented in 2D, for simplicity

to the risk of spontaneous failure due to stress concentration at prefabricated voids
or inclusions. As the formation of such microcracks is unavoidable in the sintering
process and is stochastic by nature, the failure under or the resistance to a given
mechanical load is a random event that occurs with a given failure probability. This
was the insight by E. W. Weibull in his classical paper [25]. From the 1960ies on, this
approach was taken up in a number of papers, see e.g. [3, 11, 26]. Here, we follow
the approach of [3] that is also supported experimentally [4] in the case of small
flaw sizes. The failure probability, i.e. the probability of spontaneous macroscopic
rupture, for a given displacement field u on Ω is defined as

J(Ω, u) = pf = 1− exp

{
− 1

4π

∫
Ω

∫
S2

(
(n · σ(Du)n)+

σ0

)m

dn dx

}
(5)

where considerations from the large sample limit of extreme value theory are applied
along with some approximations that can be controlled numerically to a reasonable
extent [3, 17, 27]. We use the notation x+ = max{x, 0} for the positive part of x.
Here S2 ⊆ R3 is the embedded two sphere and dn the induced measure on it.

The engineering task is to solve the optimal reliability criterion (1) under suitable
constraints.

This approach gained new attention with the wide distribution of finite element
software which allows the efficient calculation of an approximation to u(Ω) and
thus the calculation of (5) and related functionals as a post processing step, cf.
in particular the work related to the STAU postprocessor developed at Karlsruhe
Institute of Technology [24, 5, 17, 18, 27].

From a shape optimization prospective, the objective functional (5) has attractive
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properties as

a) It has a clear material science derivation and a proven record of industrial
application [5, 18, 27];

b) It permits to show the existence of optimal shapes by its convexity properties
[12];

c) One can prove the existence of the shape derivatives dJ (Ω, V ) under infini-
tisial transformations generated by a vector field V in the sense of [21], confer
the forthcoming work [14].

The paper is organised as follows. In Section 2 we give some background material
from linear fracture mechanics and the Poisson point process in order to motivate
and generalize (5). Section 3 proves convexity of the resulting objective functionals.
In section 4 we apply the strategy of [12] to conclude that optimally reliable designs
exist.

Although the existence result in this article is less general in terms of the ob-
jective functionals than [13], it requires much less restrictive boundary regularity
assumptions and technically follows a rather independent route. For other work on
optimal design with the linear elasticity PDE as state equation, confer e.g. [1, 2, 9, 16]
and references therein. These works however use objective functionals which con-
siderably differ in their design intention and mathematical properties from what we
consider here. This in particular applies to the compliance functional, which is not
directly related to the failure of the component.

2 Survival probabilities from linear fracture mechan-
ics

Let us first recall some elements of the classical engineering analysis of spontaneous
failure of mechanical components from brittle material under given mechanical loads.
In linear fracture mechanics, the three dimensional stress field close to a crack in a
two dimensional plane close to the tip of the crack is of the form

σ =
1√
2πr

{KI σ̃
I(φ) +KII σ̃

II(φ) +KIII σ̃
III(φ)}+ regular Terms, (6)

where the detailed form of the shape functions σ̃#(φ) is determined by complex
analysis, [15, chapter 4]. Here r is the distance to the crack front and φ the angle
of the shortest connection point considered to the crack front with the crack plane.
The K - factors – also called stress intensity factors – depend on the amount and
the mode of the loading, cf. Figure 2, and the geometry of the crack. Considering
e.g. the tensile loading σn in a normal direction of the stress plane and the crack
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Figure 2: Different modes of the loading (top). r-φ coordinate system at the tip of
the crack (bottom)

geometry circular with radius a (’penny crack’) one obtains

KI =
2

π
σn

√
πa. (7)

Failure occurs in the ceramic component, if σn is positive and is large enough such
that the stress intensity KI exceeds a critical value KIc. Typical KIc values for
ceramics that are measured in mechanical tests are (4 to 100)× 103 [MPa

√
m]. Ap-

parently, in the case of compressive loads, i.e. σn < 0, no failure will occur no
matter what the size a of the crack is. We note that it would be straight forward to
incorporate more complex flaw geometries in the framework of this article, eg. for
elliptic shapes KI is modified with a factor 1−

√
1− c2, where 0 < c ≤ 1 the quotient

between the length of the principal axes. The consideration of surface cracks (eg.
due to manufacturing) will require the more involved analysis of [13].

The next step is the passage to stress fields with arbitrary orientation w.r.t.
the crack plane, see (6). A large number of solutions has been proposed to the
extension of the concept of critical K factors to the multi axial case [3, 11, 15, 25, 27].
Experimental evidence [4] indicates that for microscopic or mesoscopic initial flaws
the shear stress influence to the strength of a ceramic component is negligible. We
therefore follow [17, 27] and set

σn = (n · σ(Du)n)+ = max{n · σ(Du)n, 0}, (8)

retaining the failure criterion KI(a, σn(x)) > KIc at the location x ∈ Ω of a crack
with radius a.

The probabilistic model of flaw distributions is a marked Poisson point process
(PPP) with the mark space given by S2×R+. Here S2 stands for the flaw orientation
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described by the normal n and the flaw radius a. Assumptions that lead to the PPP
model are

• Flaws are uniformly distributed over the volume Ω of the component with an
average number z > 0 of flaws per unit volume;

• Two flaws can always be distinguished either by their orientation, size or by
their location;

• Orientations are uniformly distributed over S2 and are independent of the flaw
location;

• The distribution of the flaw radius is independent of location and orientation
of the crack;

• The number of flaws in n given, non intersecting volumes A1, . . . , An ⊆ Ω are
statistically independent of each other.

If these assumptions are a good approximation to reality, the following mathematical
model is adequate and essentially fixed by these assumptions, confer [22, Corollary
4.7]:

Definition 2.1. Let M = Ω× S2 × R+ be the crack configuration space endowed
with the sigma algebra A (M ) defined as the Borel sigma algebra on M . Let
furthermore ν be the Radon measure on A (M ) which is given by

ν = dx ↾Ω ⊗dn

4π
⊗ ρ. (9)

Here dx is the Lebesgue measure on R3, dn the surface measure on S2 and ρ a
positive Radon measure on (R+,B(R+)) such that ρ([c, d]) fixes the density (number
per volume) of cracks with radius a, c ≤ a ≤ b. A natural assumption is that only
finitely many cracks with a radius a above some finite limit can be contained in a
given volume, i.e. ρ([c,∞)) < ∞ ∀c > 0.

The Poisson point process on the crack configuration space M with intensity
measure ν is a mapping N : E ×A (M ) → N0 where E is the set of some probability
space (E ,A , P ) such that the following conditions hold:

(i) ∀A ∈ A (M ), N(A) = N(., A) : (E ,A , P ) → (N0,P(N0)) is a (counting)
random variable;

(ii) ∀ω ∈ E , N(ω, .) : A (M ) → N0 ⊆ R̄+ is a sigma finite measure;

(iii) ∀n ∈ N, A1, . . . , An ∈ A (M ) mutually disjoint, the random variables N(A1),
. . . , N(An) are independent;

6
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(iv) ∀A ∈ A (M ) such that ν(A) < ∞, N(A) is Poisson distributed with mean
ν(A), N(A) ∼ Po(ν(A)), i.e.

P (N(A) = n) = e−ν(A)ν(A)
n

n!
. (10)

Items i) and ii) are the definition of a general point process, iii) is needed for a
general PPP on M and iv) fixes its distribution [22].

Lemma 2.2. Let u ∈ H1(Ω,R3) be given, then

Ac = Ac(Ω, Du) =
{
(x, n, a) ∈ M : KI

(
a, (n · σ(Du(x))n)+

)
> KIc

}
∈ A (M ).

(11)

Proof. Du ∈ L2(Ω,R3×3) is Borel measurable and so is σn = (n · σ(Du)n)+. Thus
the set of critical crack configurations given σ(Du) is measurable as the pre-image
of the interval [KIc,∞) under the Borel measurable function M ∋ (x, n, a) →
KI (a, (n · σ(Du(x))n)+) ∈ R+.

Adopting the point of view (neglecting mechanical interactions between cracks)
that the component fails if there is any crack with configuration in the critical set
Ac, we obtain the following definition:

Definition 2.3. Let the survival probability of the component Ω given the displace-
ment field u ∈ H1(Ω,R3) is

ps(Ω|Du) = P (N(Ac(Ω|Du)) = 0) = exp{−ν(Ac(Ω, Du))}. (12)

Apparently we want to maximise the survival probability ps(Ω, Du(Ω)) in the
shape control variable Ω ∈ Oad, which can equivalently be expressed as a mini-
mization problem for the failure probability pf (Ω, Du) = 1 − ps(Ω, Du) under the
PDE constraint (2). This in turn is equivalent to the following PDE constraint
minimization problem:

J̄(Ω, u) = ν(Ac(Ω, Du)) −→ min, u = u(Ω) solves (2) , Ω ∈ Oad.. (13)

A more explicit representation of ν(Ac(Ω, Du)) can be found with the help of the
cumulative crack size function Φ(s) = ρ((s,∞]) of the crack radius, see also [17, 27]:

Lemma 2.4. Let u ∈ H1(Ω,R3), then J̄(Ω, u) =
∫
Ω
h(Du) dx with

h(q) =
1

4π

∫
S2

Φ

(
π

4

(
KIc

(n · q n)+

)2
)

dn q ∈ R3×3. (14)

7
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Proof. By Fubni’s theorem for positive functions, with 1B(ξ) = 1 if ξ ∈ B and 0
otherwise defining the characteristic function of the set B,

ν(Ac(Ω, Du)) =
1

4π

∫
Ω

∫
S2

∫
R+

1{KI(a,(n·Du(x)n)+)>KIc}(x, n, a) dρ(a) dn dx

=
1

4π

∫
Ω

∫
S2

ρ

(
a >

π

4

(
KIc

(n ·Dun)+

)2
)
dn dx

=
1

4π

∫
Ω

∫
S2

Φ

(
π

4

(
KIc

(n ·Dun)+

)2
)
dn dx

For later use, we prove the following:

Lemma 2.5. The function h(q) introduced in (14) depends continuously of q.

Proof. We first note that for ql → q with (n · qn)+ > 0,

Φ

(
π

4

(
KIc

(n · qln)+

)2
)

→ Φ

(
π

4

(
KIc

(n · qn)+

)2
)

by upper and lower continuity of the radon measure ρ on sets of finite measure. Let
us now assume that (n · qn)+ = 0. In this case π

4
( KIc

(n·qln)+
)2 → ∞, and thus

Φ

(
π

4

(
KIc

(n · qln)+

)2
)

→ 0 = Φ

(
π

4

(
KIc

(n · qn)+

)2
)

again by upper continuity and additivity of ρ. Furthermore, the integrand in the S2

integral defining h(q) by additivity of ρ is uniformly bounded by

Φ

(
π

4

(
KIc

supn∈S2,l∈N(n · qln)+

)2
)

< ∞.

The assertion of the lemma thus follows from Lebesgue’s theorem of dominated
convergence.

3 Convexity of the objective functional

Fuji showed [12] for scaler u ∈ H1(Ω,R) that any objective functional J̄(Ω, u) =∫
Ω
h(∇u) dx with convex, positive function h : R3 → R+ is lower semcontinuous in

the weak H1(Ω,R) topology. As lower semicontinuity is an essential ingredient to
existence proofs for optimal shapes, we now look for conditions on the crack radius
distribution that will ensure the convexity of the function h(q).

8
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Proposition 3.1. Suppose that the crack size density measure ρ is absolutely con-
tinuous w.r.t. the Lebsgue measure da, dρ(a) = ϱ(a)da, ϱ(a) > 0 for a ∈ R+. We
furthermore assume that α(a) = − log ϱ(a) is differentiable on R+ and

α′(a) ≥ 3

2

1

a
∀a > 0. (15)

Then h(q) as defined in (14) is convex.

Proof. Let us define the auxiliary function h̃(κ) = Φ
(

1
(κ+)2

)
where we use the

natural extension h̃(κ) = 0 for κ ≤ 0 corresponding to lima→∞ Φ(a) = ρ([a,∞)) = 0
by upper continuity of the Radon measure ρ for sequences of decreasing sets with
finite measure.

Note that h̃(κ) is continuous and second order differentiable for κ ∈ R∗ = R\{0}.
Thus, to show convexity, it suffices that h̃′′(κ) ≥ 0 ∀κ ∈ R \ {0}. This is trivially
true for κ < 0 as then h̃′′(κ) = 0. Let us now investigate the case κ > 0. We get

h̃′′(κ) = −4ϱ′
(

1

κ2

)
1

κ6
− 6ϱ

(
1

κ2

)
1

κ4

!
> 0.

This is equivalent to

−
ϱ′
(

1
κ2

)
ϱ
(

1
κ2

) = α′
(

1

κ2

)
!
>

3

2
κ2

which holds by the assumption (15) using the substitution a = 1
κ2 .

Let now q1, q2 ∈ R3×3 and t ∈ (0, 1). With κj =
2c(n·qj n)√

πKIc
̸= 0, j = 1, 2, we get

from the convexity of h̃

Φ

(
π

4

(
KIc

(n · (tq1 + (1− t)q2)n)+

)2
)

= h̃((tκ1 + (1− t)κ2))

≤ th̃(κ1) + (1− t)h̃(κ2)

= tΦ

(
π

4

(
KIc

(n · q1 n)+

)2
)

+ (1− t)Φ

(
π

4

(
KIc

(n · q2 n)+

)2
)
.

The case that involves one or two κj = 0 is trivial as the right hand side is infinite.
Integration of this inequality in n over S2 then yields convexity of h.

Condition (15) restricts the tail behaviour of the a-density ϱ(a) to a decrease at
least as fast as const.× a−β for a → ∞ with β ≥ 3/2 as α ≥ const.+ β log(a).

Assuming an algebraic scaling for ϱ(a), we can make contact with the classical
Weibull type objective functionals (5).

Proposition 3.2. Let u ∈ H1(Ω, R3) and β ≥ 3
2

be given such that

α(a) = α0 + β log(a), i.e. ϱ(a) = e−α0a−β ∀a > 0. (16)

9
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Then
J̄(Ω, u) =

1

4π

∫
Ω

∫
S2

(
n · σ(Du)n

σ0

)m

dn dx, (17)

with m = 2(β − 1) ≥ 1 and

σ0 = e−α0/2(β−1)(β − 1)1/2(β−1)

√
4

π
KIc (18)

Proof. We have Φ(a) = eα0

(β−1)
a−(β−1). One obtains

Φ

(
π

4

(
KIc

(n · σ(Du)n)+

)2
)

=

 (n · σ(Du)n)+

e−α0/2(β−1)(β − 1)1/(2(β−1)

√
4
π
KIc

2(β−1)

.

Remark 3.3. Typical experimental values of m range from 5 to 25, see [25]. In
particular the assumptions of Proposition 3.1 do not rule out the cases of physical
interest. Note that the large m limit is deterministic.

Remark 3.4. The dimensional mismatch between σ0 and the stress intensity KIc

in equation (18) is explained by the fact that Φ(a) is a functional of a dimensional
quantity a. Understanding Φ as a function of a numerical value, we need to introduce
a length scale a0 = [m] and consider Φ(a/a0), which divides K1c by

√
a0.

Corollary 3.5. Let the Weibull local failure intensity function hW : R3×3
s → R+ be

defined as

hW (q) =
1

4π

∫
S2

(
(n · q n)+

σ0

)m

dn. (19)

Then hW is convex for m ≥ 1 and continuous.

4 Shapes with optimal survival probability

Having the results of the previous section at hand, we can now show the existence
of shapes with optimal survival property. We use the notation

C(ζ, θ, l) = {x ∈ R3 : |x| < l, x · ζ > |x| cos(θ)} (20)

for the cone with height l, direction ζ and opening angle θ. We need the following
definition:

Definition 4.1 (Ref. [12, 6]). Let Ω0 be a bounded open set in R3. For θ ∈
(0, π/2), l > 0, r > 0, 2r ≤ l by Π(θ, l, r) we denote the set of all subsets Ω of Ω0 sat-
isfying the cone property, i.e., for any x ∈ ∂Ω there exists a cone Cx = Cx(ζx, θ, l),
where ζx denotes a unit vector in R3, s.t.

y + Cx ⊂ Ω, y ∈ B(x, y) ∩ Ω,

where B(x, r) is the open ball in Rn with radius r centred at x.

10
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We now fix Ω0 and as admissible shapes we accept all subsets of Ω0 fulfiling the
cone property. As we will deal with problems involving mixed boundary conditions,
we need an appropriate extension operator.

Theorem 4.2 (Theorem II.1 in [6]). Let θ, l, r ∈ R s.t. θ ∈]0, π/2[ and 2r ≤ l and let
n ∈ N. There exists a constant K(θ, l, r) depending on Ω ∈ Π(θ, l, r) through θ, h, r,
only, and s.t. for all Ω ∈ Π(θ, l, r) there exists a linear and continuous extension
operator pΩ : Hn(Ω) → Hn(R3), s.t. pΩu(x) = u(x) for all x ∈ Ω, with

∥pΩ∥ ≤ K(θ, l, r)

Proof. See proof of Theorem II.1 in [6].

Further, we need the following result.

Lemma 4.3 (Ref. [12]). The class Π(θ, l, r) of domains is relatively compact and is
closed with respect to the strong L2(Ω0) topology.

Proof. Theorem III.1 in [6] states that Π(θ, l, r) is relative compact, Theorem III.2
in [6] shows that it is closed.

Given a maximal domain Ω̂ that fulfils the uniform cone property for given θ, l, r
we define the set of admissible domains as

Oad = {Ω ∈ Π(θ, l, r) : Ω ⊂ Ω̂}.

The main tool for showing the existence of optimal shape is the following theorem.

Theorem 4.4. Let h be continuous, non negative, and convex. Assume that for
{Ωn} ⊂ Π(θ, l, r) we have

Ωn → Ω, a.e. in Ω0,

i.e., the characteristic functions of Ωn converge to the characteristic function of Ω,
and that for the extension ũn = pΩ(un) of un ∈ H1(Ωn) we have

ũn ⇀ ũ, in H1(Ω0),

where ũ = pΩ(u). Then, the following inequality holds:∫
Ω

h(Du(x))dx ≤ lim inf
m→∞

∫
Ωm

h(Dum(x))dx.

Proof. The proof of Theorem 2.1 in [12] extends without modifications from scalar
u to vector valued u.

In order to apply this theorem, we have have to show that an arbitrary sequence
of {Ωn, un} of admissible domains and solutions has a subsequence that converges.
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Lemma 4.5. Let ∂ΩD and ∂ΩN be defined as above and let {Ωn, un}∞n=1 an arbi-
trary sequence of admissible domains and their corresponding solutions, i.e., Ωn ∈
Π(θ, l, r) and un = u(Ωn) solves (2) in the domain Ωn. Then one can find its
subsequence also denoted by the pair (Ωn, un) and elements Ω ∈ Π(θ, l, r) and
u ∈ (H1(R3))3 such that {

Ωn → Ω,

ũn ⇀ ũ,

where ũn and ũ are the extensions of un and u to Rn and u solves (2) in Ω.

Proof. We define the set of admissible displacements as

V(Ω) = {v ∈ (H1(Ω))3 | v = 0 on ∂ΩD}.

For the bilinear form BΩ in (2) using the ellipticity condition (4) we get for all
v ∈ V(Ω):

BΩ(v, v) =

∫
Ω

tr(ε(Dv)σ(Dv))dx

=

∫
Ω

3∑
i,j=1

3∑
k,l=1

ci,j,k,lε(Dv)k,lε(Dv)i,jdx

≥ q

∫
Ω

3∑
i,j=1

ε(Dv)i,jε(Dv)i,jdx = q∥ε(Dv)∥20,Ω.

Using this, we obtain

q∥ε(Dun)∥20,Ωn
≤ BΩn(un, un) =

∫
Ωn

f ·undx+

∫
∂(Ωn)Nfixed

g ·unds ≤ (c1+ c2) · ∥un∥1,Ωn ,

where the constant c1 accounts for the bound of the integral over f · un and c2
originates from the application of the trace theorem over the fixed Neumann bound-
ary of the domain. Note that while c2 depends on the domain under consideration
obviously we can use the extension ūn of un to Ω̂. As we have

∥ūn∥1,Ω̂ ≤ K(θ, l, r)∥ūn∥1,Ωn = K(θ, l, r)∥un∥1,Ωn

the estimate holds by including the factor K(θ, l, r) in c2. From Korn’s inequality
we can follow that there exists a β > 0 such that for all v ∈ V(Ω) we have

∥ε(v)∥20,Ω ≥ β∥v∥1,Ω,

further a result from [20] guarantees that this β can be uniformly bounded for all
domains under consideration and we obtain that there exists a constant c for all Ωn

such that
∥un∥1,Ωn ≤ c.

12
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Due to Theorem 4.2 the extension ũn of un to R3 is bounded and so is the extension
to Ω̂. Using this and Lemma 4.3 we obtain that there exists a subsequence of
{Ωn, ũn}∞n=1 where Ωn → Ω due to Lemma 4.3 and where ũn converges weakly to
some function u ∈ (H1(Ω̃))3.

It remains to show that this u solves (2), for this purpose we proceed as in the
proof of Proposition IV.1 in [6]. We have that

BΩn(un, v) =

∫
Ωn

f · v dx+

∫
∂(Ωn)N

g · v ds, ∀v ∈ H1
∂(Ωn)D

(Ωn).

This is equivalent to∫
Ω̂

χ(Ωn)tr(ε(Du)σ(Dv)) dx =

∫
Ω̂

χ(Ωn)f ·v dx+
∫
Ω̂

χ(∂(Ωn)N)g·v ds, ∀v ∈ H1
∂ΩD

(Ω),

where χ(Ωn) denotes the characteristic function of Ωn and χ(∂(Ωn)N) the one of
∂(Ωn)N as usual. We show the convergence of each of the integrals. For the first
integral of the right hand side we obviously have that for each v ∈ L2(Ω̂) we have

|χ(Ωn)v| ≤ |v|

and as the characteristic function converges a.e., we obtain that χ(Ωn)v → χ(Ω)v
and so we get ∫

Ω̂

χ(Ωn)f · v dx →
∫
Ω̂

χ(Ω)f · v dx.

As this is true for v ∈ L2(Ω̂) it holds for H1
∂ΩD

(Ω), as well. For the partial derivatives
in the integral on the left hand side the same argument holds true. For the second
integral on the right hand side we can argue in the same manner, as the convergence
of χ(Ωn) implies the convergence of the characteristic function of the boundary
∂(Ωn)N .

We are now in the position to prove the main result of this work:

Theorem 4.6. Let ∂ΩD and ∂ΩN be defined as above and let {Ωn, u(Ωn)}∞n=1 a
minimizing sequence of admissible domains and their corresponding solutions, i.e.,
Ωn ∈ Π(θ, l, r), u(Ωn) solves (2) in the domain Ωn and

lim
n→∞

J̄(Ωn, u(Ωn)) = inf
Ω∈Π(θ,l,r)

J̄(Ω, u(Ω)), (21)

Where J̄ is defined as in (17). Further assume that the requirements of Proposi-
tions 3.1 are fulfiled. Let ũ∗ and Ω∗ ∈ Π(θ, l, r) be the limit points of a subsequence
as defined in Lemma 4.5. Then the restriction u∗ = u(Ω∗) of the weak limit ũ∗ and
Ω∗ solve the shape optimization problem (13). Thus there exist shapes Ω∗ ∈ Π(θ, l, r)
that minimize the probability of failure (5). This in particular applies to the Weibull
model for m > 0.
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Proof. The function h given by (14) is obviously non negative, as the integrand is
non negative. Proposition 3.1 gives convexity of h and Lemma 2.5 its continuity.
Further, the strong convergence of the domains and the weak convergence of the
corresponding solution is guaranteed by Lemma 4.5, so all requirements of Theo-
rem 4.4 are fulfiled and the assertion follows. By Proposition 3.2 and Corollary 3.5,
the Weibull model is a special case.
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