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Abstract

An accurate assessment for fatigue damage as a function of activa-
tion and deactivation cycles is vital for the design of many engineering
parts. In this paper we extend the probabilistic and local approach to
this problem proposed in [1], [2] and [3] to the case of non-constant
temperature fields and thermomechanical loading. The method has
been implemented as a finite element postprocessor and applied to an
example case of a gas-turbine blade which is made of a conventionally
cast nickel base superalloy.

Keywords: Fatigue Crack Initiation; Probabilistic Fatigue; FE Analysis;
Hazard Function;

1 Introduction

The necessity for a flexible service of a lot of engineering parts such as
gas turbines leads to the importance of fatigue analysis, where probabilistic
models can be very valuable. In this work, we present a probabilistic model
for low-cycle fatigue (LCF) which can be derived from the Poisson point
process or from a spatial hazard approach, confer [1] and [2], respectively.
The model can be applied to polycrystalline metal which is sufficiently fine-
grained so that isotropic material behavior can be assumed and continuum
mechanics can be employed. Here, failure of a component is defined to be
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given by the initiation of the first LCF crack. The probabilistic model yields
the probability of failure (PoF) as a function of the number of load cycles.
We have extended the model proposed in [1], [2] and [3] by a temperature
model of the LCF parameters as well as the percentile bootstrap method in
order to be able to consider uncertainties due to LCF test data. In contrast
to the deterministic safe-life approach [4], this extended probabilistic LCF
model takes inhomogeneous temperature and strain fields, size effects and
uncertainties due to specific calibration data into account.

We apply the probabilistic model to a gas-turbine blade which is sub-
jected to thermomechanical loading during the operating state. In this case,
the corresponding LCF failure mechanism is surface driven. Having com-
puted the total PoF we also consider and visualize the hazard density on
the blade’s surface.

2 A Probabilistic Model for LCF

In the following, we first briefly revisit the spatial hazard approach for sur-
face driven LCF presented in [2] and [3] and consider LCF as a failure-time
process. If N denotes the random variable which represents the cycle of first
crack initiation and P the underlying probability measure, the hazard rate
is defined by

h(n) = lim
∆n→0

P (n < N ≤ n+ ∆n|N > n)

∆n
=

fN (n)

1− FN (n)
, (1)

confer [5]. Here, we model N as a continuous random variable in agreement
with the literature, confer [4] and [6]. FN (n) = P (N ≤ n) is the cumulative
distribution function and fN (n) = dFN (n)/dn the corresponding density
function. The hazard rate h is also called instantaneous failure rate as for a
small step ∆n the expression h(n)·∆n is an approximation for the propensity
of failure in the next time step ∆n, given no failure to time n.

Considering strain controlled LCF failure mechanism on a component
which is made of polycrystalline metal and represented by a domain Ω, we
assume according to [2] and [3] that the surface zone which is affected from
the crack initiation process of a single LCF crack is small with respect to
the surface of the component. Thus, we suppose that in any subregion A
of the component’s surface ∂Ω, the corresponding hazard rate hA is a local
functional of the displacement field u and the temperature field T in that
particular region with

hA(n) =

∫
A
ρ(n;∇u, T ) dA. (2)

Here, ∇u is the Jacobian matrix of u. We call the integrand ρ hazard
density function which is the core of this spatial hazard approach. For inho-
mogeneous strain fields εa = εa(∇u, T ) we obtain h(n) =

∫
∂Ω ρ(n; εa, T ) dA.
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Here, εa is an equivalent strain amplitude which can be derived from ther-
moelastic finite element analysis (FEA) with subsequent application of stress-
strain relationships. For more details confer [3], [4] and [7].

Taking FN (n) = 1 − exp
(
−
∫ n

0 h(s) ds
)

into account the probability of
LCF crack initiation on the surface ∂Ω until cycle n is given by

FN (n) = 1− exp

(
−
∫ n

0

∫
∂Ω
ρ(s; εa, T ) dAds

)
. (3)

In Section 3 the hazard density function ρ will be employed to identify the
critical and possibly overengineered regions of the component. Considering
the statistical evalutaions in [1] and following [2] and [8] we assume that the
number N of cycles to crack initiation are Weibull distributed. Therefore,
we choose the Weibull hazard ansatz

ρ(n; εa, T ) =
m

Ndet(εa, T )

(
n

Ndet(εa, T )

)m−1

, (4)

where m is the Weibull shape and Ndet(εa, T ) determines the corresponding
Weibull scale parameter. If the Coffin-Manson-Basquin (CMB) equation –
confer [4] and [6] – is taken for the strain-life relationship the scale field
Ndet(x) = Ndet(εa(x), T (x)) is given by the solution of

εa(x) =
σ′f (T (x))

E(T (x))
(2Ndet(x))b(T (x)) + ε′f (T (x))(2Ndet(x))c(T (x)) (5)

on every point x ∈ ∂Ω, where the surface ∂Ω is subjected to an equiv-
alent strain field εa(x) and a temperature field T (x). Having chosen an
appropriate temperature model1 for the CMB parameters σ′f , b, ε

′
f , c and for

Young’s modulus E, the probabilistic model for LCF is given by the Weibull
distribution

FN (n) = 1− exp

[
−
(
n

η

)m]
for scale η =

(∫
∂Ω

1

N m
det

dA

)−1/m

(6)

and for some shape parameter m ≥ 1, which yields the probability for LCF
crack initiation to cycle n.

The model can be calibrated by means of usual maximum likelihood
methods, confer [5] and [9], for example. The parameter m determines the
scatter of the distribution where small values for m ≥ 1 correspond to a
large scatter.

The CMB parameters of the model are not the same as obtained from
fitting standard specimen data. Due to the size effect, see [6], the original
CMB approach leads to different values of the parameters for specimens
under the same temperature and strain conditions but with different gauge

1In this work we use a proprietary temperature model by Siemens AG.
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areas. The new and more physical interpretation of these parameters – in
context of the probabilistic model according to [1] and [2] – takes the size
effect and inhomogeneous strain and temperature fields into account, so that
the CMB parameters can be calibrated with LCF-test results of specimens
with arbitrary geometry2 and under arbitrary strain and temperature fields.
Thus, these newly interpreted parameters can be assigned to every such
geometry.

3 LCF Crack Initiation Life of a Turbine Blade

In this section we consider a turbine blade which is made of a polycrystalline
cast nickel-based superalloy such as RENE 80. The following probabilistic
analysis of its LCF crack initiation life is based on an FEA model for the
operating state and on the Weibull distribution (6).

Figure 1: FEA results of Abaqus 6.9-2 for the von Mises stress field (left)
and temperature field (right) of the turbine blade.

The temperature and strain field of the turbine blade in the operating
state is computed by means of a thermoelastic FEA-model within Abaqus
6.9-2 and of the Neuber shakedown method3 which considers plasticity. The
model includes approximately 190,000 tetrahedral, affine Lagrange elements
of Serendipity class with 10 nodes. Figure 1 shows the von Mises stress
and temperature field in the operating state. In the shutdown state the von
Mises stress is everywhere zero and the temperature field is set equal to that
one of the operating state which is an conservative approximation and avoids

2The specimen must consist of sufficiently many grains so that continuum mechanics
can be applied. Moreover, information on when the first LCF crack initiation occurred
has to be provided which can be practically difficult, however.

3Confer [4] and [7].
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the treatment of thermo-mechanical fatigue (TMF). The transition from the
shutdown state to the operating state and then back to the shutdown state
is considered as one load cycle. It is further assumed that the shutdown and
operating state stay the same during the cycles.

The probabilistic LCF model has been calibrated with strain controlled
LCF test results4 for standard specimens which were subjected to different
temperatures and strain amplitudes. The maximum likelihood method has
been used for the calibration which constitutes a statistical estimation of the
model parameters, confer [5]. This estimation in conjunction with comput-
ing the surface integral (6) results in a value for the Weibull scale parameter
η which we call the maximum likelihood value for η.

As the estimation depends on the LCF test results there are uncertain-
ties for the values of the model parameters. This affects the total PoF with
respect to LCF crack initiation. We employ the fully parametric bootstrap
sampling procedure in conjunction with the percentile method – confer [5]
– to consider theses additional uncertainties. We used 2,000 bootstrap sam-
ples which were obtained from the maximum likelihood estimation. These
samples are different parameter realizations of the probabilistic model for
LCF and describe the distributions of the model parameters. Using these
parameter realizations in conjunction with the FEA postprocessing results
in 2,000 values for the Weibull shape and scale parameter. Then, the law of
total probability yields the total PoF with respect to LCF crack initiation.
Note that computationally most expensive parts of the FEA postprocessing
are identifying the blade’s surface and computing the surface integral in (6)
for the bootstrap samples.

Figure 2 shows cumulative Weibull distributions corresponding to 72 of
the 2,000 bootstrap samples. Each black curve is one parameter realization
of the probabilistic model and yields different values for the PoF depending
on multiples N∗ of the maximum likelihood value of η. The law of total
probability results in the total PoF (red curve). For N∗ = 0.0796 the total
PoF is 3.032%, for example. From a design perspective one decides which
PoF is acceptable and then chooses the corresponding number of allowable
shutdown and operating cycles. Figure 3 shows the hazard density on the
turbine’s surface, where the red regions are areas with higher risk for crack
initiation. Blue regions in some cases may indicate overengineered areas
of the turbine blade. To obtain a final judgment on overengineered areas
a more complete design perspective is needed which includes performance
and efficiency criteria, for example.

4The results were provided by Siemens AG.
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Figure 2: Total PoF (red) due to LCF crack initiation and single PoF curves
(cumulative Weibull distributions, black) corresponding to 72 of the 2,000
bootstrap samples. N∗ are multiples of the maximum likelihood value for
the Weibull scale η.

4 Conclusion

In this work, we computed the hazard density and the total PoF of a tur-
bine blade under cyclic loading due to LCF crack initiation on the surface.
The computations are based on the probabilistic model for LCF as proposed
in [1], [2] and [3]. In order to consider thermomechanical loading and un-
certainties due to LCF test data we extended the model by a temperature
model and included the percentile bootstrap method, respectively.

In future, we plan to consider information on local strain gradients. LCF
cracks initiating at the surface grow into the component, where a different
local strain field may result to a different speed of crack growth, confer
[4]. Moreover, we plan to extend the probabilistic model to consider HCF,
TMF and non-stationary FEA. Finally, note that the model can be used to
optimize the total PoF with respect to the shape Ω, i.e. to find a design Ω
under certain constraints such that surface integrals of the form of (6) are
minimized. This is also called optimal reliability, confer [2].
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Figure 3: Hazard density of the analyzed turbine blade: Red areas show
critical regions and blue ones may indicate overengineered regions of the
blade.
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[6] Radaj, D.; Vormwald, M.: Ermüdungsfestigkeit, Third edition,
Springer, Berlin Heidelberg, 2007

7



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[7] Neuber, H.: Theory of Stress Concentration for Shear-Strained Pris-
matical Bodies with Arbitrary Nonlinear Stress-Strain Law, J. Appl.
Mech., 26 (1961), 544

[8] Fedelich, B.: A stochastic theory for the problem of multiple surface
crack coalescence, International Journal of Fracture, 91 (1998), 2345.

[9] Georgii, H.-O.: Stochastics - Introduction to Probability and Statistics,
de Gruyter, Berlin, 2008

8


