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AN ADAPTIVE AGGREGATION BASED DOMAIN DECOMPOSITION MULTILEVEL
METHOD FOR THE LATTICE WILSON DIRAC OPERATOR: MULTILEVEL RESULTS ∗

A. FROMMER† , K. KAHL† , S. KRIEG‡ , B. LEDER† , AND M. ROTTMANN†

Abstract. In lattice QCD computations a substantial amount of work is spent in solving linear systems arising in Wilson’s
discretization of the Dirac equations. We show first numerical results of the extension of the two-level DD-αAMG method to a
true multilevel method based on our parallel MPI-C implementation. Using additional levels pays off, allowing to cut down the
core minutes spent on one system solve by a factor of approximately 700 compared to standard Krylov subspace methods and
yielding another speed-up of a factor of 1.7 over the two-level approach.
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1. Introduction. In [12] we recently proposed an adaptive aggregation based domain decomposition
two-level (“DD-αAMG”) method to solve linear systems

Dz = b (1.1)

arising in Wilson’s discretization of the Dirac equations. Solving these systems makes up a large part of the
compute time spent in lattice QCD simulations [2, 13]. These are among the most demanding in compu-
tational science, and thus triggered intense research activity in the construction of suitable preconditioners
and, consequently, more efficient solvers for these systems in recent years [1, 5, 12, 18, 20].

Our two-level method combines a multiplicative Schwarz method (SAP) as the smoother with an ag-
gregation based coarse-level correction, components which were also used in the construction of an “inexact
deflation” approach in [18]. In contrast to the approach developed in [18], the two-level method from [12]
arranged these ingredients in a “multigrid” fashion, and thus the coarse-level system needed to be solved
only to very low accuracy in each iteration. This yielded the fastest run times for the two-level method and
now opens the path for a true multilevel method which we present in this paper.

Another multilevel approach for (1.1), which also uses an aggregation based coarse-level correction but
a different, non-stationary smoothing iteration, has been developed in [1, 5, 20]. Significant speed-ups over
traditional Krylov subspace methods were reported for this approach. We replace the smoother used in
[1, 5, 20] by SAP in order to be able to benefit from data locality and improve the strong scaling. In
addition, the new setup routine for our adaptive multilevel domain decomposition approach differs from the
one used in [20] in an important aspect: By combining the “inverse-iteration”-type approach from [18] with
a bootstrap-type approach from [4] we are able to generate appropriate test vectors more efficiently.

Experiments reported in [12] show significant speed-up of the two-level DD-αAMG method over conven-
tional Krylov-subspace methods and notable speed-up over the other hierarchical preconditioners mentioned
above. Without going into detail about the specific implementation of the method in [12], we note that its
error propagator is—as for many other two-level approaches—of the generic form

E2g = (I −MD)ν(I − PD−1c RD)(I −MD)µ.
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Here, M denotes the smoother, µ and ν are the number of pre- and post-smoothing iterations, and P and
R the interpolation and restriction operators, respectively. Note, that in practice D−1c can and will be
approximated to low accuracy.

The Wilson Dirac matrix, D, is γ5-symmetric, i.e., DΓ5 = Γ5D
† with Γ5 acting as the identity on spins

1 and 2 and the negative identity on spins 3 and 4, see [12]. We chose a γ5-symmetry preserving Galerkin
construction of the coarse-level operator so that we have R := P †, where P † denotes the conjugate transpose
of P , and Dc := P †DP. By constructing the interpolation P to group only spin 1 and 2 as well as spin 3
and 4 variables, the γ5-symmetry of D is preserved on the coarse-level, i.e., Dc is again γ5-symmetric. The
transition to a multilevel method is in principle straight-forward: one simply uses another two-level ansatz
for the solution of the linear system involving Dc and applies this construction principle recursively until a
level is reached where a direct, “exact” solution of the coarse-level system is feasible.

The remainder of this note is organized as follows. In Section 2 we introduce some notation for the
multilevel method and give details about the cycling strategy used and the setup employed. Thereafter we
present extensive numerical studies conducted with a three- and four-level method in Section 3, showing that
the speed-ups anticipated in [12] are achieved in practice. Finally, we give some concluding remarks and an
outlook on possible future progress in Section 4.

2. Domain Decomposition Adaptive Algebraic Multigrid. Our multilevel extension of the two
level-approach from [12] combines the two same components, namely a multiplicative Schwarz method
(SAP) [17, 22] as the smoother and a γ5-symmetry preserving aggregation based interpolation [1, 5, 6, 12, 20],
on every level. This means that the smoother as well as the interpolation together with the associated coarse-
level correction are of the same type on all levels of the hierarchy. As in the two-level case, and for the same
reasons (cf. [12]), the multilevel method is used as a preconditioner to a flexible Krylov subspace method,
e.g., FGMRES (see [21]).

To be more specific, let L denote the number of levels to be used in the hierarchy and denote D1 := D.
Then the setup of our method constructs interpolation operators P` for ` = 1, . . . , L − 1, which transfer
information from level ` + 1 to level `, and computes coarse-level operators D`+1 = (P`)

†D`P`. Given an
SAP smoother, represented by its error propagation operator I −M`D`, on every level as well, the simplest
multilevel cycling strategy that can be employed is the V-cycle illustrated in Algorithm 1. Here, on each
level only one recursive call is used in-between pre- and post-smoothing iterations.

Algorithm 1 z` = V-Cycle(`, b`)

1: if ` = L then
2: z` ← D−1` b`
3: else
4: z` = 0
5: for i = 1 to µ do
6: z` ← z` +M`(b` −D`z`)
7: end for
8: b`+1 ← P †` (b` −D`z`)
9: z`+1 ← V-Cycle(`+ 1, b`+1)

10: z` ← z` + P`z`+1

11: for i = 1 to ν do
12: z` ← z` +M`(b` −D`z`)
13: end for
14: end if

2.1. Multilevel K-Cycles. Numerical tests with very large configurations and small quark masses
have shown that a simple V-cycle is often not the ideal choice in terms of solver performance. Thus we
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consider using a more elaborate cycling strategy, the K-cycle suggested in [19], in our method. Instead of
only one recursive call of the coarse-level solver, a K-cycle optimally recombines several coarse-level solves.
More precisely, on every level ` we approximate the solution of the coarse-level system by a few iterations of
a flexible Krylov subspace method, which in turn is preconditioned by the K-cycle multilevel method from
level ` + 1 to L. In here, we deviate from the approach in [19] by using a stopping criterion based on the
reduction of the associated residual rather than a fixed number of iterations. We give the specific choice of
the stopping criterion used in our implementation in Section 3.

The K-cycle is illustrated in Algorithm 2. For a fixed number of iterations it can be regarded as a
standard W-cycle; see e.g. [23], with adaptive re-weighting of the approximate solutions after each recursion.

Algorithm 2 z` = K-Cycle(`, b`)

perform Algorithm 1 with line 9 replaced by
z`+1 ← FGMRES for matrix D`+1 and r.h.s. b`+1, preconditioned with K-Cycle(`+ 1, b`+1)

2.2. Multilevel Setup. For the construction of the aggregation based γ5-symmetry preserving inter-
polation operators P`, and with them the coarse-level operators D`+1, we have extended our setup from [12]
to a multilevel setup. In order to preserve the γ5-symmetry on all levels, we use a block-spin structure for
the interpolation operators on all levels. The setup process that we found to work best in practice is divided
into two phases:

1. An initial phase given as Algorithm 3 which constructs an initial multilevel hierarchy solely based on the
smoothing iteration starting with random test vectors.

2. An iterative phase given in Algorithm 4 and illustrated in Fig. 2.1, where the current multilevel method
is used to update and improve the multilevel hierarchy by generating improved test vectors.

Again we give our specific choices for the various parameters in the setup in Section 3.

1
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Fig. 2.1. Illustration of Algorithm 4 as iteration i of the iterative setup phase.

3. Numerical Results. In this section we show extensive numerical results for our multilevel domain
decomposition adaptive algebraic multigrid method (DD-αAMG), especially for the three- and four-level
setting. As its predecessor in [12] the method is implemented as a parallel program in C using MPI, and we
compute and apply the DD-αAMG preconditioner in single precision only. The outer FGMRES iteration
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Algorithm 3 initial setup phase(`)

1: if ` = 0 then
2: Let v

(1)
` , . . . , v

(N)
` be N random test vectors

3: else
4: for j = 1 to N do

5: v
(j)
` ← P †`−1v

(j)
`−1 {restricted test vectors from previous level}

6: end for
7: end if
8: for η = 1 to 3 do
9: for j = 1 to N do

10: x = 0
11: for i = 1 to η do

12: x← x+M`(v
(j)
` −D`x) {M` smoother for system with matrix D`}

13: end for
14: v(j) = x
15: end for
16: end for
17: construct P` and set D`+1 = P †`D`P`
18: if ` < L− 1 then
19: initial setup phase(`+ 1) {perform Algorithm 3 on next level}
20: end if

Algorithm 4 iterative setup phase(`,i)

1: if ` < L then
2: for j = 1 to N do

3: z` ← K-Cycle(`, v
(j)
`−1)

4: for l = ` to L− 1 do
5: v

(j)
l = zl/||zl|| {update test vectors with the iterates of each level}

6: end for
7: end for
8: for l = `, . . . , L− 1 do
9: construct Pl and Dl+1

10: end for
11: for q = 1 to i do
12: iterative setup phase(`+ 1, q) {perform Algorithm 4 on next level}
13: end for
14: end if

remains in double precision. The system on the coarsest level is solved via odd-even preconditioned GMRES
to a given relative accuracy ε. The operators on all levels, including the finest-level Wilson Dirac operator,
are implemented as proposed in [14]. That is, the underlying lattice is used to optimize the matrix vector
multiplication.

As a new feature of the implementation, processes are now allowed to idle on the coarser levels. This
is necessary since a high degree of parallelization can cause a lack of lattice sites on the coarser levels. In
our implementation we assume that sites which belong to a common aggregate always share the same pro-
cess. This allows to perform the computational part of interpolation and restriction without communication
similarly to what has been done in the two-level approach.

Table 3.1 summarizes the default parameters used in our experiments. Note that these parameters are
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parameter default

setup number of iterations ninv 6
number of test vectors N 20
size of lattice-blocks for aggregates on level 1 44

size of lattice-blocks for aggregates on level `, ` > 1 24

coarse system relative residual tolerance
(stopping criterion for the coarse system)(∗) ε 5 · 10−2

solver restart length of FGMRES nkv 10
relative residual tolerance (stopping criterion) tol 10−10

smoother number of pre-smoothing steps(∗) µ 0
number of post-smoothing steps(∗) ν 5
size of lattice-blocks in SAP(∗) 24

number of Minimal Residual (MR) iterations to
solve the local systems in SAP(∗) 3

K-cycle maximal length(∗) 5
maximal restarts(∗) 2
relative residual tolerance (stopping criterion)(∗) 10−1

Table 3.1
Parameters for the DD-αAMG multi-level method. (∗) : same in solver and setup.

id lattice size pion mass CGNR shift clover provided by
Nt ×N3

s mπ [MeV] iterations m0 term csw

1 48× 483 135 53,932 −0.09933 1.00000 BMW-c [8, 9]
2 64× 643 135 84,207 −0.05294 1.00000 BMW-c [8, 9]
3 128× 643 270 45,804 −0.34262 1.75150 CLS [7, 11]
4 128× 643 190 88,479 −0.33485 1.90952 CLS [7, 11]

Table 3.2
Configurations used together with their parameters. For details about their generation we refer to the references. Pion

masses rounded to steps of 5 MeV.

the same as those used for the two-level results in [12] except that we reduced the restart length of the outer
FGMRES routine to nkv = 10 due to memory limitations when using a small number of cores.

In Table 3.2 we give an overview of the configurations used in our tests. The iteration count of CGNR,
i.e., CG applied to the system D†Dz = D†b with the residual r = b −Dz, can be used as an indicator for
the conditioning of the respective operator. All of the configurations we use in our tests correspond to some
of the most challenging linear systems encountered in state-of-the-art lattice QCD calculations.

In what follows we explore the potential benefits of additional levels in the DD-αAMG method. Special
focus is put on the consequences of additional levels in terms of the degree of parallelization, i.e., the size
of the local lattice kept on each node. We tested the performance of the DD-αAMG method with different
numbers of levels for a variety of cost measures and analyzed the scaling behavior as a function of the bare
mass m0. Finally, we compare the DD-αAMG approach to the recently improved version of the inexact
deflation approach which now allows for inexact projection [16, 18].

All results were obtained on the Juropa machine at Jülich Supercomputing Centre, a cluster with 2,208
compute nodes, each with two Intel Xeon X5570 (Nehalem-EP) quad-core processors. This machine provides
a maximum of 8,192 cores for a single job. For compilation we used the icc-compiler with the optimization
flags -O3, -ipo, -axSSE4.2 and -m64.
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3.1. Parallel Multilevel Methods. Our first tests analyze the influence of the degree of parallelization
on the performance of the two- and three-level method. This is an important aspect since using many
processes causes idle times on the coarser levels. In order to reduce or even avoid these it might be promising
to choose a lower degree of parallelization. This helps to even out the work-load on all levels such that
the communication overhead can be mostly neglected. In this manner we aim at an overall optimal use of
resources, measured in core-minutes (time to solution multiplied with the number of cores used), rather than
just time to solution.

We tracked the performance of the two- and three-level DD-αAMG method for configurations 1 and 2
using different degrees of parallelization, reported as the size of the local lattice on each core. Our goal is to
find the sweet spot with respect to consumed core minutes.
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Fig. 3.1. Estimation of the sweet spot on configuration 1.

Figure 3.1 plots the dependence of the solver performance on the degree of parallelization for the rather
small configuration 1 with lattice size 484. Due to memory restrictions the minimal number of processors that
can be used is 36 corresponding to roughly 217 lattice sites per processor. On the other end of the horizontal
axis we are limited to 5,184 processors which corresponds to 210 lattice sites per process on level 1.

Figure 3.1 shows that as soon as a local lattice with fewer than 84 = 212 lattice sites per processors
on level 1 is reached, the performance of the two-level method exceeds the performance of the three-level
method. This is partly to be expected, since this is exactly the spot where idling processors on the second
level cannot be avoided. To be more precise, on level two we need at least 4× 23 lattice sites per processor
in order to be able to apply SAP since we need one block of each color on each non-idling process. On level
three, i.e., the coarse level, we also assume to have at least two lattice sites per non-idling process because
we solve this system using odd-even preconditioning. Thus every second process is idling on level two and
three. Similarly, for 211 local sites three out of four processes and for 210 sites 7 out of 8 processes are idling
on levels two and three. Thus, for the relatively small configuration 1 the additional third level is advisable
only if a relatively small degree of parallelism is used, and even then the gain over the two-level method is
rather modest.

The picture changes, however, when we investigate the same dependence for a larger configuration. In
Figure 3.2 we see an almost constant absolute gain when going from the two-level to the three-level DD-
αAMG method. For any of the considered degrees of parallelization, the three-level method outperforms the
two level method, and the sweet spot is taken again for 217 lattice sites per process on the finest level, i.e.,
for 128 processes and a 32×163 local lattice on each process. For this particular case the three-level method
shows a speed up factor of 1.7 over the two-level method. At the opposite end with a local lattice size of 211

and 8,192 processes, the three-level method still gains a factor of about 1.3.
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3.2. Two, Three and Four Levels. Now we compare DD-αAMG methods with two, three and four
levels for all four configurations, using only small numbers of cores, i.e., working with large local lattices.

configuration 1 2 3 4
lattice size 48× 483 64× 643 128× 643 128× 643

pion mass mπ 135 MeV 135 MeV 270 MeV 190 MeV

two levels setup time 316s 736s 630s 701s
solve time 48.6s 130s 113s 141s
solve iter 23 22 24 28

three levels setup time 374s 744s 719s 948s
solve time 42.6s 75.2s 74.0s 79.0s
solve iter 24 21 22 24

four levels setup time – 806s 755s 1,004s
solve time – 79.8s 75.7s 79.1s
solve iter – 22 22 24

processes 81 128 256 256
local lattice level 1 16× 163 32× 163 32× 163 32× 163

level 2 4× 43 8× 43 8× 43 8× 43

level 3 2× 23 4× 23 4× 23 4× 23

level 4 – 2× 13 2× 13 2× 13

Table 3.3
Comparison of DD-αAMG with two, three and four levels for a small number of processes, parameters from Tables 3.1

and 3.2.

Table 3.3 shows that the three-level method outperforms the other variants in terms of consumed core
minutes in all tests except for configuration 1 by factors between 1.5 and 1.7, and it also outperforms the
four-level method. Note that the time spent in the setup naturally increases when using additional levels,
since additional operators need to be set up and only in one test this additional work amortized immediately
in one solve. While we still believe that we can improve the setup routine and with it the additional overhead
to be paid for additional levels, the overhead has to be kept in mind when choosing the number of levels,
depending on the number of right-hand-sides to be solved. Interpreting Table 3.3 with respect to the system
size, we see that the performance gain of additional levels grows with the system size. This indicates that
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we can expect the gain of three- or potentially four-level approaches to grow for even larger lattices.

configuration 1 2
lattice size 48× 483 64× 643

pion mass mπ 135 MeV 135 MeV

levels 2 3 2 3
setup time 14.9s 40.0s 24.5s 46.1s
solve time 2.69s 3.26s 5.21s 3.95s
solve iter 23 24 23 22

level 1 consumed time 0.880s 0.895s 1.04s 0.930s
wait time 0.110s 0.115s 0.124s 0.135s

level 2 consumed time 1.81s 1.50s 4.17s 1.48s
wait time 0.0972s 0.0557s 0.171s 0.0430s

level 3 consumed time – 0.865s – 1.54s
wait time – 0.0993s – 0.0942s

summarized total wait time 0.207s 0.270s 0.295s 0.272s

processes 2,592 2,592 8,192 8,192
local lattice level 1 4× 83 4× 83 4× 83 4× 83

level 2 1× 23 4× 23 1× 23 4× 23

level 3 – 2× 13 – 2× 13

Table 3.4
Comparison of DD-αAMG with two and three levels for a large number of processes, parameters from Tables 3.1 and 3.2.

In Table 3.4 we show additional timings for comparatively large numbers of processes where idle times
on the coarser levels occur. More precisely, for the number of processes chosen in the tests, three out of four
processes idle on the second and third level within the three-level method while for the two-level variant
there are no idle times at all. For configuration 1 we observe that the two-level method outperforms the
three-level method with respect to setup and solve time as expected based on Figure 1. In this particular
case the three-level method is unable to transfer enough work to the coarse level and level two remains the
most expensive part of the solve phase. Together with the fact that for this configuration the second level
can be solved quite efficiently by odd-even preconditioned GMRES alone, a third level does not pay off.

For the larger configuration 2, the situation is similar with respect to setup timings, but the second level
seems to be much more ill-conditioned which yields an advantage for the three-level method regarding the
solve time. Thus in situations where the increased setup time can be compensated for by solving systems
with several right-hand-sides, the three-level method pays off.

Besides these observations we also note that the influence of wait times caused by nearest neighbor
communication on the coarse level even with a local lattice size of 2 × 13 can be neglected. Thus the
overall performance loss on the coarser levels is dominated by the percentage of idling processes and not the
communication overhead.

3.3. Comparison with CGNR. We now want to study the two- and three-level method in more
detail, namely, with respect to absolute cost measures and in comparison to the conventional Krylov subspace
method of choice, CGNR. We choose to show absolute cost measures, e.g., flop count and core minutes rather
than wall-clock time. The performance of both methods, DD-αAMG and CGNR, in terms of flop/s (floating
point operations per second) can differ dramatically depending on the level of optimization of the Dirac
operator and on the degree of parallelization chosen, whereas core minutes represent a measure that takes
both important resources, time and hardware, into account.

In Table 3.5 we show results of our method and CGNR for configuration 2. First note that compared
to CGNR the two-level method speeds up the calculation by an order of magnitude and cuts down the flop
count per lattice site and overall core minute count even by more than two orders of magnitude. The addition
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of a third level yields another factor of roughly 1.7 across the board with respect to the two-level method.
It is noteworthy that the three-level DD-αAMG performs at 2.86 Gflop/s per core, corresponding to 12.2%
peak performance, on Juropa with a pure C-code, i.e., without any machine specific optimization.

The abysmal Gflop/s per core performance of CGNR is mainly due to two facts. First we run CGNR
completely in double precision, second we are limited to at most 8,192 cores per run and the corresponding
local lattice size of 4× 83 leads to a problem size exceeding the cache size.

three-level two-level
DD-αAMG DD-αAMG CGNR

processes 128 128 8,192
solve time 75.2s 130s 816s

consumed core minutes 160 277 111,446
consumed Mflop per site 1.64 2.97 364

Gflop/s per core 2.86 2.99 0.91

Table 3.5
Comparison of three-level DD-αAMG with CGNR, parameters from Tables 3.1 and 3.2.

Combined with the results reported in Section 3.2 our results suggest that in situations where total
run-time is not of great importance and where several Dirac systems with different right-hand-sides must
be solved, e.g., in configuration analysis, it is best to run a multilevel method with a low degree of paral-
lelization. This gives the largest number of system solves per core minute, i.e., the largest data per Euro
ratio. On the other hand, in a situation, where total run-time is of utmost importance, e.g., the generation
of configurations within the HMC process, it might be advisable to use only a two-level method and a high
degree of parallelization.

3.4. Scaling Tests. An important motivation for the development of multilevel preconditioners for the
Wilson Dirac system has always been the removal of “critical slowing down”, i.e., the observed dramatic drop
in performance when the mass parameter approaches its critical value. In the next set of tests we report the
time to solution of the two-, three- and four-level DD-αAMG method with respect to the bare mass m0 for
configuration 2. These tests are again carried out using only 128 cores, i.e., a low degree of parallelization.
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Fig. 3.3. Scaling of DD-αAMG with the bare mass m0. In here, mud = −0.05294 denotes the physical mass parameter
for which the configuration was thermalized and mcrit = −0.05419 [8, 9] is the critical mass.

We see in Figure 3.3 that the time to solution of the two-level method increases much more rapidly than
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the time to solution of the three-level method when approaching the critical bare mass mcrit. Further we
see that beyond mu the four-level method starts to outperform the three-level method. Note that for the
computation of observables in lattice QCD it might actually be necessary to solve the Dirac equation for mass
parameters beyond mud, e.g, to account for the up-down quark mass difference [3, 10]. For configuration 2
this requires a mass parameter mu = −0.05347 which leads to a factor of approximately 1.6 in the condition
number compared to mud.
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Fig. 3.4. Scaling of the remaining error obtained from DD-αAMG

We also tracked the norm of the relative error ||e||/||z∗|| = ||z∗ − z||/||z∗|| as a function of m0 for a
pre-determined solution z∗. Figure 3.4 shows that the error only slightly increases in the range of the physical
masses when using more levels even though the tolerance for the K-cycle on the second level is a factor of
2 less precise than for odd-even GMRES within the two-level method. When approaching the critical bare
mass, four-level DD-αAMG also provides the most stable error.

3.5. Comparison with Inexact Deflation with Inexact Projection. Recently the implementation
of inexact deflation was upgraded within the openQCD code [16]. The new version of inexact deflation,
termed “inexact deflation with inexact projection” is similar in spirit to our method proposed in [12], while
it differs in its construction of the interpolation and the coarse-level operator. In the inexact deflation
approach γ5-symmetry is not preserved on the coarse level.

In order to account for this recent upgrade of the openQCD code, we compare it with multilevel DD-
αAMG. As the openQCD code uses open boundary conditions in time direction we cannot use our set of
configurations with this code. Thus we integrated the new modules containing the inexact deflation with
inexact projection method into the DD-HMC [15] and compared both methods.

Table 3.6 shows that the inexact deflation with inexact projection method for configuration 2 is 2.3 times
faster than without inexact projection, and also a factor of 1.35 faster than two-level DD-αAMG. This is
mainly due to the fact that inexact deflation with inexact projection does not preserve the γ5-symmetry on
the coarse level. It therefore ends up with only half as many variables and a four times less complex operator
on the coarse level if the same number of test vectors is used. As a consequence we found numerically that
the inexact deflation with inexact projection approach has to compute more test vectors, but not twice as
many, to construct a comparably “rich” coarse-level subspace which is needed to achieve the same number
of iterations as the γ5-symmetry preserving approach. Although the setup time of the three-level DD-
αAMG method is slightly longer than that of two of the other methods, the reduced solve time more than
compensates for this already for a single right-hand-side.

Note that the results presented so far for the γ5-symmetry preserving interpolation show that the recur-
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three-level two-level inexact deflation inexact deflation
DD-αAMG DD-αAMG (DD-HMC-1.2.2) [15] with inexact projection [16]

test vectors N 20 20 20 32
setup bootstrap iter 6 6 10 6

SAP block size 24 24 44 44

block solver iter 3 3 4 4

setup time 744s 736s 681s 897s
solve iter 21 22 48 18

solve time 75.2s 130s 223s 96.6s

Table 3.6
Comparison on configuration 2 using 128 processes, parameters from Tables 3.1 and 3.2.

sive extension of DD-αAMG works and, in particular, that the SAP smoother still works on coarse levels. It
is unclear whether this is still the case if γ5-symmetry is not preserved on the coarse level, so that a recursive
extension of this approach might not benefit as much from additional levels. These questions can probably
only be answered experimentally.
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Fig. 3.5. Scaling with the bare mass m0 of inexact deflation and DD-αAMG on configuration 2 using 128 processes.

As the behavior of solvers approaching the critical mass is an important bench-mark, we also investigate
the scaling of the new inexact deflation with inexact projection method. Figure 3.5 shows the scaling behavior
of all the methods reported in Table 3.1 as a function of the bare mass m0. Inexact deflation with inexact
projection and two-level DD-αAMG show a similar scaling behavior until mud. Beyond this mass, two-level
DD-αAMG tends to scale similarly to the ordinary inexact deflation approach. Besides that we note that
the upgrade of the inexact deflation method also leads to an improved scaling behavior. Thus the ability to
solve the coarse system equations inexactly and the ability to use more test vectors and still having a cheap
coarse-level operator can fundamentally influence the scaling behavior of the two-level method. Though the
overall best scaling curve belongs to three-level DD-αAMG and the third level already pays off for heavier
masses than md and will pay off even more in the future when even larger lattices will be used.

4. Conclusions and Outlook. We successfully extended our two-level method to a true multilevel
method including a multilevel setup. For certain cases our three-level implementation obtains speed-ups
of up to a factor of 1.7 compared to the two-level version for physical masses. The scaling behavior with
respect to the bare mass and the lattice size shows great potential for future lattice QCD computations on
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even larger lattices. Another factor of 1.5 - 2 could probably be obtained by machine specific optimization
(SSE/AVX/QPX). We are currently incorporating our algorithm into the production codes of our collabo-
rators within SFB/TRR55. Furthermore we are planning to investigate how to incorporate the DD-αAMG
method into the Hybrid Monte Carlo Method, i.e., updating the multilevel hierarchy in a cost efficient way
along the MD trajectory.

Acknowledgments. We thank the Budapest-Marseille-Wuppertal collaboration and the CLS consor-
tium for providing configurations. All results were computed on Juropa at Jülich Supercomputing Centre
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K. Stüben, Academic Press, Orlando, FL, 2001.

12


