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Abstract The weighted Weiss conjecture states that the system theoretic property of weighted
admissibility can be characterised by a resolvent growth condition. For positive weights, it is
known that the conjecture is true if the system is governed by a normal operator; however, the
conjecture fails if the system operator is the unilateral shift on the Hardy space H2(DD) (discrete
time) or the right-shift semigroup on L?(R.) (continuous time). To contrast and complement these
counterexamples, in this paper positive results are presented characterising weighted admissibility
of linear systems governed by shift operators and shift semigroups. These results are shown to be
equivalent to the question of whether certain generalized Hankel operators satisfy a reproducing
kernel thesis.
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1 Introduction

Consider an infinite dimensional control system
©(t) = Az(t), y(t) =Cz(t), t=0,
z(0) =20 € X

where A is the generator of a Cop-semigroup (T'(t));>o on a Hilbert space X and the observation
operator satisfies C € £(D(A),C). For the system to be well-posed, in the sense of [19], a necessary
condition is that C is admissible for A, that is, there exists k > 0 such that

ICT()zoll 2,y < Ellzollx, zo € D(A).

An important consequence of admissibility is that the output y can be well defined even in the case
that C' is unbounded. In particular, admissibility implies that the map zo — CT(-)zo € L? (Ry),
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defined initially on D(A), has a continuous extension to the whole space X, meaning that the
output is well defined for any initial condition zp € X.

A generalization of admissibility, first considered in [3], is to require that the output is an
element of a weighted L?-space. For 8 > —1, C is said to be S-admissible for A if there exists a
constant k > 0 such that

o0
/ PleT(t)zo)?dt < K ||lzo||®,  xo € D(A). (1)
0
To test whether a given system is 3-admissible, a frequency-domain characterization is convenient
and, to this end, it is not difficult to show that B-admissibility implies the resolvent growth
condition s
sup (ReX) 2 [[CR(A, A) ") 4. < o0, (2)
AEC,
where R(), A) := (M — A)~! denotes the resolvent of the semigroup generator A, and C; := {\ €
C : ReX > 0} is the right-half plane. The question of whether the converse statement (2) = (1)
holds, commonly referred to as a (weighted) Weiss conjecture, is much more subtle. Existing results
concerning the conjecture are discussed below, but we first describe a discrete time version of the
Weiss conjecture, introduced in [5], which will also be studied in this paper.

A discrete-time linear control system on a Hilbert space X has the form
Tnt1 =Txn, yn=Cxn, z0€X, neN,

where T' € £L(X) and C € X*. In this case, for 8 > —1, the observation functional C is said to be
(discrete) B-admissible for T if there exists k > 0 such that

oo
Sa+n)fiore? <Kk,  zeX. (3)
n=0

Analogous to continuous time systems, the resolvent condition

sup(1 — wf?) 2" C(1 - &) P x. < o0 ()
web
is necessary for (3) and the discrete time form of the weighted Weiss conjecture is to ask when
the converse implication is true. The Weiss conjecture is superficially easier to study in discrete
time due to the boundedness of the operators involved. However, it should be noted that it is
sometimes possible to translate positive and negative results concerning the conjecture via the
Cayley transform [5,20].

The continuous time conjecture (2) = (1) was originally posed [17] in the unweighted case
B = 0. In this situation, the conjecture is true if A generates a Cp-semigroup of contractions [6],
which extends the results that the conjecture holds if A is normal [18] and if A is the generator
of the right-shift semigroup on L?(R.) [11]. The discrete time version (4) = (3) for =10 and T
a contraction was shown in [5].

For non-zero weights, the behaviour of the conjecture is more complicated. In the case that A
is normal, the continuous time conjecture (2) = (1) is true [22] for positive weights 8 € (0, 1), but
false [21] in the case that 8 € (—1,0). Analogous results also hold for the discrete time conjecture
conjecture when 7' is normal [21,22]. Furthermore, both continuous and discrete time conjectures
are not true for general contraction operators for weights 8 € (0, 1): in continuous time, the right-
shift semigroup on L?(R,) provides the counterexample [20]; while in discrete time (4) = (3) fails
if 7' is the unilateral shift on the Hardy space H?(D) [21].

It should be noted that the restriction 8 € (—1,1) in the above discussion arises from the fact

that the growth bound supycc, (Re)\)¥ [CR(X, A)|| < oo (respectively, the condition sup,,cp(1—
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|wl|?) s |[C(I-&T) ™Y < oo in discrete time) was considered in the cited literature, i.e. a condition
involving only the first power of the resolvent. In this situation, the restriction 8 < 1 is natural.
However, as shown for example in [20], the truth of the weighted conjecture is not affected by
considering instead the resolvent growth bound (2) and in this situation the natural range of
weights is 8 > —1. Thus, the resolvent condition (2) is considered in the remainder of this paper.

The importance of determining the truth of the conjecture for the right-shift semigroup (or, in
discrete time, the unilateral shift) is due to the Sz.Nagy-Foiag model theory for contractions [14].
This states that a general contraction operator can be decomposed as a sum of operators, one of
which is unitarily equivalent to a part of a shift operator. In [6] this decomposition was used in the
case 8 =0 (in discrete time, see [5]) to extend the truth of the conjecture for normal semigroups
and the right-shift semigroup to general contraction semigroups. Thus, it is disappointing that
neither the right-shift semigroup on L?(R4) nor the unilateral shift on H?(D) satisfy the weighted
Weiss conjecture in the case 8 € (0,1).

The main results of this paper are to obtain positive results characterising S-admissibility
for shift operators and semigroups. Results are proven in discrete time for the unilateral shift and
in continuous time for the right-shift semigroup. For technical simplicity we first describe results
in the discrete time setting. Two approaches are taken. The first is to consider the unilateral
shift (Sf)(z) = zf(z) acting on different space to H?(D). In Section 2, S-admissibility of the shift
S : X — X is considered in the case that X is a weighted Bergman space A% (D), > —1, which
contains analytic functions f : D — C for which

1122 () = / 1F(2)PdAa(z) < oo,

where dAa(z) = (1+ @)(1 — |2[*)*dA(2) and dA(z) := Ldzdy is area measure on the unit disc
D={z€C:|z| =1}, for z =z +dy. Since the norm ||f|| 42 ) is equivalent to

1

(Z |fn|2(1+n)_(1+“>> , (5)

n=0

where f,, are the Taylor coefficients of f, naively, the Hardy space H?(ID) may be thought of as
the ‘corner’ of the family of weighted Bergman spaces as o — —11. However, the behaviour of
the weighted Weiss conjecture changes at this corner: it is shown in Theorem 2.9 that for 3 > 0
the resolvent bound characterisation (4) = (3) of 3-admissibility holds for the shift S : A% (D) —
A2 (D), for any o > —1. The second approach, taken in Section 4, is to derive a modified resolvent
growth bound characterisation of S-admissibility for the shift S : H?(D) — H?(D). In this case, it
is shown in Corollary 4.5 that S-admissibility is characterised by

sup(1 — [w|?)?
weD

c(r-ws)”| < . 6
( ) 4@ (6)
The difference between this condition and (4), which does not characterise S-admissibility of S :
H%(D) — H?(D), is that the weight 3 appears in the space in which the norm of the operator
CO(I —©S)™! is tested, rather than as a power of the resolvent and the required growth rate.

That (6) is in some sense the ‘correct’ resolvent growth condition with which to test weighted
admissibility of S : H*(D) — H?(D) is intrinsically related to the notion of a Reproducing Kernel
Thesis (RKT). A Reproducing Kernel Hilbert Space H is a space of analytic functions on a set
2 (in this paper, either 2 =D or 2 = C4 = {) : ReX > 0}) containing functions (kw),ecn C H,
known as the reproducing kernels, which satisfy f(w) = (f,kw)yg for any f € H,w € £2. A linear
operator T : H — K, where K is a second Hilbert space, is said to satisfy a Reproducing Kernel
Thesis if its boundedness is characterised by

T
up I The

< oo. 7
T @
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The question of which operators satisfy a RKT has received much attention and it is known
that many important operators do satisfy a RKT (see, e.g. [10, p. 131] for a brief overview). Of
particular relevance to the study of the Weiss conjecture for shifts is the fact that the little Hankel
operator hz(f) := P(¢f), with symbol ¢ € H?(D), mapping from H?(D) to H2(D) = PH?*(D)
satisfies a RKT. Here, P denotes the projection onto anti-analytic functions. In the case 8 = 0, it
was shown in [5] that if 7 = S is the unilateral shift on H*(D) and ¢ € H*(D) satisfies Cf = (f, ¢) g,
then (3) holds if and only if hz is bounded on H?(D). On the other hand, since the reproducing
kernels for H?(D) are ky(z) = (1 —@z) " and kel 72y = (1 — \w\Q)_%, it is not difficult to show
that hz : H*(D) — H2(D) satisfies (7) if and only if the resolvent condition (4) holds for g = 0.
Hence, the truth of the discrete Weiss conjecture for the shift S in the unweighted case 8 = 0 is
equivalent to the fact that each Hankel operator hz satisfies a RKT.

In the weighted case 8 > 0, it is shown in Propositions 4.2 and 4.3 that S-admissibility
of the shift S : H*(D) — H?*(D) is equivalent to boundedness of one/both of the generalized
Hankel operators hg/z’o or hg’ﬂ/z (definitions of these operators are given in Section 4.1). It turns
out that whether hg/ >0 satisfies (7) is equivalent to the modified resolvent condition (6); while
whether hg’ﬁ /2 satisfies (7) is equivalent to the original resolvent condition (4). Consequently,
the characterization (3) < (6) of S-admissibility follows from the fact that the generalized Hankel
operators hg /2,0 satisfy a RKT (proven in Theorem 4.4); while the failure of the original conjecture

4 3) can now be explained by the fact that the operators p28 /2 do not. The technical reason
( p ¥y P E

for this result is that the inclusion D#/2BMOA C A;/Q between two certain classes of operator
symbols is strict.

Analogous results to the ones described above are proven for the continuous time case. In
Section 3, Theorem 3.1, it is shown that for 8 > 0 the weighted Weiss conjecture (2) = (1) holds
for the right-shift semigroup acting on any of the weighted spaces L2(R4),a > 0, where

LZ2(Ry) = {f : Ry — C: f measurable, / Y f ()P dt < oo} .
0

The ‘corner’ case of the right-shift semigroup on LQ(R+) is discussed in Section 5, where it is
shown in Corollary 5.9 that g-admissibility, 8 > 0, is characterised by the modified resolvent
growth condition

1
ASEu(Cer (ReA) ? ”CR(A’ A) ‘|L%/2(R+)* < o9, (8)

where A is the generator of the right-shift semigroup. In the continuous time setting, the char-
acterisation of weighted admissibility is related to whether certain generalised Hankel operators
satisfy a RKT on the Hardy space H?(Cy).

2 Discrete time (@-admissibility of the unilateral shift on weighted Bergman spaces

In this section, discrete-time S-admissibility is studied for the unilateral shift S : A% (D) — A2 (D)
given by
(SN(2)=2f(2),  f€ALD).

In the following, the inner product for AZ% (D) is written ( , )q.

2.1 Equivalent conditions for discrete S-admissibility and the resolvent bound (4).

First, -admissibility of an observation functional C' € AZ2(D)* is characterized in terms of its
associated Taylor coefficients.
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Proposition 2.1. Let a > —1,8 > 0. Suppose that C € A%(D)* is given by Cf := (f,c)a, where
c=3 10 yen2™ € A%(D). Then C is discrete B-admissible for S if and only if

2
<EIfPz @y, S € AA(D).

oo

> 1+n)2 _
2 Z T+t mytFadmentm
n=0

Proof. For f € A%(D),

oo oo 0o oo 2
S +n)les P =Y (1 +n)’ <Z DY szm>
n=0 n=0 m=0 m=0 o
oo 0o 00 2
= Z(l +n)6 < Z fm—nzm7 Z C7n2m>
n=0 m=n m=0 a
2
= 1 + n)B Z fm—ném(l + m)—(1+o¢)

0o 2

1+n)2

T+ 0+ myra /mémtm| - D

5

In order to form a comparable expression for the resolvent condition (4), it is necessary to
define the operator g(S) for suitable functions g. To this end, let

o0
O(D) := {g € H(D) : 3v > 1 such that Z lgnv™ < oo},
n=0

where g has Taylor series g(z) = Y72 gnz". Then by [5, Lemma 2.1], g(S) € £(X) for any
g € O(D). Note that g(z) = (1 —@z)~ 15 ¢ O(D) for each w € D.

Pr0p051t10n 2.2. Let « > —1. Suppose that C' € Az(@)* is given by Cf := (f,c)a, where ¢ =
S0 penz™ € A2(D). Then for any g = > oo, gn2"™ € O(D),

X | & (1+ )H—Ta 2
n) - _
HCQ(S)H?ﬁ(D)* = Z Z mgmcn+m
n=0 |m=0

Proof. For f € A%(D),
Cy(S)f = (g(S )f» o

(Z fngm— n> m szm>
m= m=0 o

m

_ Z (1 +m)—(1+a) <Z fngm—n> Em

n=0

o0 o0
- Z Z 1+m) (1+a)fngm nCm

o 1+n 14+«
=3 (1 4n)"OF (Z ngcn+m) fn
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where
oo

oo
-y Z (L+n)t*e n
Z)n—0< (1+m+n) 1+0‘gmcn+m z

Therefore,

et 14«
1+n _
1C9(S) %2 o+ = Il oy = §j<1+n ~(+a) Ej—( Utn) % i

14+ m+n)lte
2

m=0

(1+n1§ 0

T -9mCntm

2.2 Discrete S-admissibility and the little Hankel operator.

The link between Hankel operators and admissibility has previously been frequently exploited [5,
6,11,21] in order to study admissibility. In this section, it is shown that boundedness of little
Hankel operators between weighted Bergman spaces characterise weighted admissibility of S on
weighted Bergman spaces.

The little Hankel operator hy : A% (D) — AZ (D) is defined by

hrg = Pua(fg)

where P, is the orthogonal projection from L?(DD, (1 — |z|?)*dA) to the space of anti-analytic
functions

AZ(D) = {f: f € AL(D)}.
Suppose that f € A2(D). Then using the fact that {z",n = 0,1,2,...} is a basis for .42 (D),
<hfzm 7n> < z)z ),Zn>a
= (f(Z)Zm, Z")
(

— fner
(14+n+m)lte’

Therefore, if g =0 gmz",
h g _ Z gmfn+m
{h5g, 2 e A+ n+m)t+ta’
and since (z",7")a = (14 n)~(+®) it follows that

0o _
B _ 14+ gmfn+m
(hfg)n_(1+n) "LZ:O (1+n+m)1+0"

where (hfg)n is the n"* Fourier coefficient with respect to the basis {z",n =0,1,2,...} . Hence,

1+a 2
2 (1+n)>
thg\lw Z Z A+ntm) 1+agmfn+m . 9)
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Therefore, there is a link between weighted admissibility on weighted Bergman spaces, and bound-
edness of the little Hankel operator on weighted Bergman spaces. In the following,

N
kS(z) = %, weD,zeD

are the normalized reproducing kernels for A2 (D).

Proposition 2.3. Let a > —1,8 > 0. Suppose that C € A%(D)* is given by Cf := (f,c)a, where
c=3 10" yen2™ € A%(D). Then

(i) C is discrete B-admissible for S if and only if he : A%fl(]D)) — AZ (D) is bounded.

(i4) For any w € D,

18 ~on— _
(1= ) 100 =58 az ) = IIhekl ™ gz my-

Proof. (i) By Proposition 2.1, and the equivalent expression (5) for norm | - || a2 (), C' is discrete
B-admissible for S if and only if the matrix A = (anm) with coefficients
ay = (L) (L) =7
e (1+n+m)lta

5n+m7

is bounded from ¢? to ¢?. On the other hand, hz : A%_l(]D)) — A%(D) is bounded if and only if
||h59|\w < k||g\|A’;;71(D)7 g€ A3 (D),

which by (9) and (5) occurs if and only if A : ¢? — ¢2 is bounded.

(73) Follows from Proposition 2.2, (9) and the fact that Kot e O(D) for each w € D. O

Proposition 2.3 implies that the question of whether the discrete weighted Weiss conjecture
(3) < (4) holds for S : A% (D) — A% (D) in the case § > 0 is equivalent to the following question:
does the Hankel operator he : A%_l(]]])) — A%(D) satisfy a RKT? Specifically, does (7) with

T =he H= A%_l(]D)) and K = AZ(D) imply boundedness of hz?

It is shown in [23, Theorem 8.39] that the question has a positive answer in the case hg :

AZ(D) — A2 (D). In fact the method of proof can be adapted to show that hz : A2(D) — AZ(D)
also satisfies RKT for any o,y > —1. For a,y > —1, and f € L?(D,dAs) define the integral
operator

(34 a+y B 22+«// f(w)
(VI)(z) = (71 T a ) (I—=12%) b (1= zo)i+aty dAo(w), zeD
and the projection Py : L?(D,dAs) — A2 (D) by

(Faf)e) = [ G da(w)

The following properties of V' can now be deduced.

Lemma 2.4. Suppose that o,y > —1. Then

(i) The operator V is bounded on L*(D,dAq);
(i) PaV = Pa.
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Proof. (i) By [Zhu, Theorem 3.11], V = T2~ «,4+a+~, Which is bounded on L?(ID,dAq).
(i3) For f € L*(D,dAq),

PV = [ G daa )

p (1 —zw)2+e

:(3+a+w) (1—WFV*1/( I 4 () dAn ()

1+a b (1—20)2+e Jo (1 —wa)ttaty

(3Tizv)A(A*l—ugzjg?t;uayﬂAM@)f@mAam
/ (/ (1- zw;l?f:oi+z&u3)4+a+w> f(u)dAa(u)
- [ G wie)

= (Paf)(2). O

Lemma 2.5. Let o,y > —1. If (1 — |22) "7 f(2) € L®(D), then

hy € L(A3(D), A%(D)).

Proof. For g € A3(D),

1P 19l 2z By = ||E(fg)||m
< f9lle®,aa.)

- ((1+a> JNCHIORE |z\2>“dA<z>)§

1

(o assumption) < & ( [ 920201 = 4P)7dA()) " = Hlallago O
D

The action of the little Hankel operator on reproducing kernels is now related to the integral
operator V.

Lemma 2.6. Let a,y > —1. Then for f € L*(D,dAqs),

(14 )

m(l—kﬁ)%(‘/f)(z), z€D.

(k2 hpkD)
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Proof. Using the fact that hgk? is analytic,

(kS hpkl), = (hpkd, k),
= (1— 21" 2 hskl(2)

ayits [ Wk (w)
(1 -]z Dmdfla(w)

=(1- |z|2)2+“§”’ /D(%d/la(w)

1= 2w)itaty

_ (+aq) oy ;
—m(1*\2|2) (V). O

As a consequence, the little Hankel operators hf : A?y (D) — AZ(D) satisfy the reproducing
kernel thesis.

Theorem 2.7. Let o,y > —1. Then sup{||hfk2||m 1z € D} < oo if and only if the little Hankel

operator hy : A2(D) — A2(D) is bounded.

Proof. If f € L?(D,dAq) then by Lemma 2.4,

hy =l = ey = vy (10)
By assumption and Lemma 2.6,
1+« a—y =
(3)(4_0[74_)7)(1 — 21?7 (VA = (kS hgkD) | < Ik k2l L2m,aa.) < ks z€D.
By (10) and Lemma 2.5, hf is bounded. O

Remark 2.8. It should be noted that boundedness of the little Hankel operator hy : A2 (D) — A% (D)
has been characterised, in terms of symbols, in [7]. Theorem 2.7 therefore provides an additional char-
acterisation of boundedness.

Using Proposition 2.3 and Theorem 2.7, we can prove that the weighted Weiss conjecture is
true for the shift on weighted Bergman spaces.

Theorem 2.9. Let o > —1,8 > 0. Suppose that C € AZ(D)* is given by Cf := (f,c)a, where
c=30" ycnz" € A2(D). Then C is discrete B-admissible for S if and only if

2\ 18 -\ —(1+8)
sup(l — [wf") [cd - as) |4z - < oo

3 B-admissibility of the right-shift semigroup on L2 R4)

In this section Theorem 2.9 is translated to continuous time for the right-shift Cp-semigroup on
L2(Ry) given by

_t)yTZtv

(S(t)f)(r)::{f(TO’ TZh t20fe L3Ry,

The Laplace transform is an isometric isomorphism £ : L2(Ry) — A2_,(C4). Here, for each
v > _17

A2(Cy) = {F :Cy - C: ||F||343(C+) = [ / Y |F(z + iy)Pdzdy < oo}
oo JO
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is the weighted Bergman space on the right-half-plane C4. Under the isomorphism provided by
the Laplace transform, (S(t));>o is equivalent to the semigroup

(Tt f)(2) =e 7 f(2),  feAi_1(Cq),z€Cy (11)

on the Bergman space A2_;(C,). Using this link, Theorem 2.9 can now be translated from
discrete to continuous time.

Theorem 3.1. Let «, 8 > 0. Let A be the generator of the right-shift semigroup (S(t))t>0 on LE(Ry).
Then an observation operator C € L(D(A),C) is B-admissible for A if and only if

52 1+8
sup (ReX) 2 ||CR(\ A 5 , < o0.
sup (RN F[CROA
Proof. Let
o Ca 1—=2
U = st (152) . FeAaCzeD

be the isometric isomorphism Jp : A%(C4) — AZ(D). Then
b :=Jy—10L: Li(R+) — Aifl(D)

is also an isometric isomorphism, under which the shift semigroup (S(t));>0 on L3 (R4 ) is equiv-
alent to the semigroup

QWNE) = GF) ), fedii(D)zeD.
Notice that the unilateral shift S is the co-generator of (Q(t));>0 on A2_; (D).

Given C € L(D(A),C), define an observation operator by C :=Co~'. If A is the generator
of (Q(t))¢>0, then by assumption and the fact that R(A, AP = @R(A,A)l"'ﬁdfl,

Q.

L8~ 148
/\seué)+(Re>\) > ||CR(A, A) HA?XH(D)* <

By the above equation and an argument from [20], it follows that if D := C(I — A)~(*#) then

_yr <

1+8 o —
sup(1 — |w[*) = ||D(I = @8)~ |,
weD a
and Theorem 2.9 implies that D is discrete S-admissible for S. It is shown in [20] that D is discrete
B-admissible for S if and only if C is -admissible for (Q(t)):>0. Since (Q(t))t>0 and (S(t))¢>0 are
equivalent semigroups, it follows that C is S-admissible for (S(t))¢>0. O

4 Discrete B-admissibility of the unilateral shift on the Hardy space

In this section discrete S-admissibility, 3 > 0, is characterised for the unilateral shift S : H? (D) —
H?(D) given by (Sf)(z) = 2f(2),z € D, f € H*(D). The Hardy space H?(D) is the set of complex-
valued analytic functions f(z) =Y 0" fnz" such that

2w

oo
2 i0y2 2
= su re df = < 0.
I f 172 () 0<TI<>1/9:O |f(re')] E [ frl

n=0

The space H 2(]D)) is a reproducing kernel space with the (non-normalized) reproducing kernel with

respect to w € D given by
1

D.
1—wz’ z€

kw(z) =
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Note that [[ku |72y = (1 — [w]?) .

For a function f € Hol(D)+Hol(D) we associate the sequence of Taylor coefficients { fn}nez C
C for which

F@) =) far"+ > f-nz",  zeD.
n=0 n=1

If {fn}nez has finite support we say that f is polynomial. The pairing between two functions
f,g € Hol(D) 4+ Hol(D) is defined by

<f7g> = ang?7

whenever the series converges. We are particularly interested in the cases when either both se-
quences are square summable, or one of the functions is polynomial. We will often work with
H?*(D) and H2(D) as closed subspaces of L?(T), where the Taylor coefficients are interpreted as
Fourier coefficients. Note that the pairing between f,g € L?(T) coincides with the usual inner
product.

We now introduce spaces of analytic functions which will be required to study discrete -
admissibility of the unilateral shift on H?(D).

For an integer n > 1, define the trigonometric polynomial W;, by the Fourier coefficients

k=2""1 e [2n1 2m),

on—1
Wn(k) — ZH-;T_IC ifke [Qn,2n+l)’
0 otherwise.

For n < —1, let W, = W_,,, and finally Wy (0) = e 4+ 14 ¢ For s € R, the Hélder-Zygmund
space As consists of distributions f on T such that

1£1l.4, = sup 2™ Wy * flloo < oo.
nez

These spaces are introduced in [13, Appendix 2]. The parameter s indicates in this way how
quickly the Fourier coefficients of f decay, and therefore the defining property of the Holder-
Zygmund spaces is a smoothness condition. We will often consider the subspace AF of holomorphic
distributions in As. The space /18' is called the Bloch space.

Given a function f € L'(T) we define the quantity

dt.

O /I £(s)ds

1
I fllBaro = SUPT/
cr 1 Jr

We then define the space

BMOA(D) = {f € H*(D) : || f|l pao < oo}

The space BMOA(D) can be characterized using wavelets. Given a function ¢ : R — C we let
Pj(x) = 23/2w(23x) for j € Z and ¢ ;(2) = ¢ (= — x ;) where x; is the left endpoint of the dyadic
interval J = [27k277, 2w (k + 1)277). We will need a function ¢ € S(R) such that

suppq&g{széélﬁlgg}, (12)

/oo Y(a)de =0, kel (13)
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and moreover is such that {¢;} ;, where J ranges over all dyadic intervals, is an orthonormal basis
for L?(R). Such a 1 exists and is exemplified by the Littlewood-Paley wavelet constructed in [9,
pp. 21-25, p. 75].

We identify [0, 27), R/27Z and T with each other, using the mapping z — ¢**. For any dyadic
interval J C [0,27), we define the 2r-periodification of 1 ; by

ei(x) = vy(x—2rk), z€R.
kez

The family {¢;} 7cTdyadic together with the constant function 1 is an orthonormal wavelet on T.
Using this language we have the following proposition [9, page 162].

Proposition 4.1. A function f € H? (D) 4s in BMOA if and only if there exists M > 0 such that
Y Wfenl® < M),
JCI

for any dyadic interval I C [0,27). Moreover inf M = || f|Byo-

Let a € R. In order to discuss weighted admissibility we introduce the following operator,
defined for double sided sequences of numbers:

D : (an)nez = (14 [n])*an)nez.

By letting D® act on the sequence of Taylor coefficients of a function, D® may be regarded as an
operator acting on Hol(D) + Hol(D). Note that for a > 0, D* : H*(D) — A3,_; (D) isomorphically.
For a,s € R we also have that D*As = As_o [13, Equation (A2.15)]. It is well known the
BMOA C AS‘ with strict inclusion and so it follows that D™ BMOA C A} with strict inclusion
for all s € R.

4.1 Admissibility and the little Hankel operator on H?(D).

Given a function f € H*(DD), define the little Hankel operator hg: H> (D) — H2(D) by
hgg = P(fg),

where P is the orthogonal projection from L?(T) to H2(D). We will investigate when this operator
has a continuous extension h : H?*(D) — H2(D).

In the same manner as before, we see that
(hpz,2") = (P(F(z)2"), 2")
= (f(»)2",2")
= (f(2),2™")
= J?n+m<5m+nv 2m+n>
= fn+m7
so that the matrix for the operator hf, in the monomial bases {z" : n=0,1,2,...} and {z"" : n =
0,1,2,...} in H*(D) and H2(D) respectively, becomes
fo fl fg .
_ fif2 fa ...
{fn+m}n,m20 = fofsfa...
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Define the generalized Hankel operator
h3? g = D hpDPg,

where f € H? (D) and a, 8 > 0. The operator is defined, at least for g € O(D), in the sense that
h;—“ﬂg € A3, (D). The operator can be represented by the generalized Hankel matrix

fo 2°H 3R ..
. 5 20 f1 2928 fy 293P f3 ..
{A4+n)"A+m)" futmlnm>o = | 307, 3298 7, 32387, ...

The following proposition links the generalized Hankel operator to weighted admissibility.

Proposition 4.2. Let C € H*(D)*, and let ¢ € H*(D) be given by Cf = (f,c). If B > 0, then C is
discrete 23-admissible for S if and only hg’o : H*(D) — H2(D) is bounded.

Proof. Observe that

(1 + ’I’L)’BCSnf = (1 + n)ﬁ Z fmCntm = (1 + n)ﬁ(haf)n = (hlg)of)”'

m=0

Parseval’s identity now completes the proof:

Yo +n)es 2 = (0 nl® = 10 f iy O
n=0 n=0

The boundedness of the operators hj}’ﬁ has been characterized in [8] and [12]. The results
have been collected in [13, Chapter 6.8].

Proposition 4.3. Let f € H?(D). With the notation above we have that:

(i) Let B > 0. Then each of the operators h(}’ﬂ : H*(D) — H2(D) and h?—’o : H2(D) — H2(D) is
bounded if and only if D? f € BMOA, with |\h‘}: and ||h§:°

to [|D? fll Baro-
(74) Let o, 8 > 0. Then the operator h?’ﬁ : H*(D) — H2(D) is bounded if and only if f € Ay p, with

comparable

B
52 )~ 7720y 20y~ 727

|‘h%ﬁ||H2(D)—>H27®) comparable to HfH/la+5‘

4.2 Characterizing discrete S-admissibility of the shift on H?(DD).

Similar to the case for the shift on weighted Bergman spaces considered in Section 2, the truth
of the weighted Weiss conjecture for the shift on H?(D) is related to whether the operators
h§’° = DPhz and hg’ﬁ = heDP satisfy a RKT. We show that this is true for the former class of
operators but false for the latter.

Theorem 4.4. Let ¢ € H*(D) and 8 > 0. The following are equivalent:

(i) The operator h?o : H*(D) — H2(D) is bounded.
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(i) The operator hg’o - H*(D) — H2(D) is bounded on reproducing kernels, i.e.

M = sup(1 — |[w|*)Y2|h2 k,, < o0.
web

I =y
,0 ~
Moreover ||h§ ||H2(D) mm) ~ M-

Proof. Tt is obvious that (i) = (i7). By Proposition 4.3 we conclude that M < ||D”¢|/gyo and
also that in order to prove (i) = (i) it is sufficient to show that || D®¢c| g0 < M. By Proposition
4.1 it is enough to show that

S (DP e, o) S M,

JCI
for any dyadic interval I C T.

Consider a fixed I and define s; = (Dﬁc7 py) for J C I. It is immediate that sj = (c, Dﬁgoj).
Since c is analytic,

sy =(c,D’Pyy)
<Ckw,hD PLpJ>

= (P(ckw), hD" Py )

= (g9, D" (hD" Py,)),

where w = /1 — %6”1, G = DPhzky and h : D — C is the analytic function given by h(z) =

(1 — wz). Note that 1 — |w|* = %Tl and that by hypothesis ||g||? < |—|2

It is an elementary exercise to show that

(D207 Ppy)) () = ((m) ~ 0(12) Bstn—1)), meN,

from which it quickly follows that
D P(hDPPypy) = hyg; + GFPyy,

where
Py = (1- (1) Vestn-1),  nen

An important observation is that

’1( i )ﬁ‘< L a1 (14)

So far, it has been shown that
s = (gh, Pos) +©{g, FPyp)

and this expression is now decomposed further. Let x be the characteristic function of the interval
[:C[ = 2|, z; + 2|I‘) Then,

sy = {(gh, Poj) + (g, FPp;)
= (xgh, Poj) +w(g, FPo;) + (9,(1 — x)hPg;),

so that

STUD el < 92 PEA

JCI j=1JCI



The weighted Weiss conjecture and reproducing kernel theses for generalized Hankel operators 15

where

s = (xgh, Poy),

852) = (g, FPypy;),

s = (g, (1= 0)hPg.).
We now handle these three parts separately.

Since {¢}jcr forms an orthonormal set in L*(T) it follows immediately from Bessel’s in-
equality that

SIS < || Phg]|?

JCI
- 2
< |[xhy]|
- / l9(£®) P (e ™) 2dz
le—xr|<2|I|
_ M?
< sup |h(e )P
|z—xr|<2|T] |I‘

Using simple geometric arguments it is easy to show that sup|,_,, <2z |h(e~™)|? < |I? which in

turn gives
ST < .
JCI

The second set of terms is estimated using Holder’s inequality:

2
5P < llgll*IFPey | | ||FPSOI||

| 1

It is easy to show that
~ _o—j/2 inzy 7 (T
Baln) = 279/2em0g (1)

Since (&) = 0 for |¢| < 1/3 we have that all ¢ ;(n) vanish for n < 27/3. Using this together with
(14) gives

|sl3J(")|2

Z |67 (n)

1 +n
PPy = z]

14293
< — | —F
s <2+2J/3)

1 2
~ (2 + 2J‘/3)
<P

Hence,

o) 2
(2)2 n( I\ _ 52
SsPPrs 7 Z| ;2 <27 = 2021,

JCI

Estimating the final set of terms is similar to estimating the second, although somewhat more
sophisticated. Using Holder’s inequality,

55717 < m (1= hPes .
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We now need to show that estimate [|(1 — hosl? < |J|2t To do this, notice that h = hi + rha
where hy(z) = 1 —r +r(e =2 — ! 0720) hy(a) =1 - '@7%) and 7 = |u).

Assuming that J C I we have that
lhi(z)| S (1 =7) + |2y — 2| S
Now, note that Py; is a periodification of the function ¥4 = ]:71()(]1{_*_1[)), where xg, is the

indicator function of Ry . This gives

|(hePpy)(z)| = 2j/2|(1 _ 6i(1*z‘1))|

Y@@ -y - QWk))’

kEZ
SPP) @ -2 )Y vr (2 (w — 2y — 27k))
keZ
< 27/2 Z(x —xy— 27k + 27rk)1/)+(2j(36 —xj —2rk))
kEZ
<27I/? Z 2j(x -z — 27"k)¢+(2j(x —zy = 2nk))
kEZ
+ 93 /2 Z 27Tk1/1+(2j(m —xy— 271']6))‘ .
keZ
Consequently,
|(hPpy)(2)] S ¢1(2) + ¢2(2) + ¢3(),
where

¢1(z) = [1][Pey ()],

> V(2 -2y - 2mk)ps (2 (2 — 2y — 2k))
kezZ

$a(z) = 27777

I

p3(z) = 27/2 .

> 2wk (2 (2 — 2y — 21k))

kEZ

Now, since 1+ is a Schwartz function,

11— )| = / 61(2) 2de
2|I<|z—zr|<m

2
< |11? 2 1Ny (2 (x — xy — 2nK))| d
[I|<|z—zs|<m kez
<P 23 64 (2 (@ — 2y — 27k)) | da
< |z—zs|<m kez
< 1P 2|4 (2@~ w)))| do
|<|z—=z;|
(letting W(z—xy) = u) = |I)? [+ (u)|dx
23 |1|<|u
1
<2 —dx
23|I W
~ L ~|J)?.

~ 22_]
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In the computation above we have used that |>°, ., Yy (2 (x—zy— 27rk))| is uniformly bounded
for z,z; € R,j € N.

Similarly [|(1 — x)é2|%, (1 = x)¢3]|* < |J]?. This finally gives

M2
> 1§ < i 2= ke

JCI JCI

9 3
DD IR

JCI k=1

M2
DL

JCI

M2 & %
-7 () —wemn
n=0

A

A

which completes the proof. O

Corollary 4.5. Let C € H*(D)* and 8 > 0. Then C is discrete B-admissible for the shift operator
S: H?(D) — H*(D) if and only if

M = sup(l - |w|2)1/2HC’(I— wS
web

)71”,4;,1@)* < oo.

Moreover M is comparable to the constant of admissibility.
Proof. Let Cf = (f,c) for f € H*(D). Then

(D2 hakuw, g) = (kwD"/?g,c)
= (1 - |w)"2c(1 —wS) " D%,

for analytic polynomials g. Recalling that D%/? H?*(D) — A%_l(ID)) is an isomorphism,

B/2; _ 12172 a1
sup || D% Zhekw | gy = sup (1~ [wl) O ~28) " 4 -
The result now follows from Proposition 4.2 and Theorem 4.4. [

4.3 Regarding the failure of (4) = (3).

For o € R and w € D, define the function

1

g%(z)zm, z e D.

For positive a, g is a (non-normalized) reproducing kernel in the Bergman space A2_; (D).

Lemma 4.6. Let 8 > 0 and assume that c € Ag. Then for any o > 8 —1/2 there is a constant Mo
such that

S‘é%(l - |w|2)1/2+a76||h593;||H27®) < Mo < 0.
w
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Proof. Let w € D. We will approximate Hhagq‘f,HW by Hhagﬂ,HHzi(D) for v € (a — B, ).

Since ¢ € Ag, Proposition 4.3 implies that the operator he~VAeT - H2(D) - H2(D) is
bounded. Using this and boundedness of D~(¥=a+7) . Ag(ﬁ_aJﬂ)_l(D) — H?(D) gives

Ihegu lgzmy < 1P " heghll =y

— HDa—’YhEDﬁ—a'l"YD—(ﬁ—OH"Y)gZ)HHZ(D)
SID™m g e o

= llgillaz, ... .o

It is well known from the theory of Bergman spaces that

1/2
sup (1 — |w|?)2T* g2 4o
weD

3 pmasm—1 @ = Ma <00, (15)

for some constant M. Hence, for a fixed w € D,

M,
_ ot
Hhcg’wth(D) < (1 — |w|2)1/2+u—,6"

In particular { ||hgg]u|\m}7€(a, 8,a) 18 a bounded family of functions, so by reflexivity it has a
weakly convergent subsequence as v — «. Consequently, if it can be shown that

weak — lim hzgyl, = hzgy, (16)
Y=o

then the proof is complete, since then thggﬂm < SUPyc(a—B,a) Hhagz;HW~

The functions hzgy, and hzgQ are well defined elements of H? (D) so, for z € D,

(hegiy)(2) = (cgi)
1
B / (1- w<)1+7 Tz
1 o
/ 1 _ wC)l-{-a 1— C m(C) - h‘cgw(z)7 v a,
where the limit is justified by dominated convergence. This implies that (16) holds. O

A consequence of Lemma 4.6 is the following theorem, which is a partial generalization the
main result of [21] to 8 > 1.

Theorem 4.7. Let 3 > 0. Then there exists Cz € H*(D)* that is not discrete time [3-admissible for
S, but still satisfies

1-s o —
sup (1 — [w|?) = s (1 = 08) " ra(py- < o0
web
-1
for any a > ﬁT

Proof. The space D™ BI2BMOA is strictly included in /15/2 Choose cg € /1 \D B/2BMOA and
define Cg by

Csf = (f,cp),  fe€HD).

By Theorem 4.3, this operator is not S-admissible for S. However, it satisfies the resolvent condi-
tion by Lemma 4.6. O
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We remark that Lemma 4.6 still holds if g§ is replaced by D%ky. The proof is preserved,
word for word, except that the standard Bergman space estimate (15) is replaced by the estimate

[P . -
H2(D) ~ (1 _ ‘w|2)1/2+o¢76

B

This in turn follows from the estimate

H?=1(i+7) _ n’
n! T (147

{1—1—0(%)}, neNn~¢{-1,-2,...1,

see [24, Chap. 3]. This modified version of Lemma 4.6 immediately implies the following coun-
terexample.

Theorem 4.8. Let 3 > 0. Then there exists ¢ € H?(D) such that the generalized Hankel operator
hg”B : H*(D) — H2(D) does not satisfy the reproducing kernel thesis.

5 Admissibility of the right-shift semigroup on L? ®R4)

We begin with a number of technical definitions which are required in order to characterise g-
admissibility, 8 > 0, of the right-shift semigroup on L?(R).

5.1 Distribution spaces and the p-transform.

Let ¢ denote the inverse Fourier transform F~1'¢ and define the space
Z={peS:¢® =0,k=0,1,2,...}

with the topology inherited from the Schwartz space S. Its topological dual Z’ is isomorphic to
S’/P (the space of tempered distributions modulo polynomials). Much of the notation used in
this section is taken from [1]. For a slightly more detailed introduction to the space 2’ we refer
to [15].

Let ¢ € S be a function such that

supp ¢ C {€ € R:1/2 < |¢| <2}, (17)

|9(§) > ¢ >0 for 3/5 <[¢] <5/3, (18)
and also

Y oe@T) =1,  ceR\{0} (19)

For each n € Z define
on(z) =2"p(2"2), z eR.

From [2, Lemma 6.9] we cite the following lemma.

Lemma 5.1. Assume that ¢ satisfies (17) and (18). Then there ezists 1 € S that also satisfies (17)
and (18) and that

> e )P(2n) =1,  £#0.

nez
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We remark that in [1] the existence of ¢ as in the above lemma was stated as a requirement
in the choice of ¢.

Let a € R and 0 < p,q < oo. The Besov space Bgz,q is defined as the set of f € Z’ such that
£l gooa := I{2"lon * fllLe Inezlliaz)y < oo

If p < oo, define the Triebel-Lizorkin space Fj5? as the set of f € 2’ such that
. gna 7\ Y4
1l = 1( 3@ m  11)7) " llas < oo
nez
The exceptional space F 257 is defined as the set of f € Z’ such that

1 e 1/q

Mlpee =sw (g7 [ @ lenns)?) " <o,
had Pl Jp _
n=—log, | P|

where the supremum is taken over all dyadic intervals P = [k277, (k +1)277). The last definition
is the one given in [1] where it is also proved to be equivalent to the definition given in [15]. The
definitions can be proved to be independent of the choice of ¢, [15, p. 240].

Given a function g : R — C we define the multiplication operator M) : 2z’ - Z' by

(Mg /)@) = g(@)f(2),  fe 2
provided that this is well defined. For o € R, define the inverse Riesz potential D* : 2’ — Z’ by
D f = F(Mga f).
From [15, p. 242, Theorem 1; p. 244, Theorem] we collect the following results.

Proposition 5.2. Let o, € R and 0 < p,q < oo. Then DP . Bg’q — Bg_’g’q 18 a surjective

isomorphism. If p < oo, then DB Ff’q — Fﬁfﬁ’q is a surjective isomorphism. Moreover we have the
special cases F20’2 = L? and F%? = BMO(R).

We remark that by the duality identity (Fy"%)* = fomeis (see [1, Equation (5.2)]) valid for
q € [1,00) the conclusion of Proposition 5.2 holds also for the spaces F5g? whenever ¢ € (1,00].
This shows in particular that D™*BMO(R) = F$%5°.

Given ¢ € Z, define Py ¢ = F(xr, $) where Xr, denotes the indicator function of the positive
real numbers. Also define Py : 2/ — 2’ by

(6, Prf)=(Pro,f), ¢€Z,feZ,

and P_ = I — P,. Test functions and distributions belonging to 24 = P4 Z and Z}, = Py Z’
respectively will be referred to as analytic. The main reason for this is that

P.L? = H*(Cy),
the Hardy space of the right half plane.

Let o € R and 0 < p,q < co. We will work with sequences s = {sg}¢ indexed by the set of
dyadic intervals on R. If p < co, define the space f; 4 of sequences such that

/
lsll oo := | (0@ 1s01%0)7) || < oo,
Q

Lr



The weighted Weiss conjecture and reproducing kernel theses for generalized Hankel operators 21

where X = |Q|_1/2><Q is the L?-normalized indicator function of Q. In the special case p = ¢ = 2
the integral in the above norm is easily computed and we have that

/
ol oz = (32101 sql?)
Q

The space f&? is defined by the norm

1 ey i~ 1/
sl i= swn (5 [ 3 (@I Isqlie)?) "

P dyadic QcP

In particular we have that

1 _ 1/2
wmmstﬁZm“mﬂ.

P dyadic QCP

For each dyadic interval @, define the dilation translation

vole) =1QI7?p (iE I_CQTQ>’ z €R, (20)

where zg is the left endpoint of Q. The sequence {1g}q is defined similarly. We define the
p-transform of a distribution f € Z’ by

Sef ={{feq)}q-
The inverse -transform of a sequence s = {sg}¢ is defined by
Tys= Z sQYq,
Q

where 9 is as in Lemma 5.1. The importance of the ¢-transform is the following ([1, Theorem
2.2)).

Proposition 5.3. Leta € R and 0 < p,q < co. The operators Sy : F.';,l’q — f;’q and Ty, : f;"q — F;,q
are bounded. Moreover Ty, o Sy is the identity on Fy'?. In particular £l oo = 1SSl foa
P P

5.2 Continuous time admissibility and Hankel operators.

Let c € Z' . Define the Hankel type operator H. : Zy — Z’ by
Hef =P (cf),  [eZy.

First we observe that the operator H. can be defined in a natural way on a larger class of functions
that just Z4. Let f € Z/,. Formally,
<¢a HCf) = <¢a Cf)

= (¢, ¢x f)

= (($(E+m), f(m).&€), o€ Z-.
The last expression is well defined provided that (¢(¢ + 1), f(n)) is a Schwartz function that
vanishes on Ry . This is the case if, for example, f = K, where

1
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for some X € C4, since then
X ife>0
. e i ,
Kx\(§) = o
0 if £ <0.
If K is thought of as a function of iz rather than of z, then K is a reproducing kernel of H?(C..)
with respect to A\. We therefore say that the operator H. is defined on the set of reproducing
kernels. For future convenience we also define Kz = D7K, whenever v € R. If v > 0 then K;\Y
(multiplied with a constant) is a reproducing kernel for the space A,Qy,l((CJr). As long as v > —1
we have that the map HCK;\’ : Z_ — C is well defined.

Let (S(t))¢>0 be the right shift semigroup on L*(R4). Its infinitesimal generator A is given
by
d 1,2 2 I r2
A=-S. D) =WPAR:) = {f e L*(Ry): ' € L’(R4), /(0) = 0},
see [16, Example 2.4.5] for details. If C' € D(A)* then C(I — A)~* € L?*(R4)* and so there is a
unique ¢o € L?(R4) such that

C(I-A)T'f=(fico)  [e€L*(Ry) (21)
Conversely this equation generates an A-bounded linear functional for any ¢y € L*(R4.).

In order to compute fractional power resolvents, the following lemma ([4, Proposition 3.3.5])
is useful.

Lemma 5.4. Let B be the generator of the contractive Co-semigroup (T'(t))t>0 on a Banach space X.
Then for any A € C4 and 8> 0

_ 1 * g _
A - B ﬁ:—/ 71T (8)e Pt
U IOF

A simple consequence is the following.

Lemma 5.5. Let f € Z1, A € C4, B8 > 0 and A be the infinitesimal generator of the right-shift
semigroup on L?(Ry). Then

F(OT - 4)" O f) = fxf.
The following proposition relates reproducing kernels and generalised Hankel operators to
the weighted Weiss conjecture.

Proposition 5.6. Let A be the infinitesimal generator of the right shift semigroup, C € D(A)* and
B>0. If co € L?(Ry) is related to C through (21) and c € 2’ is given by

c(§) = (1 +ig)(Feo)(§), CeR,
where ¢o(s) = co(—s). Then:
(i) Whenever f € Z,,

®)"

In particular, since F~'Z4 is dense in D(A), C is 2B-admissible for (S(t))i>o if and only if
DPH. : Zy — L*(R) extends to a bounded linear operator from FL?(R) to L*(R).
(i)

o0
[ @ sl - oA
0

|COL — A)™ M6 = || DPH K|

||L2(R+,dac)* |L2(]R)'

In particular the resolvent estimate
sup (ReA)"/?||C(\I — A) ™" My,
AEC,

||L2(]R+,dac)* < o0

holds if and only if DPH, Zy — L? (R) 4s bounded on reproducing kernels.
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(iii)

ler =)=, =[RS

(R dz)* ®)

In particular the resolvent estimate

o0

1/2 3 —(1+8)
AS;‘&(RQA) |C(AI - A) L2 ey ey <

holds if and only if H.D" Zy — L? (R) 4s bounded on reproducing kernels.

Proof. (i) Take f € Z1 and consider the function

) f ift<
gy it CS(-t)f : <0,
0 if t > 0.

Then, for ¢t <0,

95(t) = C(I = A) (I = A)S(-t)f
= (I = A)S(-t)f,co)

= [ G+ s
= (f+()) *ao(t).
Hence,
/Oo twlcS(t)flgf“:/0 17 os(=0) " at
t=0 t=—o0

= [ Migaxe_ ((F+ (D)) *0)|[32

= [DPP-((1 +i&) fé0)|| 2

= ||DPHef]| ..

(i7) Using Lemma 5.5 together with the elementary identity f = ]-'f we obtain,

COL = A) " My f = C(I = A)THI = A)A = A) " My
= {((I — A\ — A) ™" My5 f,co)
= ((1+i&)K\D" f,é)
= ((1+1i€)Kéo, DP f)

= (DPH:K), f).

The result follows by taking the supremum over all f € Z4 of unit length.
(744) This is similar to the proof of (ii). O

In the paper [8] the authors characterize boundedness of the operators D*H.DP for o, 8 >
0. In particular we need [8, Theorem 5.1] and [8, Theorem 5.3] (together with a few technical
comments from the examples).

Proposition 5.7. For ¢ € 2’ we have that:
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(i) Let 8 > 0. Then both DPH, : Z — L*(R) and H.D® : Zy — L*(R) extend to bounded linear
operators from FL?(Ry) to L?(R) if and only if D¢ € BMO(R), with ||DﬁHC||]-'L2(R+)—>L2(]R)
and ||HCD5||]:L2(R+)%L2(R) comparable to ”DBCHBMO(R)'

(ii) Let a,3 > 0. Then D*H.D"? : Zy — L*(R) extends to a bounded linear operator from FL?(R.y)
to L*(R) if and only if c € B with ||D°‘HCDBH]:L2(]R+)_>L2 (r) comparable to ”CHBSJB'

5.3 The Reproducing Kernel Thesis for D*H..

The main result of this section is the following.
Theorem 5.8. Let ¢ € Z' and f > 0. The following are equivalent:

(i) The operator DPH,. : Z, — L*(R) extends to a bounded operator on H*(C,);
(ii) The operator DPH,. : Z, — L*(R) is bounded on reproducing kernels, i.c.

M = sup (ReA)'/?|DPH. K, ||
AEC

L2(R) < 00.

Moreover ||D6Hc||H2(C+)—>L2(R) ~ M.

Proof. (i) = (i) is trivial. By Proposition 5.7 the converse statement follows if ||Dﬁc\|BMO(R) <M.

By Proposition 5.2 we need to show that c € Fﬁ;? which by Proposition 5.3 is equivalent to that
Spc € ffo’z. Define the sequence sg = (c, p@). It is sufficient to prove that

1/2

1 ) 2
sup | 757 D 1@ Isal <M.
P dyadic QCP

To this end, consider a fixed dyadic interval P. Since ¢ € 2’|
sq = (cKx, hP_pq) = (HeKy, hP—pq) = (g, D™ P (hP_gq)),
where A\ = |P| 4+ izp, g = D’H.K\ and h(z) = X+ iz. In the above calculation we have used that

I_LP,gaQ € Z_. Note that
2

M

2

< —.
Hg||L2(R) = ‘P|

Let x € S be a smooth cutoff such that x(z) = 1 when |z — zp| < 2|P|, 0 < x(x) < 1 when
2|P| < |x — zp| < 3|P| and x(z) = 0 when |z — zp| > 3|P|. We have

so = (9,0 P(hP-¢q)) = (xg+ (1 - x)g, D P (hP_q))
= (hD™?(xg), P-0q) + (g, (1 = x\)D~ P (hP-q)).

A calculation shows that

WD P (xg) = F ( {X + d%} Mig)-5 (X * g))

_ d
=F ()\M|g|fﬁ(5< *ﬁ)) +F <M|§|75 d¥(5<*§)> -F (BMsgn(§)|£|*(1+B)()v<*g))

= D_,B (h’Xg) - ﬂD_(1+B)]: (Msgn(é) ()2 * g)) .
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This implies that sg = 88) + sg) + SS’), where

sy = <D_B (hx9)7P—sOQ>,
s = =8 (D" F (Mygn(e) (X #3))  P-vq)
) = (5,000 (1P-0)).

The proof is completed by showing that

SIRITFsP P s mp, j=1,23.
QCP
First, using Propositions 5.2 and 5.3,
— 1)12 — — 2
> 17151 = 3 1R DT P- (hxg)  wa)
QCP QCP

<> 1QITPUD PP (hxg) . 0q)|”
Q

= ||5o (D77 P- (hxg)) [ .2
< | D~P P (hxg) | g2
~[|P- (hxg) || o2

~ HP— (hxg) ||L2

< / A+ iz|?|g(z)Pdz < |P|M>.
|z—zp|<3|P|
The second part is estimated using Holders inequality on each term.

155 |* = B2(D™ T F (Mygniey (X + 9)) » P-o) |

= B[(M sgn(€)|e|-+8) (X*Q),XR,SEQHQ

1

= </ €70+ (+3) ©) !sbcz@)!df)

Tl
242 ~ <112
SIQPT I *al7 e m
242 2
< 1R lgll72 gy

- |Q|2+2,8M2
- P

In the calculation we have used that {pg}qg is an L?-normalized sequence. Summing up,

_ M > P
Z 0l 2B|Sg)| Z |Q| 22 <|2n|> . — oM |P|.
n=0

QCP QCP

Finally, apply Holders inequality to each term in the third and final sum to give
3 _B (T 2
PP <2 (1) D7 (P ) [ 22

It is elementary to show

Before summing up we need to approximate H 1-x%) DB (f_LP,goQ) Hiz

that ,
po(6) = QY228 3(1Qle), £ eR.
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This gives that for z € R,
Dfﬁ (f_LP—SOQ) (:E) =F (Mlgl—ﬁ [ d§j| (XR th)) (x)

0 .
-/ |5|—B|Q|1/2e“Q5[(A—ixQ)¢<|Q|§> Q1 @) (Qle) | € ae

T —x

0
(etting u = 1Q16) = Q"% [ jul [ (3~ i) ¢tw) + 1@l () (w]e ™ (T )

=112 (A —irg) D™ Pp+1QIDF (Mo P-) | (\_T\Q) |

Assuming Q C P we then obtain

D77 (hP-pq) (@)* S |PPIQIP ™ |¢ (m |_Q‘|”Q) ’ ,  zeR, (23)
where , ,
¢ =D P_g|” +|D7F (M P-g)[".
Using (23),
10007 (Pga) 2. < | 1D (P pg) @)
|z—zp|>2|P|

dx

< P2 28—1 T—TQ
‘/|¢—xQ|>|P|' e o 52)

(letting w=2_ mQ) = / |P|2‘Q|2ﬂ|¢(u)‘d“~
QI u|> 121

QT
Since ¢ decays like a Schwartz function,

()] <

1
|2’

rz €R,

and hence,

_3 /= 1
|a-0D7 (o) 5 [, 1RGP
|z\>|‘Q‘ ||

S QPP
Combining the above inequality with (22) gives

5D < A jgpp+es,

Gl
Summing up,
- |P| 2
SR OPr s Y M gp - Z ( — 20|, 0
QCP QCP ‘P| ‘P| 2

Corollary 5.9. Let A denote the infinitesimal generator of the right shift semigroup (S(t))t>0 and
B8 >0. Then C € D(A)* is 28-admissible for (S(t)):>o if and only if

< o0.

— 1/2 N
M—Aseua(Re/\) [COT =A™ Migps || 2, ga-

Moreover the constant M is comparable to the constant of admissibility.

Proof. This follows immediately from Theorem 5.8 and Proposition 5.6. [
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5.4 Regarding the failure of (2) = (1).

We have the following analogue of Lemma 4.6.

Lemma 5.10. Let 8> 0 and c € Z'_. Then the following statements are true:

(7) If for some a > B — 1/2 there exists a constant Ma such that

1/24a—
M, = sup (Rex)'/2+e BHHCKj'f|’H2(C+) < 0o
AeC
then c € Bgo .
(#3) If a > max{B —1/2,0}, ce BE. and moreover
o2) ¢ L%(R) (24)
1+ix ’
then there exists a constant My such that
_ 1/24a—0 «
Mo = )\sell(cl)+(Re)\) |HeKS |‘H2(C+) < o0.

Proof. In order to prove the first statement let {pn}necz be as in section 5.1. We need to show
that
(g, onx )| S27"llglls,  neZygeZ.

Since ¢ € 2! we may replace o, with P_qn,.

Consider fixed n € Z, g € Z. By definition of the convolution,
<g7 Pn * C> = <¢7 C),

where ¢ : z — (g(z + y), on(y)).

Introduce the functions gx = gX(r2—n, (kt1)2-m) and ¢ : @ = (gr(z + y),¢n(y)), where
X[k2—n,(k+1)2-n) denotes the characteristic function of [k27",(k + 1)27"). A quick calculation
shows that qAbk = §p$n so that ¢, € Z_. It is also easy to show that ¢ = Zkez ¢ with convergence
in the Schwartz topology.

Choose the sequence \,, = 27" + k27", k € Z. Then

<g,‘Pn * C> = Z<¢kvc>

kezZ

=Y (@) —i2)' T, c(2) DY K, (2))
keZ

=3 (er(@) (A —iz)'T, (HeDV Ky, ) (2)).
kEZ

This gives

(g, n x )| < D [(1(@) Ak — i2)' %, (HDV K, ) ()]
kEZ

< |ler @) O — i) | L [(He DY Kx ) (2)]|
kEZ

Mo ) o
< 92—n(1/24a—p) Z "¢k(x)(Ak - Z:B)1+ HL2'
kEZ
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We come down to approximating ||¢y (z)( Ay —iz) 7| 12. Applying Minkowski’s inequality in
the first step gives

‘|¢k(x)(>‘k _ix)1+a‘|L2 < /‘gk(y)l“@n(y_x)(Ak —i$)1+a||L2(d$)dy

= |lgll: sup en(@) (A —i(y —2)) T :
ye[kz—n,(k+1)2—n)|| n Il 22 )

By a change of variables, it follows that for each y € [k27", (k +1)27"),

lon (@) =iy = ) ¥ [ Fa gy S 2 (127" + iy — k27 P2 / [po(@)[*da

27204 a2 o) )

< 27n(1+2a) )

Consequently,
M .
gy 0n+0)| < o mra=gy D @) O +i2) T
kez
M, _
S 3o S gkl = M2 gl
kezZ

and hence, c € BEO.

To prove the second statement, fix A € Cy, let v € (max{a — 3,0},a) and consider the
functions HcK . Note that

[HEK ]| < [Ix(-1,0)Migja—n (&% K| + [Ix=1,0 M1 jgja— (@5 K| + [|X(=00, 1) Migja—n (€% K3) |
S X 1.0) Miga— (@ KJ)|| + | D77 He DTV K1

By the assumption (24), H.K] — HcK§ with convergence in L*(R) as v — a. Hence, it is easy
to see that [[x(—1,0)Mi_|¢ja—n (¢ * KJ)|| = 0 as v — a. Analogous to the proof of Lemma 4.6, it
follows that

e e 1 o TU S
which completes the proof. O

Lemma 5.10 will provide a counterexample to the weighted Weiss conjecture once it has been
proven that a certain set of operator symbols is nonempty.

Lemma 5.11. Let 8 > 0. Then there exists ¢ € Z_ with the following properties:

(4)
c(z)
14z er’ (R)
(i)
DPc ¢ BMO(R).
(iid)

D’BceBgo.
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Proof. We construct ¢ explicitly. Let fo € S be a smooth function with supp(fo) c [~1, —1/2] and
let f = My ;s fo. Define c € Z° by

5(5):ZM7 ¢eR.

It is clear that ¢ € L?(R) and consequently (i) holds.

Furthermore DPc = M 4iz9 where

§©) =) foc+2"), ¢eRr

n=0
Since clearly g ¢ L?(R) we have that D’c ¢ BMO(R).

Finally, since the support of ¢ is sparse,
B _ 2™y i2ntly
fon s (070@)] = | [ onte =010 (27 + 2 ay| < 2l o llonlorco

which by the normalization of {¢n}nez is uniformly bounded for z € R,n € Z. O

Theorem 5.12. Let f > 0 and let A be the infinitesimal generator of the right shift semigroup on
L*(R4.). There exists an operator Cg € D(A)* which is not 23-admissible but still satisfies

sup (Re)\)l/2+“_’8”0(5\1 - 141)_(1+°‘)||L2 00

L <
AEC, (Ry)
for any o > max{s — 1/2,0}.

Proof. Let cg € 2’ have the properties stated in Lemma 5.11. By the first property there is
a corresponding observation operator Cg € D(A)*. By Lemma 5.10 this operator satisfies the
resolvent condition while by Propositions 5.6 and 5.7 it is not 28-admissible. O

Analogous to the discrete time case, we obtain the following result.

Theorem 5.13. Let 8 > 0. There exists ¢ € Z' such that the operator H.D® : H*(C4) — L*(R)
does not satisfy the reproducing kernel thesis.
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