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Abstract The weighted Weiss conjecture states that the system theoretic property of weighted
admissibility can be characterised by a resolvent growth condition. For positive weights, it is
known that the conjecture is true if the system is governed by a normal operator; however, the
conjecture fails if the system operator is the unilateral shift on the Hardy space H2(D) (discrete
time) or the right-shift semigroup on L2(R+) (continuous time). To contrast and complement these
counterexamples, in this paper positive results are presented characterising weighted admissibility
of linear systems governed by shift operators and shift semigroups. These results are shown to be
equivalent to the question of whether certain generalized Hankel operators satisfy a reproducing
kernel thesis.
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1 Introduction

Consider an infinite dimensional control system

ẋ(t) = Ax(t), y(t) = Cx(t), t ≥ 0,

x(0) = x0 ∈ X

where A is the generator of a C0-semigroup (T (t))t≥0 on a Hilbert space X and the observation
operator satisfies C ∈ L(D(A),C). For the system to be well-posed, in the sense of [19], a necessary
condition is that C is admissible for A, that is, there exists k > 0 such that

‖CT (·)x0‖L2(R+) ≤ k‖x0‖X , x0 ∈ D(A).

An important consequence of admissibility is that the output y can be well defined even in the case
that C is unbounded. In particular, admissibility implies that the map x0 7→ CT (·)x0 ∈ L2(R+),
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defined initially on D(A), has a continuous extension to the whole space X, meaning that the
output is well defined for any initial condition x0 ∈ X.

A generalization of admissibility, first considered in [3], is to require that the output is an
element of a weighted L2-space. For β > −1, C is said to be β-admissible for A if there exists a
constant k > 0 such that ∫ ∞

0

tβ |CT (t)x0|2dt ≤ k2‖x0‖2, x0 ∈ D(A). (1)

To test whether a given system is β-admissible, a frequency-domain characterization is convenient
and, to this end, it is not difficult to show that β-admissibility implies the resolvent growth
condition

sup
λ∈C+

(Reλ)
1+β
2 ‖CR(λ,A)−(1+β)‖X∗ <∞, (2)

where R(λ,A) := (λI −A)−1 denotes the resolvent of the semigroup generator A, and C+ := {λ ∈
C : Reλ > 0} is the right-half plane. The question of whether the converse statement (2) ⇒ (1)
holds, commonly referred to as a (weighted) Weiss conjecture, is much more subtle. Existing results
concerning the conjecture are discussed below, but we first describe a discrete time version of the
Weiss conjecture, introduced in [5], which will also be studied in this paper.

A discrete-time linear control system on a Hilbert space X has the form

xn+1 = Txn, yn = Cxn, x0 ∈ X, n ∈ N,

where T ∈ L(X) and C ∈ X∗. In this case, for β > −1, the observation functional C is said to be
(discrete) β-admissible for T if there exists k > 0 such that

∞∑
n=0

(1 + n)β |CTnx|2 ≤ k2‖x‖2X , x ∈ X. (3)

Analogous to continuous time systems, the resolvent condition

sup
ω∈D

(1− |ω|2)
1+β
2 ‖C(I − ω̄T )−(1+β)‖X∗ <∞ (4)

is necessary for (3) and the discrete time form of the weighted Weiss conjecture is to ask when
the converse implication is true. The Weiss conjecture is superficially easier to study in discrete
time due to the boundedness of the operators involved. However, it should be noted that it is
sometimes possible to translate positive and negative results concerning the conjecture via the
Cayley transform [5,20].

The continuous time conjecture (2) ⇒ (1) was originally posed [17] in the unweighted case
β = 0. In this situation, the conjecture is true if A generates a C0-semigroup of contractions [6],
which extends the results that the conjecture holds if A is normal [18] and if A is the generator
of the right-shift semigroup on L2(R+) [11]. The discrete time version (4) ⇒ (3) for β = 0 and T

a contraction was shown in [5].

For non-zero weights, the behaviour of the conjecture is more complicated. In the case that A
is normal, the continuous time conjecture (2) ⇒ (1) is true [22] for positive weights β ∈ (0, 1), but
false [21] in the case that β ∈ (−1, 0). Analogous results also hold for the discrete time conjecture
conjecture when T is normal [21,22]. Furthermore, both continuous and discrete time conjectures
are not true for general contraction operators for weights β ∈ (0, 1): in continuous time, the right-
shift semigroup on L2(R+) provides the counterexample [20]; while in discrete time (4)⇒ (3) fails
if T is the unilateral shift on the Hardy space H2(D) [21].

It should be noted that the restriction β ∈ (−1, 1) in the above discussion arises from the fact

that the growth bound supλ∈C+
(Reλ)

1−β
2 ‖CR(λ,A)‖ <∞ (respectively, the condition supω∈D(1−
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|ω|2)
1−β

2 ‖C(I−ω̄T )−1‖ <∞ in discrete time) was considered in the cited literature, i.e. a condition
involving only the first power of the resolvent. In this situation, the restriction β < 1 is natural.
However, as shown for example in [20], the truth of the weighted conjecture is not affected by
considering instead the resolvent growth bound (2) and in this situation the natural range of
weights is β > −1. Thus, the resolvent condition (2) is considered in the remainder of this paper.

The importance of determining the truth of the conjecture for the right-shift semigroup (or, in
discrete time, the unilateral shift) is due to the Sz.Nagy-Foiaş model theory for contractions [14].
This states that a general contraction operator can be decomposed as a sum of operators, one of
which is unitarily equivalent to a part of a shift operator. In [6] this decomposition was used in the
case β = 0 (in discrete time, see [5]) to extend the truth of the conjecture for normal semigroups
and the right-shift semigroup to general contraction semigroups. Thus, it is disappointing that
neither the right-shift semigroup on L2(R+) nor the unilateral shift on H2(D) satisfy the weighted
Weiss conjecture in the case β ∈ (0, 1).

The main results of this paper are to obtain positive results characterising β-admissibility
for shift operators and semigroups. Results are proven in discrete time for the unilateral shift and
in continuous time for the right-shift semigroup. For technical simplicity we first describe results
in the discrete time setting. Two approaches are taken. The first is to consider the unilateral
shift (Sf)(z) = zf(z) acting on different space to H2(D). In Section 2, β-admissibility of the shift
S : X → X is considered in the case that X is a weighted Bergman space A2

α(D), α > −1, which
contains analytic functions f : D→ C for which

‖f‖2A2
α(D) =

∫
D
|f(z)|2dAα(z) <∞,

where dAα(z) = (1 + α)(1 − |z|2)αdA(z) and dA(z) := 1
π dxdy is area measure on the unit disc

D = {z ∈ C : |z| = 1}, for z = x+ iy. Since the norm ‖f‖A2
α(D) is equivalent to( ∞∑

n=0

|fn|2(1 + n)−(1+α)

) 1
2

, (5)

where fn are the Taylor coefficients of f , naively, the Hardy space H2(D) may be thought of as
the ‘corner’ of the family of weighted Bergman spaces as α → −1+. However, the behaviour of
the weighted Weiss conjecture changes at this corner: it is shown in Theorem 2.9 that for β > 0
the resolvent bound characterisation (4) ⇒ (3) of β-admissibility holds for the shift S : A2

α(D)→
A2
α(D), for any α > −1. The second approach, taken in Section 4, is to derive a modified resolvent

growth bound characterisation of β-admissibility for the shift S : H2(D)→ H2(D). In this case, it
is shown in Corollary 4.5 that β-admissibility is characterised by

sup
ω∈D

(1− |ω|2)
1
2

∥∥∥C(I − ω̄S)−1
∥∥∥
A2
β−1(D)∗

<∞. (6)

The difference between this condition and (4), which does not characterise β-admissibility of S :
H2(D) → H2(D), is that the weight β appears in the space in which the norm of the operator
C(I − ω̄S)−1 is tested, rather than as a power of the resolvent and the required growth rate.

That (6) is in some sense the ‘correct’ resolvent growth condition with which to test weighted
admissibility of S : H2(D)→ H2(D) is intrinsically related to the notion of a Reproducing Kernel
Thesis (RKT). A Reproducing Kernel Hilbert Space H is a space of analytic functions on a set
Ω (in this paper, either Ω = D or Ω = C+ = {λ : Reλ > 0}) containing functions (kω)ω∈Ω ⊂ H,
known as the reproducing kernels, which satisfy f(ω) = 〈f, kω〉H for any f ∈ H,ω ∈ Ω. A linear
operator T : H → K, where K is a second Hilbert space, is said to satisfy a Reproducing Kernel
Thesis if its boundedness is characterised by

sup
ω∈Ω

‖Tkω‖K
‖kω‖H

<∞. (7)
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The question of which operators satisfy a RKT has received much attention and it is known
that many important operators do satisfy a RKT (see, e.g. [10, p. 131] for a brief overview). Of
particular relevance to the study of the Weiss conjecture for shifts is the fact that the little Hankel
operator hc̄(f) := P (c̄f), with symbol c ∈ H2(D), mapping from H2(D) to H2(D) = PH2(D)
satisfies a RKT. Here, P denotes the projection onto anti-analytic functions. In the case β = 0, it
was shown in [5] that if T = S is the unilateral shift onH2(D) and c ∈ H2(D) satisfies Cf = 〈f, c〉H2 ,
then (3) holds if and only if hc̄ is bounded on H2(D). On the other hand, since the reproducing

kernels for H2(D) are kw(z) = (1− ω̄z)−1 and ‖kω‖H2(D) = (1− |ω|2)−
1
2 , it is not difficult to show

that hc̄ : H2(D) → H2(D) satisfies (7) if and only if the resolvent condition (4) holds for β = 0.
Hence, the truth of the discrete Weiss conjecture for the shift S in the unweighted case β = 0 is
equivalent to the fact that each Hankel operator hc̄ satisfies a RKT.

In the weighted case β > 0, it is shown in Propositions 4.2 and 4.3 that β-admissibility
of the shift S : H2(D) → H2(D) is equivalent to boundedness of one/both of the generalized

Hankel operators h
β/2,0
c̄ or h

0,β/2
c̄ (definitions of these operators are given in Section 4.1). It turns

out that whether h
β/2,0
c̄ satisfies (7) is equivalent to the modified resolvent condition (6); while

whether h
0,β/2
c̄ satisfies (7) is equivalent to the original resolvent condition (4). Consequently,

the characterization (3) ⇔ (6) of β-admissibility follows from the fact that the generalized Hankel

operators h
β/2,0
c̄ satisfy a RKT (proven in Theorem 4.4); while the failure of the original conjecture

(4) 6⇒ (3) can now be explained by the fact that the operators h
0,β/2
c̄ do not. The technical reason

for this result is that the inclusion D−β/2BMOA ⊂ Λ+
β/2

between two certain classes of operator

symbols is strict.

Analogous results to the ones described above are proven for the continuous time case. In
Section 3, Theorem 3.1, it is shown that for β > 0 the weighted Weiss conjecture (2) ⇒ (1) holds
for the right-shift semigroup acting on any of the weighted spaces L2

α(R+), α > 0, where

L2
α(R+) :=

{
f : R+ → C : f measurable,

∫ ∞
0

t−α|f(t)|2dt <∞
}
.

The ‘corner’ case of the right-shift semigroup on L2(R+) is discussed in Section 5, where it is
shown in Corollary 5.9 that β-admissibility, β > 0, is characterised by the modified resolvent
growth condition

sup
λ∈C+

(Reλ)
1
2 ‖CR(λ,A)‖L2

β/2
(R+)∗ <∞, (8)

where A is the generator of the right-shift semigroup. In the continuous time setting, the char-
acterisation of weighted admissibility is related to whether certain generalised Hankel operators
satisfy a RKT on the Hardy space H2(C+).

2 Discrete time β-admissibility of the unilateral shift on weighted Bergman spaces

In this section, discrete-time β-admissibility is studied for the unilateral shift S : A2
α(D)→ A2

α(D)
given by

(Sf)(z) = zf(z), f ∈ A2
α(D).

In the following, the inner product for A2
α(D) is written 〈 , 〉α.

2.1 Equivalent conditions for discrete β-admissibility and the resolvent bound (4).

First, β-admissibility of an observation functional C ∈ A2
α(D)∗ is characterized in terms of its

associated Taylor coefficients.
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Proposition 2.1. Let α > −1, β > 0. Suppose that C ∈ A2
α(D)∗ is given by Cf := 〈f, c〉α, where

c =
∑∞
n=0 cnz

n ∈ A2
α(D). Then C is discrete β-admissible for S if and only if

∞∑
n=0

∣∣∣∣∣
∞∑
m=0

(1 + n)
β
2

(1 + n+m)1+α
fmc̄n+m

∣∣∣∣∣
2

≤ k‖f‖2A2
α(D), f ∈ A2

α(D).

Proof. For f ∈ A2
α(D),

∞∑
n=0

(1 + n)β |CSnf |2 =
∞∑
n=0

(1 + n)β

∣∣∣∣∣
〈 ∞∑
m=0

fmz
m+n,

∞∑
m=0

cmz
m

〉
α

∣∣∣∣∣
2

=
∞∑
n=0

(1 + n)β

∣∣∣∣∣
〈 ∞∑
m=n

fm−nz
m,

∞∑
m=0

cmz
m

〉
α

∣∣∣∣∣
2

=
∞∑
n=0

(1 + n)β

∣∣∣∣∣
∞∑
m=n

fm−nc̄m(1 +m)−(1+α)

∣∣∣∣∣
2

=
∞∑
n=0

∣∣∣∣∣
∞∑
m=0

(1 + n)
β
2

(1 + n+m)1+α
fmc̄n+m

∣∣∣∣∣
2

.

In order to form a comparable expression for the resolvent condition (4), it is necessary to
define the operator g(S) for suitable functions g. To this end, let

O(D) :=

{
g ∈ H(D) : ∃ν > 1 such that

∞∑
n=0

|gn|νn <∞
}
,

where g has Taylor series g(z) =
∑∞
n=0 gnz

n. Then by [5, Lemma 2.1], g(S) ∈ L(X) for any

g ∈ O(D). Note that g(z) = (1− ω̄z)−(1+β) ∈ O(D) for each ω ∈ D.

Proposition 2.2. Let α > −1. Suppose that C ∈ A2
α(D)∗ is given by Cf := 〈f, c〉α, where c =∑∞

n=0 cnz
n ∈ A2

α(D). Then for any g =
∑∞
n=0 gnz

n ∈ O(D),

‖Cg(S)‖2A2
α(D)∗ =

∞∑
n=0

∣∣∣∣∣
∞∑
m=0

(1 + n)
1+α
2

(1 + n+m)1+α
gmc̄n+m

∣∣∣∣∣
2

.

Proof. For f ∈ A2
α(D),

Cg(S)f = 〈g(S)f, c〉α

=

〈 ∞∑
m=0

(
m∑
n=0

fngm−n

)
zm,

∞∑
m=0

cmz
m

〉
α

=
∞∑
m=0

(1 +m)−(1+α)

(
m∑
n=0

fngm−n

)
c̄m

=
∞∑
n=0

∞∑
m=n

(1 +m)−(1+α)fngm−nc̄m

=
∞∑
n=0

(1 + n)−(1+α)

( ∞∑
m=0

(1 + n)1+α

(1 +m+ n)1+α
gmc̄n+m

)
fn

= 〈f, h〉α,
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where

h(z) =
∞∑
n=0

( ∞∑
m=0

(1 + n)1+α

(1 +m+ n)1+α
ḡmcn+m

)
zn.

Therefore,

‖Cg(S)‖2A2
α(D)∗ = ‖h‖2A2

α(D) =
∞∑
n=0

(1 + n)−(1+α)

∣∣∣∣∣
∞∑
m=0

(1 + n)1+α

(1 +m+ n)1+α
ḡmcn+m

∣∣∣∣∣
2

=
∞∑
n=0

∣∣∣∣∣
∞∑
m=0

(1 + n)
1+α
2

(1 +m+ n)1+α
gmc̄n+m

∣∣∣∣∣
2

.

2.2 Discrete β-admissibility and the little Hankel operator.

The link between Hankel operators and admissibility has previously been frequently exploited [5,
6,11,21] in order to study admissibility. In this section, it is shown that boundedness of little
Hankel operators between weighted Bergman spaces characterise weighted admissibility of S on
weighted Bergman spaces.

The little Hankel operator hf : A2
α(D)→ A2

α(D) is defined by

hfg = Pα(fg)

where Pα is the orthogonal projection from L2(D, (1 − |z|2)αdA) to the space of anti-analytic
functions

A2
α(D) := {f̄ : f ∈ A2

α(D)}.

Suppose that f ∈ A2
α(D). Then using the fact that {z̄n, n = 0, 1, 2, . . .} is a basis for A2

α(D),〈
hf̄z

m, z̄n
〉
α

=
〈
Pα(f̄(z)zm), z̄n

〉
α

=
〈
f̄(z)zm, z̄n

〉
α

=
〈
f̄(z), z̄m+n〉

α

= f̄n+m
〈
z̄m+n, z̄m+n〉

α

=
f̄n+m

(1 + n+m)1+α
.

Therefore, if g =
∑∞
m=0 gmz

m,

〈hf̄g, z̄
n〉α =

∞∑
m=0

gmf̄n+m

(1 + n+m)1+α
.

and since 〈z̄n, z̄n〉α = (1 + n)−(1+α), it follows that

(
hf̄g

)
n

= (1 + n)1+α
∞∑
m=0

gmf̄n+m

(1 + n+m)1+α
,

where
(
hf̄g

)
n

is the nth Fourier coefficient with respect to the basis {z̄n, n = 0, 1, 2, . . .} . Hence,

‖hf̄g‖
2
A2
α(D)

=
∞∑
n=0

∣∣∣∣∣
∞∑
m=0

(1 + n)
1+α
2

(1 + n+m)1+α
gmf̄n+m

∣∣∣∣∣
2

. (9)
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Therefore, there is a link between weighted admissibility on weighted Bergman spaces, and bound-
edness of the little Hankel operator on weighted Bergman spaces. In the following,

kαω(z) :=
(1− |ω|2)1+α

2

(1− ω̄z)2+α
, ω ∈ D, z ∈ D

are the normalized reproducing kernels for A2
α(D).

Proposition 2.3. Let α > −1, β > 0. Suppose that C ∈ A2
α(D)∗ is given by Cf := 〈f, c〉α, where

c =
∑∞
n=0 cnz

n ∈ A2
α(D). Then

(i) C is discrete β-admissible for S if and only if hc̄ : A2
β−1(D)→ A2

α(D) is bounded.

(ii) For any ω ∈ D,

(1− |ω|2)
1+β
2 ‖C(I − ω̄S)−(1+β)‖A2

α(D)∗ = ‖hc̄kβ−1
ω ‖A2

α(D)
.

Proof. (i) By Proposition 2.1, and the equivalent expression (5) for norm ‖ · ‖A2
α(D), C is discrete

β-admissible for S if and only if the matrix A = (anm) with coefficients

anm =
(1 +m)

1+α
2 (1 + n)

1+(β−1)
2

(1 + n+m)1+α
c̄n+m,

is bounded from `2 to `2. On the other hand, hc̄ : A2
β−1(D)→ A2

α(D) is bounded if and only if

‖hc̄g‖A2
α(D)

≤ k‖g‖A2
β−1(D), g ∈ A2

β−1(D),

which by (9) and (5) occurs if and only if A : `2 → `2 is bounded.

(ii) Follows from Proposition 2.2, (9) and the fact that kβ−1
ω ∈ O(D) for each ω ∈ D.

Proposition 2.3 implies that the question of whether the discrete weighted Weiss conjecture
(3) ⇔ (4) holds for S : A2

α(D)→ A2
α(D) in the case β > 0 is equivalent to the following question:

does the Hankel operator hc̄ : A2
β−1(D) → A2

α(D) satisfy a RKT? Specifically, does (7) with

T = hc̄, H = A2
β−1(D) and K = A2

α(D) imply boundedness of hc̄?

It is shown in [23, Theorem 8.39] that the question has a positive answer in the case hc̄ :

A2
α(D) → A2

α(D). In fact the method of proof can be adapted to show that hc̄ : A2
γ(D) → A2

α(D)
also satisfies RKT for any α, γ > −1. For α, γ > −1, and f ∈ L2(D, dAα) define the integral
operator

(V f)(z) :=

(
3 + α+ γ

1 + α

)
(1− |z|2)2+γ

∫
D

f(w)

(1− zω̄)4+α+γ
dAα(ω), z ∈ D

and the projection Pα : L2(D, dAα)→ A2
α(D) by

(Pαf)(z) =

∫
D

f(w)

(1− zω̄)2+α
dAα(w).

The following properties of V can now be deduced.

Lemma 2.4. Suppose that α, γ > −1. Then

(i) The operator V is bounded on L2(D, dAα);

(ii) PαV = Pα.
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Proof. (i) By [Zhu, Theorem 3.11], V = T2+γ, α, 4+α+γ , which is bounded on L2(D, dAα).

(ii) For f ∈ L2(D, dAα),

(PαV f)(z) =

∫
D

(V f)(w)

(1− zω̄)2+α
dAα(ω)

=

(
3 + α+ γ

1 + α

)∫
D

(1− |ω|2)2+γ

(1− zω̄)2+α

∫
D

f(u)

(1− wū)4+α+γ
dAα(u)dAα(w)

=

(
3 + α+ γ

1 + α

)∫
D

(∫
D

(1− |ω|2)2+γ

(1− zω̄)2+α(1− ωū)4+α+γ
dAα(ω)

)
f(u)dAα(u)

=

∫
D

(∫
D

dA2+α+γ(ω)

(1− z̄ω)2+α(1− ω̄u)4+α+γ

)
f(u)dAα(u)

=

∫
D

1

(1− ūz)2+α
f(u)dAα(u)

=

∫
D

f(u)

(1− zū)2+α
dAα(u)

= (Pαf)(z).

Lemma 2.5. Let α, γ > −1. If (1− |z|2)
α−γ

2 f(z) ∈ L∞(D), then

hf ∈ L(A2
γ(D),A2

α(D)).

Proof. For g ∈ A2
γ(D),

‖hfg‖A2
α(D)

= ‖Pα(fg)‖A2
α(D)

≤ ‖fg‖L2(D,dAα)

=

(
(1 + α)

∫
D
|f(z)|2|g(z)|2(1− |z|2)αdA(z)

) 1
2

(by assumption) ≤ k

(∫
D
|g(z)|2(1− |z|2)γdA(z)

) 1
2

= k‖g‖A2
γ(D).

The action of the little Hankel operator on reproducing kernels is now related to the integral
operator V .

Lemma 2.6. Let α, γ > −1. Then for f ∈ L2(D, dAα),

〈
k̄αz , hf̄k

γ
z

〉
α

=
(1 + α)

(3 + α+ γ)
(1− |z|2)

α−γ
2 (V f)(z), z ∈ D.
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Proof. Using the fact that hf̄k
γ
z is analytic,〈

k̄αz , hf̄k
γ
z

〉
α

=
〈
hf̄k

γ
z , k

α
z

〉
α

= (1− |z|2)1+α
2 hf̄k

γ
z (z)

= (1− |z|2)1+α
2

∫
D

f(ω)kγz (ω)

(1− z̄ω)2+α
dAα(ω)

= (1− |z|2)2+α+γ
2

∫
D

f(ω)

(1− zω̄)4+α+γ
dAα(ω)

=
(1 + α)

(3 + α+ γ)
(1− |z|2)

α−γ
2 (V f)(z).

As a consequence, the little Hankel operators hf̄ : A2
γ(D) → A2

α(D) satisfy the reproducing
kernel thesis.

Theorem 2.7. Let α, γ > −1. Then sup{‖hf̄k
γ
z ‖A2

α(D)
: z ∈ D} < ∞ if and only if the little Hankel

operator hf̄ : A2
γ(D)→ A2

α(D) is bounded.

Proof. If f ∈ L2(D, dAα) then by Lemma 2.4,

hf̄ = hPαf = hPαV f = hV f . (10)

By assumption and Lemma 2.6,

(1 + α)

(3 + α+ γ)
(1− |z|2)

α−γ
2 |(V f)(z)| =

∣∣〈k̄αz , hf̄kγz 〉α∣∣ ≤ ‖hf̄kγz ‖L2(D,dAα) < k, z ∈ D.

By (10) and Lemma 2.5, hf̄ is bounded.

Remark 2.8. It should be noted that boundedness of the little Hankel operator hf̄ : A2
γ(D) → A2

α(D)
has been characterised, in terms of symbols, in [7]. Theorem 2.7 therefore provides an additional char-

acterisation of boundedness.

Using Proposition 2.3 and Theorem 2.7, we can prove that the weighted Weiss conjecture is
true for the shift on weighted Bergman spaces.

Theorem 2.9. Let α > −1, β > 0. Suppose that C ∈ A2
α(D)∗ is given by Cf := 〈f, c〉α, where

c =
∑∞
n=0 cnz

n ∈ A2
α(D). Then C is discrete β-admissible for S if and only if

sup
ω∈D

(1− |ω|2)
1+β
2

∥∥C(I − ω̄S)−(1+β)
∥∥
A2
α(D)∗

<∞.

3 β-admissibility of the right-shift semigroup on L2
α(R+)

In this section Theorem 2.9 is translated to continuous time for the right-shift C0-semigroup on
L2
α(R+) given by

(S(t)f)(τ) :=

{
f(τ − t), τ ≥ t;

0, τ < t;
t ≥ 0, f ∈ L2

α(R+).

The Laplace transform is an isometric isomorphism L : L2
α(R+) → A2

α−1(C+). Here, for each
γ > −1,

A2
γ(C+) :=

{
F : C+ → C : ‖F‖2A2

γ(C+) :=

∫ ∞
−∞

∫ ∞
0

xγ |F (x+ iy)|2dxdy <∞
}
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is the weighted Bergman space on the right-half-plane C+. Under the isomorphism provided by
the Laplace transform, (S(t))t≥0 is equivalent to the semigroup

(T (t)f)(z) = e−ztf(z), f ∈ A2
α−1(C+), z ∈ C+ (11)

on the Bergman space A2
α−1(C+). Using this link, Theorem 2.9 can now be translated from

discrete to continuous time.

Theorem 3.1. Let α, β > 0. Let A be the generator of the right-shift semigroup (S(t))t≥0 on L2
α(R+).

Then an observation operator C ∈ L(D(A),C) is β-admissible for A if and only if

sup
λ∈C+

(Reλ)
1+β
2

∥∥CR(λ,A)1+β
∥∥
L2
α(R+)∗

<∞.

Proof. Let

(Jαf)(z) :=
cα

(1 + z)1+α
f

(
1− z
1 + z

)
, f ∈ Aα(C+), z ∈ D

be the isometric isomorphism Jα : A2
α(C+)→ A2

α(D). Then

Φ := Jα−1 ◦ L : L2
α(R+)→ A2

α−1(D)

is also an isometric isomorphism, under which the shift semigroup (S(t))t≥0 on L2
α(R+) is equiv-

alent to the semigroup

(Q(t)f)(z) := e−( 1−z
1+z )tf(z), f ∈ A2

α−1(D), z ∈ D.

Notice that the unilateral shift S is the co-generator of (Q(t))t≥0 on A2
α−1(D).

Given C ∈ L(D(A),C), define an observation operator by C̃ := CΦ−1. If Ã is the generator
of (Q(t))t≥0, then by assumption and the fact that R(λ, Ã)1+β = ΦR(λ,A)1+βΦ−1,

sup
λ∈C+

(Reλ)
1+β
2

∥∥C̃R(λ, Ã)1+β
∥∥
A2
α−1(D)∗

<∞.

By the above equation and an argument from [20], it follows that if D := C̃(I − Ã)−(1+β) then

sup
ω∈D

(1− |ω|2)
1+β
2

∥∥D(I − ω̄S)−(1+β)
∥∥
A2
α−1(D)∗

<∞

and Theorem 2.9 implies that D is discrete β-admissible for S. It is shown in [20] that D is discrete
β-admissible for S if and only if C̃ is β-admissible for (Q(t))t≥0. Since (Q(t))t≥0 and (S(t))t≥0 are
equivalent semigroups, it follows that C is β-admissible for (S(t))t≥0.

4 Discrete β-admissibility of the unilateral shift on the Hardy space

In this section discrete β-admissibility, β > 0, is characterised for the unilateral shift S : H2(D)→
H2(D) given by (Sf)(z) = zf(z), z ∈ D, f ∈ H2(D). The Hardy space H2(D) is the set of complex-
valued analytic functions f(z) =

∑∞
n=0 fnz

n such that

‖f‖2H2(D) := sup
0<r<1

∫ 2π

θ=0

|f(reiθ)|2dθ =
∞∑
n=0

|fn|2 <∞.

The space H2(D) is a reproducing kernel space with the (non-normalized) reproducing kernel with
respect to w ∈ D given by

kw(z) =
1

1− w̄z , z ∈ D.
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Note that ‖kw‖H2(D) = (1− |w|2)−
1
2 .

For a function f ∈ Hol(D)+Hol(D) we associate the sequence of Taylor coefficients {fn}n∈Z ⊂
C for which

f(z) =
∞∑
n=0

fnz
n +

∞∑
n=1

f−nz̄
n, z ∈ D.

If {fn}n∈Z has finite support we say that f is polynomial. The pairing between two functions
f, g ∈ Hol(D) + Hol(D) is defined by

〈f, g〉 =
∑
n

fngn,

whenever the series converges. We are particularly interested in the cases when either both se-
quences are square summable, or one of the functions is polynomial. We will often work with
H2(D) and H2(D) as closed subspaces of L2(T), where the Taylor coefficients are interpreted as
Fourier coefficients. Note that the pairing between f, g ∈ L2(T) coincides with the usual inner
product.

We now introduce spaces of analytic functions which will be required to study discrete β-
admissibility of the unilateral shift on H2(D).

For an integer n ≥ 1, define the trigonometric polynomial Wn by the Fourier coefficients

Ŵn(k) =


k−2n−1

2n−1 if k ∈ [2n−1, 2n),
2n+1−k

2n if k ∈ [2n, 2n+1),

0 otherwise.

For n ≤ −1, let Wn = W−n, and finally W0(θ) = e−iθ + 1 + eiθ. For s ∈ R, the Hölder-Zygmund

space Λs consists of distributions f on T such that

‖f‖Λs = sup
n∈Z

2|n|s‖Wn ∗ f‖∞ <∞.

These spaces are introduced in [13, Appendix 2]. The parameter s indicates in this way how
quickly the Fourier coefficients of f decay, and therefore the defining property of the Hölder-
Zygmund spaces is a smoothness condition. We will often consider the subspace Λ+

s of holomorphic
distributions in Λs. The space Λ+

0 is called the Bloch space.

Given a function f ∈ L1(T) we define the quantity

‖f‖BMO = sup
I⊂T

1

|I|

∫
I

∣∣∣∣f(t)− 1

|I|

∫
I

f(s)ds

∣∣∣∣ dt.
We then define the space

BMOA(D) = {f ∈ H2(D) : ‖f‖BMO <∞}.

The space BMOA(D) can be characterized using wavelets. Given a function ψ : R→ C we let
ψj(x) = 2j/2ψ(2jx) for j ∈ Z and ψJ (x) = ψj(x− xJ ) where xJ is the left endpoint of the dyadic
interval J = [2πk2−j , 2π(k + 1)2−j). We will need a function ψ ∈ S(R) such that

supp ψ̂ ⊆
{
ξ :

1

3
≤ |ξ| ≤ 4

3

}
, (12)

∫ ∞
−∞

xkψ(x)dx = 0, k ∈ Z, (13)
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and moreover is such that {ψJ}J , where J ranges over all dyadic intervals, is an orthonormal basis
for L2(R). Such a ψ exists and is exemplified by the Littlewood-Paley wavelet constructed in [9,
pp. 21–25, p. 75].

We identify [0, 2π), R/2πZ and T with each other, using the mapping x 7→ eix. For any dyadic
interval J ⊆ [0, 2π), we define the 2π-periodification of ψJ by

ϕJ (x) =
∑
k∈Z

ψJ (x− 2πk), x ∈ R.

The family {ϕJ}J⊆T dyadic together with the constant function 1 is an orthonormal wavelet on T.
Using this language we have the following proposition [9, page 162].

Proposition 4.1. A function f ∈ H2(D) is in BMOA if and only if there exists M > 0 such that∑
J⊆I
|〈f, ϕJ 〉|2 ≤M2|I|,

for any dyadic interval I ⊆ [0, 2π). Moreover inf M ≈ ‖f‖BMO.

Let α ∈ R. In order to discuss weighted admissibility we introduce the following operator,
defined for double sided sequences of numbers:

Dα : (an)n∈Z 7→ ((1 + |n|)αan)n∈Z.

By letting Dα act on the sequence of Taylor coefficients of a function, Dα may be regarded as an
operator acting on Hol(D)+Hol(D). Note that for α > 0, Dα : H2(D)→ A2

2α−1(D) isomorphically.
For α, s ∈ R we also have that DαΛs = Λs−α [13, Equation (A2.15)]. It is well known the
BMOA ⊂ Λ+

0 with strict inclusion and so it follows that D−sBMOA ⊂ Λ+
s with strict inclusion

for all s ∈ R.

4.1 Admissibility and the little Hankel operator on H2(D).

Given a function f ∈ H2(D), define the little Hankel operator hf̄ : H∞(D)→ H2(D) by

hf̄g = P (f̄g),

where P is the orthogonal projection from L2(T) to H2(D). We will investigate when this operator
has a continuous extension hf̄ : H2(D)→ H2(D).

In the same manner as before, we see that

〈hf̄z
m, z̄n〉 = 〈P (f̄(z)zm), z̄n〉

= 〈f̄(z)zm, z̄n〉
= 〈f̄(z), z̄m+n〉
= f̄n+m〈z̄m+n, z̄m+n〉
= f̄n+m,

so that the matrix for the operator hf̄ , in the monomial bases {zn : n = 0, 1, 2, . . .} and {z̄n : n =

0, 1, 2, . . .} in H2(D) and H2(D) respectively, becomes

{f̄n+m}n,m≥0 =


f̄0 f̄1 f̄2 . . .

f̄1 f̄2 f̄3 . . .

f̄2 f̄3 f̄4 . . .
...

...
...

. . .

 .



The weighted Weiss conjecture and reproducing kernel theses for generalized Hankel operators 13

Define the generalized Hankel operator

hα,β
f̄

: g 7→ Dαhf̄D
βg,

where f ∈ H2(D) and α, β ≥ 0. The operator is defined, at least for g ∈ O(D), in the sense that

hα,β
f̄

g ∈ A2
2α−1(D). The operator can be represented by the generalized Hankel matrix

{(1 + n)α(1 +m)β f̄n+m}n,m≥0 =


f̄0 2β f̄1 3β f̄2 . . .

2αf̄1 2α2β f̄2 2α3β f̄3 . . .

3αf̄2 3α2β f̄3 3α3β f̄4 . . .
...

...
...

. . .

 .

The following proposition links the generalized Hankel operator to weighted admissibility.

Proposition 4.2. Let C ∈ H2(D)∗, and let c ∈ H2(D) be given by Cf = 〈f, c〉. If β ≥ 0, then C is

discrete 2β-admissible for S if and only hβ,0c̄ : H2(D)→ H2(D) is bounded.

Proof. Observe that

(1 + n)βCSnf = (1 + n)β
∞∑
m=0

fmc̄n+m = (1 + n)β(hc̄f)n = (hβ,0c̄ f)n.

Parseval’s identity now completes the proof:

∞∑
n=0

(1 + n)2β |CSnf |2 =
∞∑
n=0

|(hβ,0c̄ f)n|2 = ‖hβ,0c̄ f‖2
H2(D)

.

The boundedness of the operators hα,β
f̄

has been characterized in [8] and [12]. The results

have been collected in [13, Chapter 6.8].

Proposition 4.3. Let f ∈ H2(D). With the notation above we have that:

(i) Let β ≥ 0. Then each of the operators h0,β
f̄

: H2(D) → H2(D) and hβ,0
f̄

: H2(D) → H2(D) is

bounded if and only if Dβf ∈ BMOA, with ‖h0,β
f̄
‖
H2(D)→H2(D)

and ‖hβ,0
f̄
‖
H2(D)→H2(D)

comparable

to ‖Dβf‖BMO.

(ii) Let α, β > 0. Then the operator hα,β
f̄

: H2(D) → H2(D) is bounded if and only if f ∈ Λα+β , with

‖hα,β
f̄
‖
H2(D)→H2(D)

comparable to ‖f‖Λα+β
.

4.2 Characterizing discrete β-admissibility of the shift on H2(D).

Similar to the case for the shift on weighted Bergman spaces considered in Section 2, the truth
of the weighted Weiss conjecture for the shift on H2(D) is related to whether the operators

hβ,0c̄ = Dβhc̄ and h0,β
c̄ = hc̄D

β satisfy a RKT. We show that this is true for the former class of
operators but false for the latter.

Theorem 4.4. Let c ∈ H2(D) and β ≥ 0. The following are equivalent:

(i) The operator hβ,0c̄ : H2(D)→ H2(D) is bounded.
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(ii) The operator hβ,0c̄ : H2(D)→ H2(D) is bounded on reproducing kernels, i.e.

M = sup
w∈D

(1− |w|2)1/2‖hβ,0c̄ kw‖H2(D)
<∞.

Moreover ‖hβ,0c̄ ‖H2(D)→H2(D)
≈M .

Proof. It is obvious that (i) ⇒ (ii). By Proposition 4.3 we conclude that M . ‖Dβc‖BMO and
also that in order to prove (ii)⇒ (i) it is sufficient to show that ‖Dβc‖BMO .M . By Proposition
4.1 it is enough to show that ∑

J⊆I
|〈Dβc, ϕJ 〉|2 .M2|I|,

for any dyadic interval I ⊆ T.

Consider a fixed I and define sJ = 〈Dβc, ϕJ 〉 for J ⊆ I. It is immediate that sJ = 〈c,DβϕJ 〉.
Since c is analytic,

sJ = 〈c,DβPϕJ 〉

= 〈ck̄w, hDβPϕJ 〉

= 〈P (ck̄w), hDβPϕJ 〉

= 〈g,D−β(hDβPϕJ )〉,

where w =

√
1− |I|2π e

ixI , ḡ = Dβhc̄kw and h : D → C is the analytic function given by h(z) =

(1− w̄z). Note that 1− |w|2 = |I|
2π and that by hypothesis ‖g‖2 . M2

|I| .

It is an elementary exercise to show that

(D−β(hDβPϕJ ))̂ (n) =
(
ϕ̂J (n)− w̄

(
n

1 + n

)β
ϕ̂J (n− 1)

)
, n ∈ N,

from which it quickly follows that

D−β(hDβPϕJ ) = hϕJ + w̄FPϕJ ,

where

(FPϕJ )̂ (n) =
(

1−
(

n

1 + n

)β)
ϕ̂J (n− 1), n ∈ N.

An important observation is that∣∣∣∣1− ( x

1 + x

)β∣∣∣∣ . 1

1 + x
, x ≥ 1. (14)

So far, it has been shown that

sJ = 〈gh̄, PϕJ 〉+ w̄〈g, FPϕJ 〉

and this expression is now decomposed further. Let χ be the characteristic function of the interval
[xI − 2|I|, xI + 2|I|). Then,

sJ = 〈gh̄, PϕJ 〉+ w̄〈g, FPϕJ 〉
= 〈χgh̄, PϕJ 〉+ w̄〈g, FPϕJ 〉+ 〈g, (1− χ)hPϕJ 〉,

so that ∑
J⊆I
|〈Dβf, ϕJ 〉|2 ≤ 9

3∑
j=1

∑
J⊂I
|s(j)J |

2,
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where

s
(1)
J = 〈χgh̄, PϕJ 〉,

s
(2)
J = 〈g, FPϕJ 〉,

s
(3)
J = 〈g, (1− χ)hPϕJ 〉.

We now handle these three parts separately.

Since {ϕJ}J⊆I forms an orthonormal set in L2(T) it follows immediately from Bessel’s in-
equality that ∑

J⊆I
|s(1)
J |

2 ≤
∥∥Pχh̄g∥∥2

≤
∥∥χh̄g∥∥2

=

∫
|x−xI |<2|I|

|g(eix)|2|h(e−ix)|2dx

≤ sup
|x−xI |<2|I|

|h(e−ix)|2M
2

|I| .

Using simple geometric arguments it is easy to show that sup|x−xI |<2|I| |h(e−ix)|2 . |I|2 which in
turn gives ∑

J⊆I
|s(1)
J |

2 .M2|I|.

The second set of terms is estimated using Hölder’s inequality:

|s(2)
J |

2 ≤ ‖g‖2‖FPϕJ‖2 ≤
M2

|I| ‖FPϕJ‖
2.

It is easy to show that

ϕ̂J (n) = 2−j/2einxJ ψ̂
(
n

2j

)
.

Since ψ̂(ξ) = 0 for |ξ| < 1/3 we have that all ϕ̂J (n) vanish for n < 2j/3. Using this together with
(14) gives

‖FPϕJ‖2 =
∞∑
n=0

∣∣∣∣1− (1 + n

2 + n

)β∣∣∣∣2 |ϕ̂J (n)|2

≤
∣∣∣∣1− (1 + 2j/3

2 + 2j/3

)β∣∣∣∣2 ∞∑
n=0

|ϕ̂J (n)|2

.
( 1

2 + 2j/3

)2

. |J |2.

Hence, ∑
J⊆I
|s(2)
J |

2 .
M2

|I|
∑
J⊆I
|J |2 =

M2

|I|

∞∑
n=0

2n
(
|I|
2n

)2

= 2M2|I|.

Estimating the final set of terms is similar to estimating the second, although somewhat more
sophisticated. Using Hölder’s inequality,

|s(3)
J |

2 ≤ M2

|I| ‖(1− χ)hPϕJ‖2.
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We now need to show that estimate ‖(1 − χ)hϕJ‖2 . |J |2. To do this, notice that h = h1 + rh2

where h1(x) = 1− r + r(ei(x−xJ ) − ei(x−xI)), h2(x) = 1− ei(x−xJ ) and r = |w|.

Assuming that J ⊆ I we have that

|h1(x)| . (1− r) + |xJ − xI | . |I|.

Now, note that PϕJ is a periodification of the function ψ+ = F−1(χR+
ψ̂), where χR+

is the
indicator function of R+. This gives

|(h2PϕJ )(x)| = 2j/2|(1− ei(x−xJ ))|

∣∣∣∣∣∑
k∈Z

ψ+(2j(x− xJ − 2πk))

∣∣∣∣∣
. 2j/2|(x− xJ )|

∣∣∣∣∣∑
k∈Z

ψ+(2j(x− xJ − 2πk))

∣∣∣∣∣
. 2j/2

∣∣∣∣∣∑
k∈Z

(x− xJ − 2πk + 2πk)ψ+(2j(x− xJ − 2πk))

∣∣∣∣∣
≤ 2−j/2

∣∣∣∣∣∑
k∈Z

2j(x− xJ − 2πk)ψ+(2j(x− xJ − 2πk))

∣∣∣∣∣
+ 2j/2

∣∣∣∣∣∑
k∈Z

2πkψ+(2j(x− xJ − 2πk))

∣∣∣∣∣ .
Consequently,

|(hPϕJ )(x)| . φ1(x) + φ2(x) + φ3(x),

where

φ1(x) = |I||PϕJ (x)|,

φ2(x) = 2−j/2

∣∣∣∣∣∑
k∈Z

2j(x− xJ − 2πk)ψ+(2j(x− xJ − 2πk))

∣∣∣∣∣ ,
φ3(x) = 2j/2

∣∣∣∣∣∑
k∈Z

2πkψ+(2j(x− xJ − 2πk))

∣∣∣∣∣ .
Now, since ψ+ is a Schwartz function,

‖(1− χ)φ1‖2 =

∫
2|I|<|x−xI |<π

|φ1(x)|2dx

≤ |I|2
∫
|I|<|x−xJ |<π

2j

∣∣∣∣∣∑
k∈Z

ψ+(2j(x− xJ − 2πk))

∣∣∣∣∣
2

dx

. |I|2
∫
|I|<|x−xJ |<π

2j
∑
k∈Z

∣∣∣ψ+(2j(x− xJ − 2πk))
∣∣∣ dx

≤ |I|2
∫
|I|<|x−xJ |

2j
∣∣∣ψ+(2j(x− xJ ))

∣∣∣ dx(
letting 2j(x− xJ ) = u

)
= |I|2

∫
2j |I|<|u|

|ψ+(u)|dx

. |I|2
∫ ∞

2j |I|

1

u3
dx

≈ 1

22j
≈ |J |2.
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In the computation above we have used that
∣∣∑

k∈Z ψ+(2j(x− xJ − 2πk))
∣∣ is uniformly bounded

for x, xJ ∈ R, j ∈ N.

Similarly ‖(1− χ)φ2‖2, ‖(1− χ)φ3‖2 . |J |2. This finally gives

∑
J⊆I
|s(3)
J |

2 ≤ M2

|I|
∑
J⊆I
‖(1− χ)hϕJ‖2

.
M2

|I|
∑
J⊆I

3∑
k=1

‖(1− χ)φk‖2

.
M2

|I|
∑
J⊆I
|J |2

=
M2

|I|

∞∑
n=0

2n
(
|I|
2n

)2

= 2M2|I|,

which completes the proof.

Corollary 4.5. Let C ∈ H2(D)∗ and β > 0. Then C is discrete β-admissible for the shift operator

S : H2(D)→ H2(D) if and only if

M = sup
w∈D

(1− |w|2)1/2
∥∥C(I − w̄S)−1

∥∥
A2
β−1(D)∗

<∞.

Moreover M is comparable to the constant of admissibility.

Proof. Let Cf = 〈f, c〉 for f ∈ H2(D). Then

〈Dβ/2hc̄kw, ḡ〉 = 〈kwDβ/2g, c〉

= (1− |w|2)1/2C(I − w̄S)−1Dβ/2g,

for analytic polynomials g. Recalling that Dβ/2 : H2(D)→ A2
β−1(D) is an isomorphism,

sup
w∈D

∥∥Dβ/2hc̄kw∥∥H2(D)
= sup
w∈D

(1− |w|2)1/2
∥∥C(I − w̄S)−1

∥∥
A2
β−1(D)∗

.

The result now follows from Proposition 4.2 and Theorem 4.4.

4.3 Regarding the failure of (4) ⇒ (3).

For α ∈ R and w ∈ D, define the function

gαw(z) =
1

(1− w̄z)1+α
, z ∈ D.

For positive α, gαw is a (non-normalized) reproducing kernel in the Bergman space A2
α−1(D).

Lemma 4.6. Let β > 0 and assume that c ∈ Λβ . Then for any α > β − 1/2 there is a constant Mα

such that

sup
w∈D

(1− |w|2)1/2+α−β‖hc̄gαw‖H2(D)
≤Mα <∞.
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Proof. Let w ∈ D. We will approximate ‖hc̄gαw‖H2(D)
by ‖hc̄gγw‖H2(D)

for γ ∈ (α− β, α).

Since c ∈ Λβ , Proposition 4.3 implies that the operator hα−γ,β−α+γ
c̄ : H2(D) → H2(D) is

bounded. Using this and boundedness of D−(β−α+γ) : A2
2(β−α+γ)−1(D)→ H2(D) gives

‖hc̄gγw‖H2(D)
≤ ‖Dα−γhc̄gγw‖H2(D)

= ‖Dα−γhc̄Dβ−α+γD−(β−α+γ)gγw‖H2(D)

. ‖D−(β−α+γ)gγw‖H2(D)

= ‖gγw‖A2
2(β−α+γ)−1

(D).

It is well known from the theory of Bergman spaces that

sup
w∈D

(1− |w|2)1/2+α−β‖gγw‖A2
2(β−α+γ)−1

(D) = Mα <∞, (15)

for some constant Mα. Hence, for a fixed ω ∈ D,

‖hc̄gγw‖H2(D)
≤ Mα

(1− |w|2)1/2+α−β .

In particular {‖hc̄gγw‖H2(D)
}γ∈(α−β,α) is a bounded family of functions, so by reflexivity it has a

weakly convergent subsequence as γ → α. Consequently, if it can be shown that

weak − lim
γ→α

hc̄g
γ
w = hc̄g

α
w, (16)

then the proof is complete, since then ‖hc̄gαw‖H2(D)
≤ supγ∈(α−β,α) ‖hc̄g

γ
w‖H2(D)

.

The functions hc̄g
γ
w and hc̄g

α
w are well defined elements of H2(D) so, for z ∈ D,

(hc̄g
γ
w)(z) = 〈c̄gγw, kz〉

=

∫
T
c(ζ)

1

(1− w̄ζ)1+γ

1

1− zζ̄
dm(ζ)

→
∫
T
c(ζ)

1

(1− w̄ζ)1+α

1

1− zζ̄
dm(ζ) = hc̄g

α
ω(z), γ → α,

where the limit is justified by dominated convergence. This implies that (16) holds.

A consequence of Lemma 4.6 is the following theorem, which is a partial generalization the
main result of [21] to β ≥ 1.

Theorem 4.7. Let β > 0. Then there exists Cβ ∈ H2(D)∗ that is not discrete time β-admissible for

S, but still satisfies

sup
w∈D

(1− |w|2)
1−β

2
+α‖Cβ(I − w̄S)−(1+α)‖H2(D)∗ <∞

for any α > β−1
2 .

Proof. The space D−β/2BMOA is strictly included in Λ+
β/2

. Choose cβ ∈ Λ+
β/2
\D−β/2BMOA and

define Cβ by

Cβf = 〈f, cβ〉, f ∈ H2(D).

By Theorem 4.3, this operator is not β-admissible for S. However, it satisfies the resolvent condi-
tion by Lemma 4.6.
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We remark that Lemma 4.6 still holds if gαw is replaced by Dαkw. The proof is preserved,
word for word, except that the standard Bergman space estimate (15) is replaced by the estimate∥∥Dα−βkw∥∥H2(D)

.
1

(1− |w|2)1/2+α−β .

This in turn follows from the estimate∏n
i=1(i+ γ)

n!
=

nγ

Γ (1 + γ)

{
1 +O

( 1

n

)}
, n ∈ N, γ /∈ {−1,−2, . . .},

see [24, Chap. 3]. This modified version of Lemma 4.6 immediately implies the following coun-
terexample.

Theorem 4.8. Let β > 0. Then there exists c ∈ H2(D) such that the generalized Hankel operator

h0,β
c̄ : H2(D)→ H2(D) does not satisfy the reproducing kernel thesis.

5 Admissibility of the right-shift semigroup on L2(R+)

We begin with a number of technical definitions which are required in order to characterise β-
admissibility, β > 0, of the right-shift semigroup on L2(R+).

5.1 Distribution spaces and the ϕ-transform.

Let φ̌ denote the inverse Fourier transform F−1φ and define the space

Z = {φ ∈ S : φ̌(k) = 0, k = 0, 1, 2, . . .}

with the topology inherited from the Schwartz space S. Its topological dual Z ′ is isomorphic to
S′/P (the space of tempered distributions modulo polynomials). Much of the notation used in
this section is taken from [1]. For a slightly more detailed introduction to the space Z ′ we refer
to [15].

Let ϕ ∈ S be a function such that

supp ϕ̂ ⊆ {ξ ∈ R : 1/2 ≤ |ξ| ≤ 2} , (17)

|ϕ̂(ξ)| ≥ c > 0 for 3/5 ≤ |ξ| ≤ 5/3, (18)

and also
∞∑

n=−∞
ϕ̂(2−nξ) = 1, ξ ∈ R \ {0}. (19)

For each n ∈ Z define

ϕn(x) = 2nϕ(2nx), x ∈ R.

From [2, Lemma 6.9] we cite the following lemma.

Lemma 5.1. Assume that ϕ satisfies (17) and (18). Then there exists ψ ∈ S that also satisfies (17)
and (18) and that ∑

n∈Z
ϕ̂(2nξ)ψ̂(2nξ) = 1, ξ 6= 0.
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We remark that in [1] the existence of ψ as in the above lemma was stated as a requirement
in the choice of ϕ.

Let α ∈ R and 0 < p, q ≤ ∞. The Besov space Ḃα,qp is defined as the set of f ∈ Z ′ such that

‖f‖Ḃα,qp
:= ‖{2nα‖ϕn ∗ f‖Lp}n∈Z‖lq(Z) <∞.

If p <∞, define the Triebel-Lizorkin space Ḟα,qp as the set of f ∈ Z ′ such that

‖f‖Ḟα,qp
:= ‖

(∑
n∈Z

(2nα|ϕn ∗ f |)q
)1/q
‖Lp <∞.

The exceptional space Ḟα,q∞ is defined as the set of f ∈ Z ′ such that

‖f‖Ḟα,q∞ := sup
( 1

|P |

∫
P

∞∑
n=− log2 |P |

(2nα|ϕn ∗ f |)q
)1/q

<∞,

where the supremum is taken over all dyadic intervals P = [k2−j , (k+ 1)2−j). The last definition
is the one given in [1] where it is also proved to be equivalent to the definition given in [15]. The
definitions can be proved to be independent of the choice of ϕ, [15, p. 240].

Given a function g : R→ C we define the multiplication operator Mg(x) : Z ′ → Z ′ by

(Mg(x)f)(x) = g(x)f(x), f ∈ Z ′,

provided that this is well defined. For α ∈ R, define the inverse Riesz potential Dα : Z ′ → Z ′ by

Dαf = F(M|ξ|α f̌).

From [15, p. 242, Theorem 1; p. 244, Theorem] we collect the following results.

Proposition 5.2. Let α, β ∈ R and 0 < p, q ≤ ∞. Then Dβ : Ḃα,qp → Ḃα−β,qp is a surjective

isomorphism. If p <∞, then Dβ : Ḟα,qp → Ḟα−β,qp is a surjective isomorphism. Moreover we have the

special cases Ḟ 0,2
2 = L2 and Ḟ 0,2

∞ = BMO(R).

We remark that by the duality identity (Fα,q1 )∗ = F−α,q
′

∞ (see [1, Equation (5.2)]) valid for
q ∈ [1,∞) the conclusion of Proposition 5.2 holds also for the spaces Ḟα,q∞ whenever q ∈ (1,∞].
This shows in particular that D−αBMO(R) = Ḟα,2∞ .

Given φ ∈ Z, define P+φ = F(χR+
φ̌) where χR+

denotes the indicator function of the positive
real numbers. Also define P+ : Z ′ → Z ′ by

〈φ, P+f〉 = 〈P+φ, f〉, φ ∈ Z, f ∈ Z ′,

and P− = I − P+. Test functions and distributions belonging to Z+ = P+Z and Z ′+ = P+Z ′
respectively will be referred to as analytic. The main reason for this is that

P+L
2 = H2(C+),

the Hardy space of the right half plane.

Let α ∈ R and 0 < p, q ≤ ∞. We will work with sequences s = {sQ}Q indexed by the set of

dyadic intervals on R. If p <∞, define the space ḟα,qp of sequences such that

‖s‖ḟα,qp
:=

∥∥∥∥∥∥
(∑

Q

(|Q|−α|sQ|χ̃Q)q
)1/q

∥∥∥∥∥∥
Lp

<∞,
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where χ̃Q = |Q|−1/2χQ is the L2-normalized indicator function of Q. In the special case p = q = 2
the integral in the above norm is easily computed and we have that

‖s‖ḟα,22
=
(∑

Q

|Q|−2α|sQ|2
)1/2

.

The space ḟα,q∞ is defined by the norm

‖s‖ḟα,q∞ := sup
P dyadic

( 1

|P |

∫
P

∑
Q⊆P

(|Q|−α|sQ|χ̃Q)q
)1/q

.

In particular we have that

‖s‖ḟα,2∞ = sup
P dyadic

( 1

|P |
∑
Q⊆P

|Q|−2α|sQ|2
)1/2

.

For each dyadic interval Q, define the dilation translation

ϕQ(x) = |Q|−1/2ϕ

(
x− xQ
|Q|

)
, x ∈ R, (20)

where xQ is the left endpoint of Q. The sequence {ψQ}Q is defined similarly. We define the
ϕ-transform of a distribution f ∈ Z ′ by

Sϕf = {〈f, ϕQ〉}Q.

The inverse ϕ-transform of a sequence s = {sQ}Q is defined by

Tψs =
∑
Q

sQψQ,

where ψ is as in Lemma 5.1. The importance of the ϕ-transform is the following ([1, Theorem
2.2]).

Proposition 5.3. Let α ∈ R and 0 < p, q ≤ ∞. The operators Sϕ : Ḟα,qp → ḟα,qp and Tψ : ḟα,qp → Ḟα,qp

are bounded. Moreover Tψ ◦ Sφ is the identity on Ḟα,qp . In particular ‖f‖Ḟα,qp
≈ ‖Sφf‖ḟα,qp

.

5.2 Continuous time admissibility and Hankel operators.

Let c ∈ Z ′−. Define the Hankel type operator Hc : Z+ → Z ′− by

Hcf = P−(cf), f ∈ Z+.

First we observe that the operator Hc can be defined in a natural way on a larger class of functions
that just Z+. Let f ∈ Z ′+. Formally,

〈φ,Hcf〉 = 〈φ, cf〉

= 〈φ̌, č ∗ f̌〉

= 〈〈φ̌(ξ + η), f̌(η)〉, č(ξ)〉, φ ∈ Z−.

The last expression is well defined provided that 〈φ̌(ξ + η), f̌(η)〉 is a Schwartz function that
vanishes on R+. This is the case if, for example, f = Kλ where

Kλ(x) =
1

λ̄+ ix
, x ∈ R
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for some λ ∈ C+, since then

Ǩλ(ξ) =

{
e−ξλ̄ if ξ ≥ 0,

0 if ξ < 0.

If Kλ is thought of as a function of ix rather than of x, then Kλ is a reproducing kernel of H2(C+)
with respect to λ. We therefore say that the operator Hc is defined on the set of reproducing
kernels. For future convenience we also define Kγ

λ = DγKλ whenever γ ∈ R. If γ > 0 then Kγ
λ

(multiplied with a constant) is a reproducing kernel for the space A2
γ−1(C+). As long as γ > −1

we have that the map HcK
γ
λ : Z− → C is well defined.

Let (S(t))t≥0 be the right shift semigroup on L2(R+). Its infinitesimal generator A is given
by

A = − d

dt
, D(A) = W 1,2

0 (R+) =
{
f ∈ L2(R+) : f ′ ∈ L2(R+), f(0) = 0

}
,

see [16, Example 2.4.5] for details. If C ∈ D(A)∗ then C(I − A)−1 ∈ L2(R+)∗ and so there is a
unique c0 ∈ L2(R+) such that

C(I −A)−1f = 〈f, c0〉, f ∈ L2(R+). (21)

Conversely this equation generates an A-bounded linear functional for any c0 ∈ L2(R+).

In order to compute fractional power resolvents, the following lemma ([4, Proposition 3.3.5])
is useful.

Lemma 5.4. Let B be the generator of the contractive C0-semigroup (T (t))t≥0 on a Banach space X.

Then for any λ ∈ C+ and β > 0

(λI −B)−β =
1

Γ (β)

∫ ∞
0

tβ−1T (t)e−tλdt.

A simple consequence is the following.

Lemma 5.5. Let f ∈ Z+, λ ∈ C+, β > 0 and A be the infinitesimal generator of the right-shift

semigroup on L2(R+). Then

F((λ̄I −A)−(1+β)f̌) = fKβ
λ .

The following proposition relates reproducing kernels and generalised Hankel operators to
the weighted Weiss conjecture.

Proposition 5.6. Let A be the infinitesimal generator of the right shift semigroup, C ∈ D(A)∗ and

β ≥ 0. If c0 ∈ L2(R+) is related to C through (21) and c ∈ Z ′− is given by

c(ξ) = (1 + iξ)(F c̃0)(ξ), ξ ∈ R,

where c̃0(s) = c0(−s). Then:

(i) Whenever f ∈ Z+, ∫ ∞
0

t2β
∣∣CS(t)f̌

∣∣2 dt =
∥∥DβHcf∥∥2

L2(R)
.

In particular, since F−1Z+ is dense in D(A), C is 2β-admissible for (S(t))t≥0 if and only if

DβHc : Z+ → L2(R) extends to a bounded linear operator from FL2(R+) to L2(R).

(ii) ∥∥C(λ̄I −A)−1M|x|β
∥∥
L2(R+,dx)∗

=
∥∥DβHcKλ∥∥L2(R)

.

In particular the resolvent estimate

sup
λ∈C+

(Reλ)1/2
∥∥C(λ̄I −A)−1M|x|β

∥∥
L2(R+,dx)∗

<∞

holds if and only if DβHc : Z+ → L2(R) is bounded on reproducing kernels.



The weighted Weiss conjecture and reproducing kernel theses for generalized Hankel operators 23

(iii) ∥∥C(λ̄I −A)−(1+β)
∥∥
L2(R+,dx)∗

=
∥∥HcKβ

λ

∥∥
L2(R)

.

In particular the resolvent estimate

sup
λ∈C+

(Reλ)1/2
∥∥C(λ̄I −A)−(1+β)

∥∥
L2(R+,dx)∗

<∞

holds if and only if HcD
β : Z+ → L2(R) is bounded on reproducing kernels.

Proof. (i) Take f ∈ Z+ and consider the function

gf : t 7→

{
CS(−t)f̌ if t ≤ 0,

0 if t > 0.

Then, for t ≤ 0,

gf (t) = C(I −A)−1(I −A)S(−t)f̌

= 〈(I −A)S(−t)f̌ , c0〉

=

∫
s=−t

(f̌ + (f̌)′)(s+ t)c0(s)ds

= (f̌ + (f̌)′) ∗ c̃0(t).

Hence, ∫ ∞
t=0

t2β |CS(t)f̌ |2dt =

∫ 0

t=−∞
|t|2β

∣∣CS(−t)f̌
∣∣2dt

=
∥∥M|t|βχR−((f̌ + (f̌)′) ∗ c̃0)

∥∥2

L2

=
∥∥DβP−((1 + iξ)f ˆ̃c0)

∥∥
L2

=
∥∥DβHcf∥∥L2 .

(ii) Using Lemma 5.5 together with the elementary identity f̄ = F ˜̌f we obtain,

C(λ̄I −A)−1M|x|β f̌ = C(I −A)−1(I −A)(λ̄I −A)−1M|x|β f̌

=
〈
(I −A)(λ̄I −A)−1M|x|β f̌ , c0

〉
=
〈
(1 + iξ)KλD

βf, ĉ0
〉

=
〈
(1 + iξ)Kλ¯̂c0, D

β f̄
〉

=
〈
DβHcKλ,

ˆ̌̃
f
〉
.

The result follows by taking the supremum over all f ∈ Z+ of unit length.

(iii) This is similar to the proof of (ii).

In the paper [8] the authors characterize boundedness of the operators DαHcD
β for α, β ≥

0. In particular we need [8, Theorem 5.1] and [8, Theorem 5.3] (together with a few technical
comments from the examples).

Proposition 5.7. For c ∈ Z ′− we have that:
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(i) Let β ≥ 0. Then both DβHc : Z+ → L2(R) and HcD
β : Z+ → L2(R) extend to bounded linear

operators from FL2(R+) to L2(R) if and only if Dβc ∈ BMO(R), with ‖DβHc‖FL2(R+)→L2(R)

and ‖HcDβ‖FL2(R+)→L2(R) comparable to ‖Dβc‖BMO(R).

(ii) Let α, β > 0. Then DαHcD
β : Z+ → L2(R) extends to a bounded linear operator from FL2(R+)

to L2(R) if and only if c ∈ Ḃα+β
∞ , with ‖DαHcDβ‖FL2(R+)→L2(R) comparable to ‖c‖

Ḃα+β
∞

.

5.3 The Reproducing Kernel Thesis for DαHc.

The main result of this section is the following.

Theorem 5.8. Let c ∈ Z ′− and β ≥ 0. The following are equivalent:

(i) The operator DβHc : Z+ → L2(R) extends to a bounded operator on H2(C+);

(ii) The operator DβHc : Z+ → L2(R) is bounded on reproducing kernels, i.e.

M = sup
λ∈C+

(Reλ)1/2
∥∥DβHcKλ∥∥L2(R)

<∞.

Moreover ‖DβHc‖H2(C+)→L2(R) ≈M .

Proof. (i)⇒ (ii) is trivial. By Proposition 5.7 the converse statement follows if ‖Dβc‖BMO(R) .M .

By Proposition 5.2 we need to show that c ∈ Ḟβ,2∞ which by Proposition 5.3 is equivalent to that
Sϕc ∈ ḟβ,2∞ . Define the sequence sQ = 〈c, ϕQ〉. It is sufficient to prove that

sup
P dyadic

 1

|P |
∑
Q⊆P

|Q|−2β |sQ|2
1/2

.M.

To this end, consider a fixed dyadic interval P . Since c ∈ Z ′−,

sQ = 〈cKλ, h̄P−ϕQ〉 = 〈HcKλ, h̄P−ϕQ〉 = 〈g,D−β(h̄P−ϕQ)〉,

where λ = |P |+ ixP , g = DβHcKλ and h(x) = λ̄+ ix. In the above calculation we have used that
h̄P−ϕQ ∈ Z−. Note that

‖g‖2L2(R) ≤
M2

|P | .

Let χ ∈ S be a smooth cutoff such that χ(x) = 1 when |x − xP | ≤ 2|P |, 0 < χ(x) < 1 when
2|P | < |x− xP | < 3|P | and χ(x) = 0 when |x− xP | ≥ 3|P |. We have

sQ =
〈
g,D−β(h̄P−ϕQ)

〉
=
〈
χg + (1− χ)g,D−β(h̄P−ϕQ)

〉
=
〈
hD−β(χg), P−ϕQ〉+ 〈g, (1− χ)D−β(hP−ϕQ)

〉
.

A calculation shows that

hD−β(χg) = F
([
λ̄+

d

dξ

]
M|ξ|−β (χ̌ ∗ ǧ)

)
= F

(
λ̄M|ξ|−β (χ̌ ∗ ǧ)

)
+ F

(
M|ξ|−β

d

dξ
(χ̌ ∗ ǧ)

)
−F

(
βMsgn(ξ)|ξ|−(1+β)(χ̌ ∗ ǧ)

)
= D−β (hχg)− βD−(1+β)F

(
Msgn(ξ)(χ̌ ∗ ǧ)

)
.
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This implies that sQ = s
(1)
Q + s

(2)
Q + s

(3)
Q , where

s
(1)
Q =

〈
D−β (hχg) , P−ϕQ

〉
,

s
(2)
Q = −β

〈
D−(1+β)F

(
Msgn(ξ)(χ̌ ∗ ǧ)

)
, P−ϕQ

〉
,

s
(3)
Q =

〈
g, (1− χ)D−β

(
h̄P−ϕQ

)〉
.

The proof is completed by showing that∑
Q⊆P

|Q|−2β |s(j)Q |
2 .M2|P |, j = 1, 2, 3.

First, using Propositions 5.2 and 5.3,∑
Q⊆P

|Q|−2β
∣∣s(1)
Q

∣∣2 =
∑
Q⊆P

|Q|−2β
∣∣〈D−βP− (hχg) , ϕQ

〉∣∣2
≤
∑
Q

|Q|−2β
∣∣〈D−βP− (hχg) , ϕQ

〉∣∣2
=
∥∥Sϕ (D−βP− (hχg)

)∥∥
ḟβ,22

.
∥∥D−βP− (hχg)

∥∥
Ḟβ,22

≈
∥∥P− (hχg)

∥∥
Ḟ 0,2

2

≈
∥∥P− (hχg)

∥∥
L2

≤
∫
|x−xP |<3|P |

|λ̄+ ix|2|g(x)|2dx . |P |M2.

The second part is estimated using Hölders inequality on each term.∣∣s(2)
Q

∣∣2 = β2
∣∣〈D−(1+β)F

(
Msgn(ξ) (χ̌ ∗ ǧ)

)
, P−ϕQ

〉∣∣2
= β2

∣∣〈Msgn(ξ)|ξ|−(1+β) (χ̌ ∗ ǧ) , χR− ϕ̌Q
〉∣∣2

≤ β2

(∫ − 1
2|Q|

− 2
|Q|

|ξ|−(1+β) |(χ̌ ∗ ǧ) (ξ)|
∣∣ϕ̌Q(ξ)

∣∣ dξ)2

. |Q|2+2β ‖χ̌ ∗ ǧ‖2L2(R)

≤ |Q|2+2β‖g‖2L2(R)

≤ |Q|
2+2βM2

|P | .

In the calculation we have used that {ϕQ}Q is an L2-normalized sequence. Summing up,

∑
Q⊆P

|Q|−2β
∣∣s(2)
Q

∣∣2 ≤ ∑
Q⊆P

|Q|2M2

|P | =
∞∑
n=0

2n
(
|P |
2n

)2
M2

|P | = 2M2|P |.

Finally, apply Hölders inequality to each term in the third and final sum to give∣∣s(3)
Q

∣∣2 ≤ M2

|P |
∥∥ (1− χ)D−β

(
h̄P−ϕQ

) ∥∥2

L2 . (22)

Before summing up we need to approximate
∥∥ (1− χ)D−β

(
h̄P−ϕQ

) ∥∥2

L2 . It is elementary to show
that

ϕ̌Q(ξ) = |Q|1/2eixQξϕ̌(|Q|ξ), ξ ∈ R.
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This gives that for x ∈ R,

D−β
(
h̄P−ϕQ

)
(x) = F

(
M|ξ|−β

[
λ− d

dξ

] (
χR− ϕ̌Q

))
(x)

=

∫ 0

−∞
|ξ|−β |Q|1/2eixQξ

[ (
λ− ixQ

)
ϕ̌ (|Q|ξ)− |Q| (ϕ̌)′ (|Q|ξ)

]
e−iξxdξ

(letting u = |Q|ξ) = |Q|β−1/2
∫ 0

−∞
|u|−β

[ (
λ− ixQ

)
ϕ̌(u) + |Q| (ϕ̌)′ (u)

]
e
−iu

(
x−xQ
|Q|

)
du

= |Q|β−1/2
[ (
λ− ixQ

)
D−βP−ϕ+ |Q|D−β (MixP−ϕ)

](x− xQ
|Q|

)
.

Assuming Q ⊆ P we then obtain∣∣D−β (h̄P−ϕQ) (x)|2 . |P |2|Q|2β−1

∣∣∣∣φ(x− xQ|Q|

)∣∣∣∣ , x ∈ R, (23)

where
φ =

∣∣D−βP−ϕ∣∣2 +
∣∣D−β(MixP−ϕ)

∣∣2.
Using (23), ∥∥ (1− χ)D−β

(
h̄P−ϕQ

) ∥∥2

L2 ≤
∫
|x−xP |>2|P |

∣∣D−β(h̄P−ϕQ)(x)
∣∣2dx

≤
∫
|x−xQ|>|P |

|P |2|Q|2β−1

∣∣∣∣φ(x− xQ|Q|

)∣∣∣∣ dx(
letting u =

x− xQ
|Q|

)
=

∫
|u|> |P ||Q|

|P |2|Q|2β |φ(u)|du.

Since φ decays like a Schwartz function,

|φ(x)| . 1

|x|3 , x ∈ R,

and hence, ∥∥ (1− χ)D−β
(
h̄ϕQ

) ∥∥2

L2 .
∫
|x|> |P ||Q|

|P |2|Q|2β 1

|x|3 dx

. |Q|2+2β .

Combining the above inequality with (22) gives

|s(3)
Q |

2 .
M2

|P | |Q|
2+2β .

Summing up, ∑
Q⊆P

|Q|−2β |s(3)
Q |

2 .
∑
Q⊆P

M2

|P | |Q|
2 =

∞∑
n=0

M2

|P | 2
n

(
|P |
2n

)2

= 2M2|P |.

Corollary 5.9. Let A denote the infinitesimal generator of the right shift semigroup (S(t))t≥0 and

β ≥ 0. Then C ∈ D(A)∗ is 2β-admissible for (S(t))t≥0 if and only if

M = sup
λ∈C+

(Reλ)1/2
∥∥C(λ̄I −A)−1M|x|β

∥∥
L2(R+,dx)∗

<∞.

Moreover the constant M is comparable to the constant of admissibility.

Proof. This follows immediately from Theorem 5.8 and Proposition 5.6.
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5.4 Regarding the failure of (2) ⇒ (1).

We have the following analogue of Lemma 4.6.

Lemma 5.10. Let β > 0 and c ∈ Z ′−. Then the following statements are true:

(i) If for some α > β − 1/2 there exists a constant Mα such that

Mα = sup
λ∈C+

(Reλ)1/2+α−β∥∥HcKα
λ

∥∥
H2(C+)

<∞

then c ∈ Ḃβ∞.

(ii) If α > max{β − 1/2, 0}, c ∈ Ḃβ∞ and moreover

c(x)

1 + ix
∈ L2(R), (24)

then there exists a constant Mα such that

Mα = sup
λ∈C+

(Reλ)1/2+α−β∥∥HcKα
λ

∥∥
H2(C+)

<∞.

Proof. In order to prove the first statement let {ϕn}n∈Z be as in section 5.1. We need to show
that

|〈g, ϕn ∗ c〉| . 2−nβ‖g‖L1 , n ∈ Z, g ∈ Z.

Since c ∈ Z ′− we may replace ϕn with P−ϕn.

Consider fixed n ∈ Z, g ∈ Z. By definition of the convolution,

〈g, ϕn ∗ c〉 = 〈φ, c〉,

where φ : x 7→ 〈g(x+ y), ϕn(y)〉.

Introduce the functions gk = gχ[k2−n,(k+1)2−n) and φk : x 7→ 〈gk(x + y), ϕn(y)〉, where

χ[k2−n,(k+1)2−n) denotes the characteristic function of [k2−n, (k + 1)2−n). A quick calculation

shows that φ̂k = ĝkϕ̂n so that φk ∈ Z−. It is also easy to show that φ =
∑
k∈Z φk with convergence

in the Schwartz topology.

Choose the sequence λk = 2−n + ik2−n, k ∈ Z. Then

〈g, ϕn ∗ c〉 =
∑
k∈Z
〈φk, c〉

=
∑
k∈Z

〈
φk(x)(λk − ix)1+α, c(x)DαKλk(x)

〉
=
∑
k∈Z

〈
φk(x)(λk − ix)1+α, (HcD

αKλk)(x)
〉
.

This gives

|〈g, ϕn ∗ c〉| ≤
∑
k∈Z

∣∣〈φk(x)(λk − ix)1+α, (HcD
αKλk)(x)

〉∣∣
≤
∑
k∈Z

∥∥φk(x)(λk − ix)1+α
∥∥
L2

∥∥(HcD
αKλk)(x)

∥∥
L2

≤ Mα

2−n(1/2+α−β)

∑
k∈Z

∥∥φk(x)(λk − ix)1+α
∥∥
L2 .
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We come down to approximating ‖φk(x)(λk− ix)1+α‖L2 . Applying Minkowski’s inequality in
the first step gives

∥∥φk(x)(λk − ix)1+α
∥∥
L2 ≤

∫
|gk(y)|

∥∥ϕn(y − x)(λk − ix)1+α
∥∥
L2(dx)

dy

= ‖gk‖L1 sup
y∈[k2−n,(k+1)2−n)

∥∥ϕn(x)(λk − i(y − x))1+α
∥∥
L2(dx)

.

By a change of variables, it follows that for each y ∈ [k2−n, (k + 1)2−n),

∥∥ϕn(x)(λ̄k − i(y − x))1+α
∥∥2

L2(dx)
. 2n

(
|2−n + i(y − k2−n)|2+2α

∫
|ϕ0(x)|2dx

+ 2−2n(1+α)

∫
|x|2+2α|ϕ0(x)|2dx

)
. 2−n(1+2α).

Consequently,

|〈g, ϕn ∗ c〉| ≤
Mα

2−n(1/2+α−β)

∑
k∈Z

∥∥φk(x)(λk + ix)1+α
∥∥
L2

.
Mα

2nβ

∑
k∈Z
‖gk‖L1 = Mα2−nβ‖g‖L1 ,

and hence, c ∈ Ḃβ∞.

To prove the second statement, fix λ ∈ C+, let γ ∈ (max{α − β, 0}, α) and consider the
functions HcK

γ
λ . Note that∥∥HcKγ

λ

∥∥ ≤ ∥∥χ(−1,0)M|ξ|α−γ (č ∗ Ǩγ
λ)
∥∥+

∥∥χ(−1,0)M1−|ξ|α−γ (č ∗ Ǩγ
λ)
∥∥+

∥∥χ(−∞,−1)M|ξ|α−γ (č ∗ Ǩγ
λ)
∥∥

.
∥∥χ(−1,0)M|ξ|α−γ (č ∗ Ǩγ

λ)
∥∥+

∥∥Dα−γHcDβ−α+γKα−β
λ

∥∥.
By the assumption (24), HcK

γ
λ → HcK

α
λ with convergence in L2(R) as γ → α. Hence, it is easy

to see that ‖χ(−1,0)M1−|ξ|α−γ (č ∗ Ǩγ
λ)‖ → 0 as γ → α. Analogous to the proof of Lemma 4.6, it

follows that ∥∥Dα−γHcDβ−α+γKα−β
λ

∥∥ .
∥∥Kα−β

λ

∥∥ ≈ (Reλ)−1/2+β−α,

which completes the proof.

Lemma 5.10 will provide a counterexample to the weighted Weiss conjecture once it has been
proven that a certain set of operator symbols is nonempty.

Lemma 5.11. Let β > 0. Then there exists c ∈ Z ′− with the following properties:

(i)

c(x)

1 + ix
∈ L2(R).

(ii)

Dβc /∈ BMO(R).

(iii)

Dβc ∈ Ḃ0
∞.
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Proof. We construct c explicitly. Let f0 ∈ S be a smooth function with supp(f̌0) ⊂ [−1,−1/2] and
let f = M1+ixf0. Define c ∈ Z ′− by

č(ξ) =
∞∑
n=0

f̌(ξ + 2n)

|ξ|β
, ξ ∈ R.

It is clear that c ∈ L2(R) and consequently (i) holds.

Furthermore Dβc = M1+ixg where

ǧ(ξ) =
∞∑
n=0

f̌0(ξ + 2n), ξ ∈ R.

Since clearly g /∈ L2(R) we have that Dβc /∈ BMO(R).

Finally, since the support of č is sparse,∣∣ϕn ∗ (Dβc)(x)
∣∣ =

∣∣∣∣∫ ϕn(x− y)f(y)
(
ei2

ny + ei2
n+1y

)
dy

∣∣∣∣ ≤ 2‖f‖L∞(R)‖ϕn‖L1(R),

which by the normalization of {ϕn}n∈Z is uniformly bounded for x ∈ R, n ∈ Z.

Theorem 5.12. Let β > 0 and let A be the infinitesimal generator of the right shift semigroup on

L2(R+). There exists an operator Cβ ∈ D(A)∗ which is not 2β-admissible but still satisfies

sup
λ∈C+

(Reλ)1/2+α−β∥∥C(λ̄I −A)−(1+α)
∥∥
L2(R+)∗

<∞

for any α > max{β − 1/2, 0}.

Proof. Let cβ ∈ Z ′− have the properties stated in Lemma 5.11. By the first property there is
a corresponding observation operator Cβ ∈ D(A)∗. By Lemma 5.10 this operator satisfies the
resolvent condition while by Propositions 5.6 and 5.7 it is not 2β-admissible.

Analogous to the discrete time case, we obtain the following result.

Theorem 5.13. Let β > 0. There exists c ∈ Z ′− such that the operator HcD
β : H2(C+) → L2(R)

does not satisfy the reproducing kernel thesis.
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