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Abstract

Linear dynamical systems are considered in form of ordinary dif-
ferential equations or differential algebraic equations. We change their
physical parameters into random variables to represent uncertainties.
A stochastic Galerkin method yields a larger linear dynamical system
satisfied by an approximation of the random processes. If the original
systems own a high dimensionality, then a model order reduction is
required to decrease the complexity. We investigate two approaches:
the system of the stochastic Galerkin scheme is reduced and, vice
versa, the original systems are reduced followed by an application of
the stochastic Galerkin method. The properties are analyzed in case
of reductions based on moment matching with the Arnoldi algorithm.
We present numerical computations for two test examples.
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1 Introduction

In science and engineering, dynamical systems of ordinary differential
equations (ODEs) or differential algebraic equations (DAEs) often ap-
pear as mathematical models. The systems include physical param-
eters, which may exhibit uncertainties due to measurement errors or
imperfections of a manufacturing procedure, for example. We quantify
the uncertainties using a stochastic modeling, where the deterministic
parameters are substituted by random variables.

The solution of the stochastic models can be computed numerically
by sampling methods like (quasi) Monte-Carlo simulations, for exam-
ple. Therein, the dynamical system has to be resolved many times.
Alternatively, we consider numerical techniques based on the polyno-
mial chaos expansions of the unknown random processes, see [30, 31].
A stochastic Galerkin (SG) method yields a larger coupled system,
which has to be solved just once to obtain an approximation of the
random processes, see [15, 32]. This approach has already been ap-
plied successfully to systems of ODEs and DAEs, see [21, 22, 23].

We consider linear dynamical systems with random parameters,
where the dimension of the state space is already large due to the
original modeling. Thus a model order reduction (MOR) is advanta-
geous to decrease the complexity of the problem. Appropriate MOR
methods are available for linear dynamical systems, see [1, 5, 26].
Moreover, parameterized model order reduction (pMOR) has been de-
veloped to preserve deterministic parameters as independent variables
in the reduced order models, see [3, 6, 4, 13]. In case of large numbers
of random parameters, a reduction of the random space based on a
sensitivity analysis is discussed in [24].

In this paper, we apply MOR in connection to the SG method to
solve the stochastic models. On the one hand, the reduction of the
coupled system resulting from the SG approach is investigated. This
strategy has already been used in [19, 33] for Gaussian random vari-
ables. On the other hand, we reduce the original dynamical systems
and apply the SG method afterwards. In the second approach, more
variants are feasible. We discuss both traditional MOR and pMOR for
this purpose. A focus is on reduction using moment matching by the
Arnoldi algorithm, see [14], which turns out to be advantageous due to
a preservation of smoothness. A brief error analysis is given. We com-
pare the two strategies with respect to accuracy and computational
effort.

2



2 Dynamical systems with random pa-

rameters

In this section, we define the problems to be considered in the stochas-
tic methods and the model order reductions.

2.1 Linear dynamical systems

We consider linear dynamical systems of the form

C(p)ẋ(t, p) +G(p)x(t, p) = Bu(t)

y(t, p) = Lx(t, p)
(1)

in a time interval t ∈ [t0, t1] with predetermined input signals u :
[t0, t1] → R

Nin . The square matrices C(p), G(p) ∈ RN×N typically
include physical parameters p ∈ Π in some relevant subset Π ⊆ RQ.
Consequently, the unknown state variables x : [t0, t1] × Π → R

N de-
pend on time as well as the parameters. Furthermore, output variables
y : [t0, t1]× Π → R

Nout are defined as quantities of interest. The ma-
trices B ∈ RN×Nin and L ∈ RNout×N are associated to the input and
the output, respectively, and do not depend on the parameters.

If det(C(p)) 6= 0 holds, then the system (1) represents ordinary
differential equations (ODEs). In contrast, the system (1) consists of
differential algebraic equations (DAEs) when det(C(p)) = 0. In the
latter case, we assume a regular matrix pencil, i.e., it holds for each
p ∈ Π that det(C(p) + λG(p)) 6= 0 for almost all λ ∈ C.

Let U(s), X(s, p), Y (s, p) be the Laplace transform of the above
time-dependent functions with the same dimensions. The input-output
behavior of the dynamical system (1) is specified by a transfer func-
tion in the frequency domain, see [1]. Due to the dependence on the
parameters, the transfer function reads as

H(s, p) = L(G(p) + sC(p))−1B (2)

with independent variable s ∈ C. The transfer function is matrix-
valued, since it holds that H(s, p) ∈ CNout×Nin . An exception are
single-input-single-output (SISO) systems, which imply Nout = Nin =
1. The input-output relation is given by Y (s, p) = H(s, p)U(s) in any
case. The domain of dependence on s is typically restricted to the
imaginary axis.
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2.2 Stochastic modeling

Now we assume that the chosen parameters exhibit some uncertainties.
To achieve an uncertainty quantification, we substitute the parameters
by independent random variables

p : Ω → Π, ω 7→ p(ω) = (p1(ω), . . . , pQ(ω))
⊤

on some probability space (Ω,A, P ) with event space Ω, sigma-algebra
A and probability measure P . For example, uniform distributions,
Gaussian distributions or beta distributions can be applied. Using tra-
ditional random distributions, a probability density function ρ : Π →
R is available. Consequently, the state variables and outputs satisfy-
ing (1) become time-dependent random processes. We are interested
in statistics (expected value, variance, etc.) or more sophisticated
stochastic quantities of the outputs.

Given a measurable function f : Π → K with K = R or K = C,
we introduce the abbreviation

〈f(p)〉 :=

∫

Ω
f(p(ω)) dP (ω) =

∫

Π
f(p)ρ(p) dp (3)

for the expected value, provided that it exists. The expected value (3)
implies an inner product for the Hilbert space L2(Π, ρ) := {f : Π →
K | 〈|f |2〉 < ∞}. Given f, g ∈ L2(Π, ρ), this inner product is just
〈f(p)g(p)〉 for K = R and 〈f(p)g(p)〉 for K = C. We apply these no-
tations also componentwise to vector-valued as well as matrix-valued
functions.

2.3 Polynomial chaos expansions

Each probability distribution yields an associated orthonormal sys-
tem of polynomials (Φi)i∈N provided that all polynomials belong to
L2(Π, ρ), see [30]. Thus it holds that 〈Φi(p)Φj(p)〉 = δij with the
Kronecker delta δij . We assume that the orthonormal polynomials
are dense in L2(Π, ρ). This property is fulfilled by probability dis-
tributions of uniform, Gaussian or beta type, for example. General
distributions have to satisfy certain conditions, see [11]. Consequently,
a function f ∈ L2(Π, ρ) exhibits a representation in the so-called poly-
nomial chaos (PC), see [32],

f(p) =

∞
∑

i=0

fiΦi(p), (4)
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in which the coefficients fi ∈ K are given by the projection fi =
〈f(p)Φi(p)〉. The expansion (4) converges in the norm of L2(Π, ρ).
The rate of convergence depends on the smoothness of f with respect
to the parameters. The expected value is just 〈f〉 = f0. For K = R,
the variance follows from an infinite sum: Var(f) = f2

1 + f2
2 + · · · .

Assuming finite second moments, we apply the PC expansions (4)
to the state variables, the output variables and the transfer function of
the dynamical system (1). Therein, the representation exists pointwise
for each time t ∈ [t0, t1] or each frequency s ∈ C.

To compute an approximation of the random processes x or y

solving (1), a PC expansion (4) is truncated after the first M terms.
Typically, all basis polynomials Φ0, . . . ,ΦM−1 up to some degree D

are chosen. It holds that M = (Q+D)!
Q!D! . There are mainly two types

of numerical methods to compute the unknown coefficient functions:
stochastic collocation techniques and the stochastic Galerkin (SG)
method, see [15, 31, 32]. We consider only the SG approach in this
paper, since its properties are advantageous in the case of linear dy-
namical systems, see [10]. However, we admit that in several cases the
stochastic collocation method combines providing good results with
flexibility in allowing the use of different simulation tools.

2.4 Stochastic Galerkin method

We outline the well-known SG technique for the dynamical system (1)
including random parameters. The PC expansion of the state variables
as well as the output variables are truncated at some M ≥ 1, i.e., we
obtain

x(M)(t, p) =

M−1
∑

i=0

vi(t)Φi(p), y(M)(t, p) =

M−1
∑

i=0

wi(t)Φi(p). (5)

It holds that wi(t) = Lvi(t) for the exact coefficients only. Inserting
the finite approximations (5) into the linear dynamical system (1)
yields the residuals

δx(t, p) := C(p)ẋ(M)(t, p) +G(p)x(M)(t, p)−Bu(t),

δy(t, p) := y(M)(t, p)− Lx(M)(t, p).

We want to determine the unknown coefficients such that the resid-
uals become small in a sense. The Galerkin method implies that the
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residuals are orthogonal with respect to the applied space of basis
polynomials, i.e.,

〈δx(t, p)Φl(p)〉 = 0, 〈δy(t, p)Φl(p)〉 = 0 for l = 0, 1, . . . ,M − 1

and each t ∈ [t0, t1]. We obtain the larger coupled system

Ĉv̇(t) + Ĝv(t) = B̂u(t)

w(t) = L̂v(t)
(6)

with v := (v0, v1, . . . , vM−1)
⊤ and w := (w0, w1, . . . , wM−1)

⊤. The
resulting matrices Ĉ, Ĝ ∈ RMN×MN consist of the following minors

Ĉ = (Cij)i,j=0,...,M−1, Cij := 〈C(p)Φi(p)Φj(p)〉,

Ĝ = (Gij)i,j=0,...,M−1, Gij := 〈G(p)Φi(p)Φj(p)〉.
(7)

The matrices B̂ ∈ RMN×Nin and L̂ ∈ RMNout×MN result to B̂ =
(1, 0, . . . , 0)⊤ ⊗ B and L̂ = IM ⊗ L with the Kronecker product and
the identity matrix IM , since their entries do not depend on the pa-
rameters. The coupled system (6) has to be solved just once to achieve
an approximation of the random processes.

In mathematical models of technical applications, and assuming
appropriate definitions of the parameters, the entries of the matrices
C(p), G(p) in (1) are often polynomials or even affine functions in the
variables p. In this case, we can calculate the entries (7) of the matrices
Ĉ, Ĝ in (6) analytically for traditional probability distributions. In any
case, we can use a quadrature for the probabilistic integrals in (7) to
compute the entries of Ĉ, Ĝ sufficiently accurate a priori, where the
computational effort is negligible in comparison to the time integration
or an MOR of the coupled system (6).

The coupled system (6) also exhibits an input-output behavior,
which is specified by the transfer function

Ĥ(s) := L̂(Ĝ+ sĈ)−1B̂. (8)

It follows that the entries of Ĥ(s) ∈ C

MNout×Nin include approxi-
mations of the PC coefficients for the original transfer function (2),
see [24].

2.5 Model order reduction

We assume that the dynamical systems (1) have a huge dimension-
ality N now. The following statements also hold for deterministic
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parameters. Let first a fixed realization p ∈ Π of the parameters
be given. Several approaches exist to reduce the complexity of such
systems like moment matching, Krylov-space methods, balanced trun-
cation, SVD-type methods, proper orthogonal decomposition, see [1].
It follows that the system (1) is reduced to a system

Cr(p)ẋr(t, p) +Gr(p)xr(t, p) = Br(p)u(t)

yr(t, p) = Lr(p)xr(t, p)
(9)

of state space dimension Nred ≪ N . Yet a good approximation yr ≈ y

shall be achieved. The transfer function of the reduced order model (9)
reads as

Hr(s, p) := Lr(Gr(p) + sCr(p))
−1Br (10)

with same size CNout×Nin as H in (2). Often the MOR approach yields
projection matrices W (p), V (p) ∈ CN×Nred satisfying the orthogonal-
ity WH(p)V (p) = INred

such that

Cr(p) = W (p)HC(p)V (p), Gr(p) = W (p)HG(p)V (p),

Br(p) = W (p)HB, Lr(p) = LV (p).
(11)

Note that the matrices Br and Lr depend on the parameters now due
to the projection matrices.

We consider moment matching for MOR based on Krylov-spaces.
Choosing an expansion point s0 = iω0 with ω0 ∈ R, the reduced order
model (9) is constructed such that the transfer function Hr becomes a
Padé approximant ofH with identical moments in s0 up to some order.
We will use the Arnoldi process to calculate the projection matrices,
which implies W (p) = V (p). Generalizations to several expansion
points also exists. For more details, we refer to [1, 14]. This strategy
is also applicable to the coupled system (6) in the same manner.

Alternatively, techniques of parameterized model order reduction
(pMOR) preserve the parameters as independent variables in reduced
systems, see [3, 6, 13]. Often constant projection matrices W0, V0 ∈
C

N×Nred are determined a priori using the information from many
samples of the parameters, cf. [18], for example. The matrices of the
reduced order model (9) become

Cr(p) = WH
0 C(p)V0, Gr(p) = WH

0 G(p)V0,

Br = WH
0 B, Lr = LV0.

(12)

The advantage is that Cr(p), Gr(p) can be evaluated directly for arbi-
trary p ∈ Π. Furthermore, the matrices Br, Lr are independent of the
parameters.
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Table 1: Flow chart.

C(p)ẋ +G(p)x = Bu

y = Lx

Y (s, p) = H(s, p)U(s)

SG
−−−−−−→

Ĉv̇ + Ĝv = B̂u

w = L̂v

W (s) = Ĥ(s)U(s)

(p)MOR









y

MOR









y

Cr(p)ẋr +Gr(p)xr = Br(p)u
yr = Lr(p)xr

Yr(s, p) = Hr(s, p)U(s)

SG
−−−−−−→

Ĉr v̇r + Ĝrvr = B̂ru

wr = L̂rvr

Wr(s) = Ĥr(s)U(s)

3 Reduction of stochastic model

In this section, we investigate two approaches, that are illustrated in
Table 1. In Sect. 3.1, we first apply the SG method to the random
dynamical system and next use an MOR method (first ”right”, then
”down”). In Sect. 3.2, we first employ a (parameterized) MORmethod
and next apply the SG method (first ”down”, then ”right”).

3.1 MOR for the SG system

The SG method changes the random dynamical system (1) into the
coupled system (6). If the sizeN of the original system is already large,
then the coupled system exhibits the even higher dimension MN .
Hence the coupled system (6) is an excellent candidate for MOR.
Moreover, a high potential for reduction appears, because sparse rep-
resentations are often observed in PC expansions, see [7, 8]. If the
number M refers to all polynomials up to a fixed degree, then a
sparse representation implies that a smaller number of basis functions
would also yield an approximation of the same quality. Ordinary MOR
schemes for the coupled system (6) are able to decrease the dimension-
ality without knowing the significant basis polynomials. In particular,
a potential for MOR is given even if the original system (1) does not
allow for an efficient reduction. Note that there is no need for pMOR
schemes in this procedure, since the parameters do not appear ex-
plicitly in the coupled system (6) due to the probabilistic integration
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in (7).
An MOR of the coupled system (6) yields a linear dynamical sys-

tem of smaller size

Ĉrv̇r(t) + Ĝrvr(t) = B̂ru(t)

wr(t) = L̂rvr(t).
(13)

This strategy was already applied in [19, 33] for random variables with
Gaussian distributions. In [24], this reduction has been employed for
uniformly distributed parameters.

We consider moment matching for a reduction of the system (6),
where the Arnoldi algorithm is applied, see [14]. We suppose that all
resulting linear systems of algebraic equations are solved directly by
an LU -decomposition. Assuming a single expansion point s0 ∈ C,
this procedure requires just one decomposition of the matrix Ĝ+s0Ĉ,
cf. (8). However, if the dimension MN is huge, then this decomposi-
tion represents a bottleneck in the complete strategy.

3.1.1 Convergence properties

To analyze the performance of this approach, we investigate the rela-
tions between the transfer functions of the systems (1) and (6). For
simplicity, we consider SISO systems, since generalizations to multiple-
input multiple-output are straightforward. A result on the Laplace
transform is required.

Lemma 1 (Laplace transform) Let y(t, p) and a sequence y(M)(t, p)
be given, where all functions exhibit finite second moments. If the con-
vergence

lim
M→∞

〈

(

y(M)(t, p)− y(t, p)
)2

〉

= 0 for each t ≥ 0 (14)

is valid and is dominated by a Laplace-transformable function in time,
then the associated Laplace transforms inherit the convergence

lim
M→∞

〈

∣

∣

∣
Y (M)(s, p)− Y (s, p)

∣

∣

∣

2
〉

= 0 for each s (15)

provided that the Laplace transforms exist.
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Proof: We write

〈|Y (M)(s, p)− Y (s, p)|2〉

=

∫

Π

∣

∣

∣

∣

∫

∞

0
e−sty(M)(t, p) dt−

∫

∞

0
e−sty(t, p) dt

∣

∣

∣

∣

2

ρ(p) dp

≤

∫

Π

[∫

∞

0

∣

∣

∣e−st(y(M)(t, p)− y(t, p))
∣

∣

∣ dt

]2

ρ(p) dp

=

∫

Π

[∫

∞

0

∫

∞

0

∣

∣

∣
e−ste−su(y(M)(t, p)− y(t, p))(y(M)(u, p)− y(u, p))

∣

∣

∣
dudt

]

ρ(p) dp

=

∫

∞

0

∫

∞

0

∣

∣e−ste−su
∣

∣ ·

[∫

Π

∣

∣

∣(y(M)(t, p)− y(t, p))(y(M)(u, p)− y(u, p))
∣

∣

∣ ρ(p) dp

]

dudt

=

∫

∞

0

∫

∞

0

∣

∣e−ste−su
∣

∣ ·
〈∣

∣

∣(y(M)(t, p)− y(t, p))(y(M)(u, p)− y(u, p))
∣

∣

∣

〉

dudt.

The Cauchy-Schwarz inequality yields

〈|Y (M)(s, p)− Y (s, p)|2〉

≤

∫

∞

0

∫

∞

0

∣

∣e−ste−su
∣

∣

√

〈(y(M)(t, p)− y(t, p))2〉

√

〈(y(M)(u, p)− y(u, p))2〉 dudt

=

[∫

∞

0

∣

∣e−st
∣

∣ ·
√

〈

(y(M)(t, p)− y(t, p))2
〉

dt

]2

.

for each s ∈ C where the Laplace transform exists. The finiteness
of the upper estimate follows from the existence of the Laplace trans-
forms using the inequality (y(M)−y)2 ≤ (|y(M)|+ |y|)2. Moreover, the
existence of this upper bound allows for the above interchange of the
integrations in time domain and probability space by the Theorem of
Fubini. For increasing M , the integrand converges point-wise to zero
for each t ≥ 0 due to (14). We obtain the convergence (15) by the
Theorem of dominated convergence. �

We continue by showing that the transfer function of the cou-
pled system converges to the original transfer function of the random
dynamical system provided that the SG method converges in time
domain.

Theorem 1 (convergence of transfer function) Let the stochas-
tic Galerkin method be convergent in the time domain, i.e., the se-
quence y(M)(t, p) of outputs satisfies (14). Under the additional as-
sumptions of Lemma 1, it follows that

lim
M→∞

〈
∣

∣

∣

∣

∣

H(s, p)−
M−1
∑

i=0

Ĥi(s)Φi(p)

∣

∣

∣

∣

∣

2〉

= 0 for each s, (16)

where H(s, p) is the transfer function of the dynamical system (1) and
Ĥi(s) are the values from (8) belonging the coupled system (6).
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Proof: Let wi(t) for i = 0, 1, . . . ,M − 1 be the components of the out-
put of the coupled system (6), which means that they are not identical
to the exact PC coefficients. Let Wi(s) be the Laplace transform of
wi(t) for each i. The approximation y(M)(t, p) is reconstructed from
w0(t), . . . , wM−1(t). Its Laplace transform can be written as

Y (M)(s, p) =

M−1
∑

i=0

Wi(s)Φi(p)

due to the linearity of the Laplace transformation. The convergence (14)
implies the convergence (15) of the associated Laplace transforms by
Lemma 1. Given an arbitrary input u and its Laplace transform U ,
we obtain

〈

∣

∣

∣
Y (s, p)− Y (M)(s, p)

∣

∣

∣

2
〉

=

〈∣

∣

∣

∣

∣

H(s, p)U(s)−
M−1
∑

i=0

Ĥi(s)U(s)Φi(p)

∣

∣

∣

∣

∣

2〉

=

〈
∣

∣

∣

∣

∣

H(s, p)−
M−1
∑

i=0

Ĥi(s)Φi(p)

∣

∣

∣

∣

∣

2〉

· |U(s)|2,

for each s ∈ C where the Laplace transform exists. For each fixed s0,
we choose the input u(t) := e(−1+s0)t, which results in U(s0) = 1.
Hence the convergence (16) follows pointwise for s. �

3.1.2 Error analysis

We analyze the approximation error for the transfer function. Let
‖ · ‖L2 be the norm of the Hilbert space L2(Π, ρ) for complex-valued
functions. We denote the components of the transfer function for the
reduced system (13) by (Ĥr)i. It follows that

∥

∥

∥

∥

∥

H(s, p)−

M−1
∑

i=0

(Ĥr)i(s)Φi(p)

∥

∥

∥

∥

∥

L2

≤
∥

∥

∥
H(s, p)−

∑

M−1
i=0 Ĥi(s)Φi(p)

∥

∥

∥

L2

+
∥

∥

∥

∑

M−1
i=0

[

Ĥi(s)− (Ĥr)i(s)
]

Φi(p)
∥

∥

∥

L2

=: E1(s) + E2(s).
(17)

The term E1 in (17) converges to zero in view of Theorem 1. The
term E2 in (17) can be estimated by

E2(s) ≤

M−1
∑

i=0

∣

∣

∣
Ĥi(s)− (Ĥr)i(s)

∣

∣

∣
=

∥

∥

∥
Ĥ(s)− Ĥr(s)

∥

∥

∥

1
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with the vector norm ‖ · ‖1 in CM , since each basis polynomial has an
L2-norm of one. The magnitude of the error term E2 depends on the
MOR scheme applied to the coupled system (6).

3.2 MOR for original parameterized system

Now we reduce the dynamical system (1) at first and use the SG
method afterwards. The strategy from Sect. 3.1 is straightforward ex-
cept for the choice of the MOR scheme. In contrast, the alternative
strategy of this subsection allows for several variants with respect to
the discretization of probabilistic integrals in the SG technique. More-
over, the feasibility of each approach has to be examined carefully.

We assume that an MOR method yields the matrices in the re-
duced system (9) of dimension Nred for an arbitrary p ∈ Π. A direct
application of the SG method to the system (9) results in the following
formulas for the minors of the matrices

Ĉr ∈ C
MNred×MNred : (Ĉr)ij := 〈Cr(p)Φi(p)Φj(p)〉,

Ĝr ∈ C
MNred×MNred : (Ĝr)ij := 〈Gr(p)Φi(p)Φj(p)〉,

B̂r ∈ C
MNred×Nin : (B̂r)i := 〈Br(p)Φi(p)〉,

L̂r ∈ C
MNout×MNred : (L̂r)ij := 〈Lr(p)Φi(p)Φj(p)〉.

(18)

The matrices are real-valued or complex-valued conditioned by the
MOR scheme. In (18), the existence of the probabilistic integrals has
to be guaranteed. We discuss two variants in the further proceeding.

3.2.1 Matrix sampling

The probabilistic integrals in (18) are approximated by a quadrature
formula or a sampling scheme. The approximation with respect to Ĉr

reads as

〈Cr(p)Φi(p)Φj(p)〉
.
=

K
∑

k=1

γkCr(p
(k))Φi(p

(k))Φj(p
(k))

with nodes p(1), . . . , p(K) ∈ Π and weights γ1, . . . , γK ∈ R. Likewise,
the identical quadrature is used for the other matrices. Hence the
computational work consists in K reductions of the system (1). It is
natural to apply the same MOR approach pointwise for each node p(k)
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to determine the reduced matrices. Using moment matching, the di-
mension of the Krylov-spaces may depend on p. However, an identical
reduced dimension Nred is assumed for all nodes in our approach.

For the existence of the probabilistic integrals in (18), we assume
that the reduced matrices are at least continuous with respect to the
dependence on the parameters, cf. [3]. Note that there may be some
MOR approaches, where this property is violated. Nevertheless, the
smoothness of the matrices with respect to parameters is preserved by
the Arnoldi procedure.

Lemma 2 (matrices from Arnoldi algorithm) If the system ma-
trices C(p), G(p) are ℓ-times continuously differentiable on the pa-
rameter space Π, then the Arnoldi algorithm yields a projection ma-
trix V (p) that is ℓ-times continuously differentiable again.

The proof of this lemma can be obtained by checking that each step
of the Arnoldi algorithm, see [14], involves differentiable operations.
Consequently, the reduced matrices Cr(p), Gr(p), Br(p), Lr(p) in (11)
also inherit the smoothness.

The information from Lemma 2 is valuable, since it allows for con-
clusions on the convergence of the SG method in case of ODEs (1). If
C(p), G(p) ∈ Cℓ, then the solution satisfies x, y ∈ Cℓ with respect to
the parameters. The speed of convergence of the PC expansion de-
pends on the smoothness of the random processes. Now the Arnoldi
algorithm implies a reduced system (9). We assume that Cr(p) is
regular, which is obvious in case of symmetric positive definite ma-
trices C(p). Hence the solution fulfills xr, yr ∈ Cℓ again. Although
the SG method is convergent for just continuous reduced matrices,
the rate of convergence of the SG is preserved due to the smoothness.
In case of DAEs (1), the analysis of the dependence on parameters
is more difficult and the index of the system has to be considered,
cf. [17].

3.2.2 Parameterized MOR approach

Now we employ a pMOR as outlined in Sect. 2.5. Given constant
projection matrices W0, V0 ∈ CN×Nred , we arrange the reduced ma-
trices (12). The computation of the reduced matrices (18) in the SG
method can be done exactly now. We obtain

〈Cr(p)Φi(p)Φj(p)〉 = 〈W0C(p)V0Φi(p)Φj(p)〉 =

= W0〈C(p)Φi(p)Φj(p)〉V0 = W0ĈijV0

13



and, likewise, for the other matrices. Since the projection matrices are
constant, the existence of the probabilistic integrals follows directly
from the continuity of the matrices C(p), G(p).

We refind the minors (7) of the matrix of the coupled system (6)
in the above formula. Thus the reduced matrices can be written as

Ĉr = (IM ⊗W0)
HĈ(IM ⊗ V0), Ĝr = (IM ⊗W0)

HĜ(IM ⊗ V0),

B̂r = (IM ⊗W0)
HB̂, L̂r = L̂(IM ⊗ V0)

(19)
using Kronecker products and the identity matrix IM . Hence the
construction (19) represents a special case of an MOR for the cou-
pled system (6), cf. Sect. 3.1. The crucial advantage is that an LU -
decomposition of a matrix of size MN is omitted in this variant.

We consider two techniques to construct the projection matrices,
which will be used for numerical simulations in Sect. 4. Therein, we
arrange W0 = V0.

a) A trivial pMOR is obtained by using V0 := V (p̄) with some
reference realization p̄ ∈ Π of the parameters like the expected
value p̄ := 〈p〉, for example. The computational effort consists
in just a single application of an MOR scheme. However, we do
not expect a high accuracy in this variant unless the projection
matrix V (p) is nearly constant with respect to the parameters.
We refer to [4, 12] for a good example of a projection matrix V (p)
that strongly varies with respect to p.

b) A more sophisticated approach uses samples p(1), . . . , p(K) ∈ Π,
where an MOR is applied pointwise. A grid of a quadrature rule
is feasible, whereas the quadrature weights will not be used. It
is allowed that the reduced dimension is different for each grid
point now. For brevity, we assume the same dimension in each
system. We arrange the projection matrices in a matrix

Ṽ := (V (p(1)) · · ·V (p(K))) ∈ CN×KNred, (20)

in which each individual V (p(j)) is a non-square matrix with
orthonormal columns. In [18], the pMOR was performed by the
global matrix V0 := Ṽ obtained by explicit moment matching
after expanding in all components of p. A stable implicit moment
matching algorithm is provided in [4]. A recycling Krylov-space
approach is considered in [13]. Using all these algorithms, one
may stop a particular extension of the subspace built so far when
the new vector orthogonal to it has a sufficiently small norm.
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Also we consider an additional reduction, since the dimension
KNred of (20) may be large. We follow an approach in [29],
where a global basis was constructed from several local bases.
A singular value decomposition (SVD) yields the factorization
Ṽ = UDTH with unitary matrices U, T and a diagonal matrix D

including the singular values. The span of the column vectors
satisfies span(Ṽ ) = span(UD). Choosing an integer R < KNred,
we collect the R columns of U , which correspond to the largest
singular values, into a global projection matrix V0 ∈ C

N×R.
Thus we obtain the dominant directions in V0.

3.3 Error analysis

We discuss shortly the error of the techniques from Sect. 3.2.1 and
Sect. 3.2.2. Similar to (17), it follows that

∥

∥

∥

∥

∥

H(s, p)−
M−1
∑

i=0

(Ĥr)i(s)Φi(p)

∥

∥

∥

∥

∥

L2

≤

∥

∥

∥

∥

H(s, p)−Hr(s, p)

∥

∥

∥

∥

L2

+
∥

∥

∥
Hr(s, p)−

∑M−1
i=0 (Ĥr)i(s)Φi(p)

∥

∥

∥

L2

=: E3(s) + E4(s).
(21)

The quality of the MOR determines the magnitude of the term E3(s)
in (21). Since the L2-norm of the probability space is employed, the
MOR is required to be sufficiently accurate in subdomains of the pa-
rameters with relatively large probabilities. The term E4(s) in (21)
depends on the convergence of the SG method. Using the Arnoldi
procedure, the SG approach is convergent for systems of ODEs (1),
due to Lemma 2. Theorem 1 implies that E4(s) tends to zero.

Finally, Table 2 summarizes the properties of the two approaches.
The first strategy indicates a higher accuracy, while a large compu-
tational effort appears for large numbers of basis polynomials. Vice
versa, the second strategy offers a lower computational time, whereas
the accuracy is reduced by further errors.

4 Test examples

We present results for the simulation of two illustrative examples in
this section.
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Table 2: Comparison of the two approaches in Sect.3.1 and Sect. 3.2.

MOR after SG SG after MOR

often high potential for reduction of
the coupled system

potential for reduction depends only
on the parameterized system

matrices Ĝ, Ĉ often computable
without errors

matrices Ĝr, Ĉr include some dis-
cretization error

arbitrary choice of reduced dimen-
sion

system has to be reduced to the
same dimension for each parameter
in matrix sampling

LU -decomposition of higher dimen-
sion MN

LU -decompositions of dimension N

potential for parallelism mostly just
in LU -decomposition

potential for parallelism byMOR for
different parameters

4.1 Anemometer

The anemometer represents a benchmark in the MOR Wiki [34]. Heat
is added to a fluid, where a flow field causes an asymmetric heat distri-
bution. Consequently, a temperature difference appears between two
thermal sensors, which allows for a measurement of the fluid velocity.
Fig. 1 illustrates the layout of the anemometer.

This application is modeled by a convection-diffusion equation

ρc
∂T

∂t
= ∇ · (κ∇T )− ρc~v · ∇T + q̇ (22)

for the unknown temperature T in two space dimensions. The heat
flow q̇ represents the input, whereas the temperature difference of the
sensors yields the output. A velocity profile ~v is predetermined. The
involved physical parameters are the density ρ, the scalar fluid velocity
v (as a part of ~v), the specific heat c and the thermal conductivity κ.
We assume a constant density ρ = 1. Hence our parameters read as
p = (v, c, κ)⊤. A finite element discretization of the partial differential
equation (22) produces an implicit system of ODEs with dimension
N = 29, 008. This SISO system exhibits the following dependence on
the parameters

C(c)ẋ(t, p) +G(v, c, κ)x(t, p) = Bu(t),

y(t, p) = Lx(t, p).
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Figure 1: Layout of the anemometer.

The regular matrix C is diagonal, whereas the matrix G is sparse but
asymmetric. The entries of C are affine functions of c and the entries
of G represent polynomials up to degree two in the parameters. L

selects the temperature difference between the two sensors. These
matrices are directly obtained from [34]. More details on this example
can be found in [20].

We replace the parameters p = (v, c, κ)⊤ by independent uniformly
distributed random variables with 5% variation around the mean val-
ues 〈v〉 = 1, 〈c〉 = 1

2 , 〈κ〉 = 3
2 . In the PC expansions, we use all

multivariate Legendre polynomials up to degree two, i.e., M = 10 ba-
sis functions appear. Thus the coupled system (6) owns the dimension
MN = 290, 080.

In each MOR, we consider moment matching at the expansion
point s0 = iω0 with ω0 = 1 and apply the Arnoldi algorithm. The
coupled system (6) is reduced to dimension 500. Each original sys-
tem (1) is decreased to size Nred = 100. In the matrix sampling from
Sect. 3.2.1, we apply a three-dimensional Gauss-Legendre quadrature
with 27 nodes. In the pMOR approach from Sect. 3.2.2, the expected
value for p is chosen to provide a reference realization. For the SVD
variant, we apply the grid of the Gaussian quadrature again and choose
the dimension R = 150.

In each approach, we obtain approximations for the coefficients of
the PC expansions of the transfer function. For a rough comparison
of the accuracy in each method, the expected value and the standard
deviation of the transfer function is reconstructed by the coefficients
separately for real part and imaginary part. As a reference solution,
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Figure 2: Expected value of the transfer function for the anemometer.

Table 3: Maximum differences of approximations to reference solution in the
frequency interval ω ∈ [10−2

, 106] for the anemometer.

real/ex.v. imag./ex.v. real/st.d. imag./st.d.
MOR after SG 2.5e-02 2.5e-02 2.45e-01 2.62e-01
matrix sampling 2.0e-02 2.1e-02 1.6e-02 1.7e-02
pMOR (a) 3.1e-02 2.4e-02 9.25e-01 7.44e-01
pMOR (b) 5.6e-02 3.7e-02 7.10e-01 4.36e-01

these statistics of the transfer function are evaluated without reduction
using a three-dimensional Gauss-Legendre quadrature with 125 nodes.
We consider the frequency interval ω ∈ [10−2, 106] only, since the
transfer function is constant outside this domain for each realization
of the parameters.

Table 3 shows the maximum differences of the approximations to
the reference solution. Fig. 2 depicts the expected value just for the
reference solution, since the other methods produce almost the same
result. For the standard deviation, larger differences appear, which are
illustrated by Fig. 3. However, the matrix sampling approach coincides
with the reference solution again except for small differences, which
appear far from the expansion point. Thus the matrix sampling is
superior in this test example.

We present some more results on the pMOR method of Sect. 3.2.2
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Figure 3: Standard deviation of the transfer function for the anemometer:
reference solution (solid), MOR after SG (dashed), matrix sampling (dash-
dotted), pMOR (a) (solid-circles) and (b) (dotted).

involving the SVD. Fig. 4 shows the computed singular values as a
decreasing sequence. We observe a rapid decay of the singular values
after the first Nred = 100 numbers, which indicates a high potential
for reduction.

4.2 RLC circuit

We apply a linear electric network from [25] shown in Fig. 5. This
circuit consists in a repetition of Ncell cells and contains Ncell ca-
pacitances, Ncell − 1 inductances, Ncell conductances as well as two
additional conductances at the boundaries. A voltage source yields
the input signal and the current through this source represents the
output signal. The modified nodal analysis, see [16], generates an
SISO system (1) consisting of DAEs with index one. Therein, the
matrices C(p), G(p) are affine functions with respect to the physical
parameters. The dimension of the state space becomes N = 2Ncell+1.

We choose Ncell = 10 and substitute all physical parameters by
random variables except for the two boundary conductances. Thus
Q = 29 random parameters are involved, where we arrange indepen-
dent uniform distributions with variations of 10% around the mean
values 10−9 for capacitances, 10−6 for inductances and unity for con-
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Figure 4: Singular values appearing in pMOR for anemometer: all values
(left) and zoom (right).

Uin Iout

Figure 5: Diagrame of RLC circuit.
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ductances. In the PC expansions, all multivariate Legendre polyno-
mials up to degree two are used resulting in M = 465 basis func-
tions. Hence the SG method produces a coupled system (6) with
MN = 9, 765 equations. The involved matrices Ĉ, Ĝ can be calcu-
lated analytically.

In each MOR approach, the expansion point s0 = iω0 with ω0 =
106 is used. The method from Sect. 3.1 reduces the system (6) to a
system of just 40 equations. For the techniques from Sect. 3.2, the
potential for an MOR of the system (1) is low now, since a relatively
small dimension of the state space occurs. We select Nred = 10, which
implies reduced systems of size MNred = 4, 650 at the end. The
Stroud quadrature of order 3, see [28], yields the matrix sampling.
Therein, K = 58 nodes are located in the parameter space. For the
first pMOR method, the expected value gives us the reference param-
eter again. For the second pMOR method, we reapply the grid from
the Stroud quadrature. While all systems (1) are reduced to the di-
mension Nred = 10, the 12 dominating directions are selected from the
SVD. For comparison, we calculate reference solutions without reduc-
tions using the Stroud quadrature of order 5, see [28], where 1, 683
nodes occur in the 29-dimensional parameter space.

We compare the statistics of the transfer functions for each reduc-
tion in the large frequency interval ω ∈ [1, 1015]. Fig. 6 and Fig. 7
illustrate the expected values and the standard deviations, respec-
tively. We recognize a good agreement of all methods around the ex-
pansion point and for smaller frequencies. The matrix sampling tech-
nique produces bad approximations for the variance at higher frequen-
cies. We also analyze the differences for the separate complex-valued
components of the transfer function in the smaller frequency interval
ω ∈ [105, 107] around the expansion point. The absolute values of the
maximum differences are shown in Table 4, where the maximum is
taken both in the frequency domain and in each group of the compo-
nents with respect to the degree of the associated basis polynomials.
Now the matrix sampling features the best approximations. However,
the reduced system of the matrix sampling is much larger than the
reduced system from the technique of Sect. 3.1. The agreement of the
differences for the pMOR approaches and the MOR after SG reflects
that the pMOR can be seen as a special case of this technique due
to (19).

We also present the singular values of the second pMOR approach
in Fig. 8. Since the dimension of the state space is low, the number of
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Figure 6: Expected value of the transfer function for the RLC circuit: ref-
erence solution (solid), MOR after SG (dashed), matrix sampling (dash-
dotted), pMOR (a) (solid-circles) and (b) (dotted).
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Figure 7: Standard deviation of the transfer function for the RLC circuit:
reference solution (solid), MOR after SG (dashed), matrix sampling (dash-
dotted), pMOR (a) (solid-circles) and (b) (dotted).
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Table 4: Maximum differences of approximations to reference solution for the
PC coefficients of the transfer function in the frequency interval ω ∈ [105, 107]
for the RLC circuit.

degree zero degree one degree two
MOR after SG 1.4606e-03 5.3744e-05 1.3181e-03
matrix sampling 1.8314e-06 3.1944e-05 8.8125e-04
pMOR (a) 1.4735e-03 5.1020e-02 1.3180e-03
pMOR (b) 1.4887e-03 5.1031e-02 1.3181e-03
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Figure 8: Singular values appearing in pMOR of RLC circuit.

singular values is equal to N now due to N < KNred. The values do
not decline rapidly after the first Nred = 10 entries, which indicates a
low potential for reduction in this method. Nevertheless, the choice of
R = 12 dominant directions yields much better approximations than
the first pMOR variant with just a reference parameter for frequencies
up to ω ≈ 1011.

5 Conclusions

We investigated MOR methods to resolve stochastic models consist-
ing of linear dynamical systems with random parameters. The re-
duction of the larger dynamical system from a stochastic Galerkin
method, which was already used in the literature, has been analyzed
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more detailed. Moreover, we considered an MOR of the original dy-
namical systems followed by the stochastic Galerkin technique as a
novel alternative. A respective matrix sampling approach was shown
to be feasible in case of moment matching using the Arnoldi algo-
rithm. In addition, we examined parameterized MOR in this context,
which enables a further variant. Numerical simulations of test ex-
amples demonstrate that all discussed approaches produce reasonable
approximations. In particular, the matrix sampling variant offers a
high accuracy, whereas the computational effort is relatively low. Pa-
rameters that affect the geometry and thus discretizations have not
been discussed in this work. We restrict ourselves to refer to [9, 27].
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