
AM
C M

Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 13/17

Andreas Frommer, Stefan Güttel, Marcel Schweitzer

Efficient and stable Arnoldi restarts for matrix
functions based on quadrature

August 30, 2013

http://www.math.uni-wuppertal.de

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR
MATRIX FUNCTIONS BASED ON QUADRATURE∗

ANDREAS FROMMER† , STEFAN GÜTTEL‡ , AND MARCEL SCHWEITZER†

Abstract. When using the Arnoldi method for approximating f(A)b, the action of a matrix
function on a vector, the maximum number of iterations that can be performed is often limited by
the storage requirements of the full Arnoldi basis. As a remedy, different restarting algorithms have
been proposed in the literature, none of which was universally applicable, efficient, and stable at the
same time. We utilize an integral representation for the error of the iterates in the Arnoldi method
which then allows us to develop an efficient quadrature-based restarting algorithm suitable for a
large class of functions, including the so-called Stieltjes functions and the exponential function. Our
method is applicable for functions of Hermitian and non-Hermitian matrices, requires no a-priori
spectral information, and runs with essentially constant computational work per restart cycle. We
comment on the relation of this new restarting approach to other existing algorithms and illustrate
its efficiency and numerical stability by various numerical experiments.

Key words. matrix function, Krylov subspace approximation, restarted Arnoldi/Lanczos
method, deflated restarting, polynomial interpolation, Gaussian quadrature, Padé approximation

AMS subject classifications. 65F60, 65F50, 65F10, 65F30, 41A20

1. Introduction. The computation of f(A)b, the action of a matrix function
f(A) ∈ CN×N on a vector b ∈ CN , is an important task in many areas of science and
engineering. Examples include the matrix exponential function f(z) = ez, which is at
the heart of exponential integrators for the solution of differential equations [26, 27],
the logarithm f(z) = log(z) used, e.g. in Markov model analysis [39] and identifica-
tion problems for linear continuous-time multivariable systems [31], fractional powers
f(z) = zα in fractional differential equations [6], and the sign function f(z) = sign(z)
which is often related to spectral projectors and also appears in lattice quantum chro-
modynamics [5, 41].

In many of these applications, the matrix A is sparse and large so that the explicit
computation of the generally dense matrix f(A) by direct methods as in [8, 24, 25] is
infeasible. Instead, one seeks to directly approximate the vector f(A)b by iterative
methods. By far the most important class of iterative methods for this purpose are
Krylov subspace methods, see [11, 18, 26, 29, 35]. These methods extract their ap-
proximations to f(A)b from Krylov subspaces Km(A, b) = span{b, Ab, . . . , Am−1b}.
Assume that we are given an Arnoldi decomposition

AVm = VmHm + hm+1,mvm+1e
T
m, (1.1)

where the columns of Vm = [v1|v2| · · · |vm] ∈ CN×m are an orthonormal basis of
Km(A, b) obtained from m steps of the Arnoldi orthogonalization process, Hm ∈
Cm×m is an upper Hessenberg matrix, and em ∈ Rm corresponds to the m-th canon-
ical unit vector (see, e.g., [36, Ch. 6]). Then a popular approach for approximating
f(A)b is the Arnoldi approximation

fm = Vmf(Hm)V Hm b = ‖b‖Vmf(Hm)e1. (1.2)

∗This work was partially supported by Deutsche Forschungsgemeinschaft through Cooperative
Research Centre SFB TRR55 “Hadron Physics through Lattice QCD”.
†Department of Mathematics, Bergische Universität Wuppertal, 42097 Wuppertal, Germany,

{frommer,schweitzer}@math.uni-wuppertal.de
‡School of Mathematics, The University of Manchester, M13 9PL Manchester, United Kingdom,

stefan.guettel@manchester.ac.uk

1

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

2 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

One of the main computational problems associated with the Arnoldi approxima-
tion (1.2) is that the full Arnoldi basis Vm needs to be stored. This storage requirement
may limit the number of iterations m that can be performed in practice, and thus
the accuracy that can be achieved for large problems. A further limiting factor is the
growing orthogonalization cost of computing Vm and the cost of evaluating f(Hm)
for larger values of m.

There are two popular strategies to overcome these problems. The first one, not
further considered in this paper, is to use other subspaces with superior approximation
properties, like extended Krylov subspaces [12,30], shift-and-invert Krylov subspaces
[32,42], both special cases of general rational Krylov subspaces [4,20–22], with the aim
to reach a targeted accuracy within significantly fewer iterations. However, rational
Krylov methods typically involve linear system solves with (shifted versions of) the
matrix A at each iteration. Thus, when solving linear systems with A is expensive, or
in situations where A is not even explicitly available but only implicitly as a routine
returning matrix-vector products, rational Krylov methods may be infeasible.

The other possible strategy for circumventing the problems mentioned above,
which only requires matrix-vector products with A and will be the subject of this
paper, is based on restarting, similar to what is often done for the solution of (non-
Hermitian) linear systems of equations (the case f(z) = z−1). This was already
investigated several times [1, 2, 14, 15, 28], but none of the restarting approaches for
general matrix functions was completely satisfactory until now. All of these variants
solved the storage problem for the Arnoldi basis, but still had to deal with growing
cost per restart cycle [14], were numerically unstable [28], or required an accurate
rational approximation r(z) ≈ f(z) for all z in some spectral region of A [2]. Instead
of relying on an error representation involving divided differences (see [14, 28]), we
propose in this paper a novel algorithm based on the integral representation of the
error. Our error representation is applicable to a large class of functions and allows
for the derivation of a restarting algorithm similar to the one in [28], but without the
numerical stability problems and without the restriction to Hermitian matrices.

The remainder of this paper is organized as follows. In section 2 we briefly review
the different restarting approaches available in the literature so far. In section 3 we
derive a new integral representation for the error of the m-th Arnoldi approximation.
In section 4 we then investigate the use of numerical quadrature for evaluating this
error representation. The quadrature rule of choice typically depends on the func-
tion f and we discuss a selection of quadrature rules specifically tailored to important
functions. Numerical experiments illustrating the performance of our method, both
for simple model problems and for problems from relevant applications, are presented
in section 5. Concluding remarks are given in section 6.

2. The restarted Arnoldi method. We will start by recalling a useful char-
acterization of the Arnoldi approximation (1.2). This result makes clear the relation
between the Arnoldi approximation and polynomial interpolation and will be exploited
repeatedly in this paper.

Lemma 2.1 (Ericsson [16] and Saad [35]). Let fm be the m-th Arnoldi approxi-
mation to f(A)b defined in (1.2). Then

fm = p̃m−1(A)b, (2.1)

where p̃m−1 ∈ Pm−1 is the unique polynomial interpolating f at the eigenvalues of
Hm in the Hermite sense (i.e., counting the multiplicity of each eigenvalue as a root
in the minimal polynomial of Hm).

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR MATRIX FUNCTIONS 3

When computing the Arnoldi approximation (1.2), one has to deal with two main
problems. The first one is that the whole Arnoldi basis Vm needs to be computed and
stored for evaluating (1.2), which will be prohibitively expensive when m grows too
large. However, even when A is Hermitian and Vm can be computed via the short-
recurrence Lanczos method (cf. [36]), this recurrence does generally not translate into
a short-recurrence relation for the Arnoldi approximations fm. This is in contrast
to the special case of solving a linear system of equations, i.e., when f(z) = z−1.
A simple strategy to overcome the storage problem is to perform a so-called two-pass
Lanczos method (see, e.g., [17]), where in a first sweep the tridiagonal matrix Hm is
computed using the short recurrence for the Lanczos vectors v1, v2, . . . , vm, and then
in a second sweep the approximation fm is formed by generating the Lanczos vectors
anew and combining them linearly with the coefficients from the vector ‖b‖f(Hm)e1.
Although for Hermitian matrices this approach solves the storage issues, it essentially
doubles the computational work and is therefore not a satisfactory solution. The
other problem is that f(Hm)e1 has to be computed for forming fm, which itself can
become prohibitively expensive when m is large.

The same two problems also arise in the iterative solution of non-Hermitian lin-
ear systems by Krylov subspace methods, such as FOM or GMRES, cf. [36, 37]. A
well-known technique to overcome these problems is restarting : after m Arnoldi or-
thogonalization steps, the approximation fm is formed, the basis Vm computed so far is
discarded, and a second Arnoldi cycle is started to approximate the error dm = x−fm,
where x denotes the sought solution of the linear system Ax = b. Such a restarting
procedure is possible because the error dm solves the residual equation

Adm = rm (2.2)

and the residual rm = b −Afm is easily computable.
When trying to develop a restarting technique for general matrix functions f ,

one of the main problems is the lack of a direct analogue of (2.2). However, it is
possible to represent the error of the restarted Arnoldi approximations based on
divided differences (see, e.g., [10]), as the following result from [14] shows. This result
is stated for Arnoldi-like decompositions, which are decompositions of the form (1.1)
but with the requirement dropped that the columns of Vm be orthonormal.

Theorem 2.2 (Eiermann & Ernst [14]). Given A ∈ CN×N , b ∈ CN , let
AVm = VmHm + hm+1,mvm+1e

T
m be an Arnoldi-like decomposition and wm(z) =

(z−θ1) · · · (z−θm) be the nodal polynomial associated with the Ritz values θ1, . . . , θm,
i.e., the eigenvalues of Hm. Then the error of fm defined in (1.2) is given as

f(A)b − fm = ‖b‖γm[Dwm
f](A)vm+1 =: em(A)vm+1, (2.3)

where [Dwm
f] denotes the m-th divided difference of f with respect to the interpolation

nodes θ1, . . . , θm, and γm =
∏m
i=1 hi+1,i.

This representation of the error after m steps of the Arnoldi method (or an
Arnoldi-like method) allows to perform restarting similar to the linear system case.
Again, the error is represented as a matrix function of A multiplied onto a vector.
While in the linear system case only the right-hand side of (2.2) changes at each
restart, for a general function f also the error function changes from f to a multi-
ple of [Dwm

f]. Assuming exact arithmetic, a restarting procedure as summarized in
Algorithm 1 can be employed to approximate f(A)b.

While Algorithm 1 together with the error representation (2.3) allow for restart-
ing of the Arnoldi method in theory, this combination is not feasible for practical

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

4 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

Algorithm 1: Restarted Arnoldi method for f(A)b from [14] (generic version).

Given: A, b, f , m

Compute the Arnoldi decomposition AV
(1)
m = V

(1)
m H

(1)
m + h

(1)
m+1,mv

(1)
m+1e

T
m

with respect to A and b.

Set f
(1)
m := ‖b‖V (1)

m f(H
(1)
m)e1.

for k = 2, 3, . . . until convergence do

Determine the error function e
(k−1)
m (z).

Compute the Arnoldi decomposition AV
(k)
m = V

(k)
m H

(k)
m + h

(k)
m+1,mv

(k)
m+1e

T
m

with respect to A and v
(k−1)
m+1 .

Set f
(k)
m := f

(k−1)
m + ‖b‖V (k)

m e
(k−1)
m (H

(k)
m)e1.

computations due to severe stability problems. These problems can be explained by
the well-known fact that the numerical evaluation of high-order divided differences
is prone to instabilities, especially when interpolation nodes are close to each other,
thereby causing subtractive cancelations and very small denominators in the divided
difference table. For Hermitian A it is known that the Ritz values of all restart cy-
cles will asymptotically appear as a two-cyclic sequence [2], so that the interpolation
nodes will form 2m clusters and the evaluation of the error function using (2.3) will
necessarily become unstable.

A different error representation for Hermitian A was investigated in [28].
Theorem 2.3 (Ilic et al. [28]). Let A be Hermitian and the assumptions of Theo-

rem 2.2 be fulfilled. Let Wm be the unitary matrix whose columns are the eigenvectors
of Hm, and define αi = eTmWmei and γi = eT1 Wmei (i = 1, . . . ,m). Then

f(A)b − fm = ‖b‖hm+1,mg(A)vm+1 (2.4)

with

g(z) =
∑m

i=1
αiγiDwi

(z) where wi(z) = (z − θi). (2.5)

The error function representation in Theorem 2.3 involves only first-order divided
differences, so that one could expect it to be less prone to numerical instabilities than
the representation from Theorem 2.2. However, this is only moderately so as was
observed in [28], rendering this representation still unstable and therefore not usable
in practice, in particular if accuracy and reliability requirements are high.

The original restarting method of [14] is stable. Instead of relying on an error
function for restarting, the same function f is used throughout all restart cycles. This
is possible because the Arnoldi-like approximations from consecutive restart cycles
satisfy the update formula

f (k)
m = f (k−1)

m + ‖b‖V (k)
m [f(Hkm)e1](k−1)m+1:km, k ≥ 2, (2.6)

where the subscript of the last term means that only the m trailing entries of the
resulting vector are used, and where all the Hessenberg matrices from the previous
restart cycles are recursively accumulated in a block-Hessenberg matrix

Hkm =

[
H(k−1)m O

h
(k−1)
m+1,me1e

T
(k−1)m H

(k)
m

]
. (2.7)

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR MATRIX FUNCTIONS 5

Note that only the original function f is needed for updating the approximations via
(2.6), so that the stability problems with divided differences are completely avoided.
This restarting approach also solves the storage problem for the Arnoldi basis, as

only the last Arnoldi basis V
(k)
m is required for evaluating (2.6). The price one has

to pay with this method, however, is that it is still necessary to evaluate f on a
Hessenberg matrix Hkm of increasing size km. This is a computational cost that
grows (often cubically in km) from one restart cycle to the next, which may again
result in an unacceptably high cost if many restart cycles are required for converging
below a targeted accuracy level. This is especially problematic as the convergence of a
restarted Arnoldi method is generally slower than that of the standard (unrestarted)
Arnoldi method, so that the dimension of the matrix Hkm from (2.7) will be larger
than the dimension of the matrix Hm from the standard Arnoldi approximation (1.2)
achieving a comparable accuracy.

Algorithm 2: Restarted Arnoldi approximation for f(A)b from [2].

Given: A, b, m, rational approximation r ≈ f of the form (2.8)

Set f
(0)
m = 0 and v

(0)
m+1 = b

for k = 1, 2, . . . until convergence do

Compute the Arnoldi decomposition AV
(k)
m = V

(k)
m H

(k)
m + h

(k)
m+1,mv

(k)
m+1e

T
m

with respect to A and v
(k−1)
m+1 .

if k = 1 then
for i = 1, . . . , ` do

Solve (tiI −H(k)
m)ri,1 = e1

else
for i = 1, . . . , ` do

Solve (tiI −H(k)
m)ri,k = h

(k−1)
m+1,m(eTmri,k−1)e1

h
(k)
m =

∑`
i=1 αiri,k

Set f
(k)
m := f

(k−1)
m + ‖b‖V (k)

m h
(k)
m .

It was shown in [2] that for a rational function in partial fraction form

r(z) =
∑`

i=1

αi
ti − z

, (2.8)

the evaluation of (2.6) with f = r is possible with constant work per restart cycle,
as the block lower triangular structure of Hkm allows for the evaluation of (tiI −
Hkm)−1e1 via a sequential solution of k shifted linear systems

(tiI −H(1)
m)ri,1 = e1, (2.9)

(tiI −H(j)
m)ri,j = h

(j−1)
m+1,m(eTmri,j−1)e1, j = 2, . . . , k, (2.10)

of size m. Exploiting that only the last block of r(Hkm)e1 is required, only ` linear
systems of size m need to be solved per restart cycle. This allows for efficient restart-
ing for general functions f whenever a sufficiently accurate rational approximation r
with r(A)b ≈ f(A)b is available. Note that this rational approximation needs to be
known a-priori and stays fixed throughout all restart cycles. The resulting method is
summarized in Algorithm 2.

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

6 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

3. Integral representation of the error function. The main problem caus-
ing instability in the implementations of Algorithm 1 considered in the literature so
far is the numerical evaluation of divided differences. We now derive an alternative
integral representation of the error function. As a first step, we give a formula for
interpolating polynomials of functions representable as a Cauchy-type integral.

Lemma 3.1. Let Ω ⊂ C be a region and let f : Ω→ C be analytic with the integral
representation

f(z) =

∫
Γ

g(t)

t− z
dt, z ∈ Ω, (3.1)

with a set Γ ⊂ C \ Ω and a function g : Γ → C. The interpolating polynomial pm−1

of f with interpolation nodes {θ1, . . . , θm} ⊂ Ω is given as

pm−1(z) =

∫
Γ

(
1− wm(z)

wm(t)

)
g(t)

t− z
dt, (3.2)

where wm(z) = (z − θ1) · · · (z − θm).
Proof. Observe that 1−wm(z)/wm(t) is a polynomial of degree m in z with a root

at t. Therefore it contains a linear factor t−z, showing that (1−wm(z)/wm(t))/(t−z)
is a polynomial of degree m− 1 in z, and so is the whole right-hand side of (3.2). By
definition of wm we have∫

Γ

(
1− wm(θi)

wm(t)

)
g(t)

t− θi
dt =

∫
Γ

g(t)

t− θi
dt = f(θi) for i = 1, . . . ,m, (3.3)

showing that the interpolation conditions are satisfied. Interpolation conditions for
derivatives of f can be checked in the same way after differentiating the right-hand
side of (3.2) with respect to z.

With Lemma 3.1 we are now prepared to give an integral representation for the
error of the Arnoldi approximation to f(A)b.

Theorem 3.2. Let f have an integral representation as in Lemma 3.1, and let
A ∈ CN×N with spec(A) ⊂ Ω and b ∈ CN be given. Denote by fm the m-th Arnoldi
approximation (1.2) to f(A)b with spec(Hm) = {θ1, . . . , θm} ⊂ Ω. Then

f(A)b − fm = γm

∫
Γ

g(t)

wm(t)
(tI −A)−1vm+1 dt =: em(A)vm+1, (3.4)

where γm =
∏m
i=1 hi+1,i and wm(z) = (z − θ1) · · · (z − θm).

Proof. Let pm−1 denote the interpolating polynomial of f with respect to the
interpolation nodes θ1, . . . , θm. By subtracting pm−1 from f and using the represen-
tations (3.1) and (3.2) we have

f(z)− pm−1(z) =

∫
Γ

wm(z)

wm(t)

g(t)

t− z
dt. (3.5)

Substituting A for z in (3.5), post-multiplying by b, and noting that pm−1(A)b = fm
by Lemma 2.1 then leads to

f(A)b − fm =

∫
Γ

g(t)

wm(t)
(tI −A)−1wm(A)b dt. (3.6)

The assertion then follows from the fact that wm(A)b = γmvm+1, see [34, Cor. 1].

P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR MATRIX FUNCTIONS 7

Theorem 3.2 shows that the error of the Arnoldi approximation fm to f(A)b
can again be interpreted as an error matrix function em(A) applied to a vector. In
contrast to (2.3), the error function is now represented via an integral instead of
divided differences, and this new representation can be used in Algorithm 1. A similar
integral representation also holds for the error in all subsequent restart cycles, since
due to the general Cauchy-type integral used in Lemma 3.1 and Theorem 3.2, these
results also apply when f is replaced by em.

Corollary 3.3. Let the assumptions of Theorem 3.2 hold, and let f
(k)
m be the

restarted Arnoldi approximation to f(A)b after k restart cycles of Algorithm 1. Then

the error of f
(k)
m satisfies

f(A)b − f (k)
m = γ(1)

m · · · γ(k)
m

∫
Γ

g(t)

w
(1)
m (t) · · ·w(k)

m (t)
(tI −A)−1v

(k)
m+1 dt =: e(k)

m (A)v
(k)
m+1.

(3.7)

In principle, the results of Theorem 3.2 and Corollary 3.3 can be applied to any
function f analytic in a neighborhood of spec(A), because then by the Cauchy integral
formula we have

f(A)b =
1

2πi

∫
Γ

f(t) (tI −A)
−1

b dt, (3.8)

where Γ is a closed contour (or a union of closed contours) winding around each
eigenvalue of A exactly once. However, this representation is not always useful from
a computational point of view, as it requires information about the spectral region
of A, which in general is not available.

Therefore we will now focus on a class of functions where the path Γ = (−∞, 0] is
fixed and does not depend on spec(A), the so-called Stieltjes functions (see, e.g., [23]).
Important examples of Stieltjes functions include

f(z) = z−α =
sin((α− 1)π)

π

∫ 0

−∞

t−α

t− z
dt for α ∈ (0, 1) (3.9)

and

f(z) =
log(1 + z)

z
=

∫ −1

−∞

t−1

t− z
dt. (3.10)

For further examples of Stieltjes functions we refer to [23]. In addition to being inde-
pendent of spec(A), the path Γ is a real interval, which often allows one to find elegant
integral transformations leading to finite integration intervals. Such transformations
will be considered in more detail in section 4.

Some interesting functions like f̃(z) = zα for α ∈ (0, 1), including the square

root as the most important special case, or f̃(z) = log(1 + z), do not belong to the

class of Stieltjes functions but can be written as f̃(z) = zf(z), where f is a Stieltjes
function. In this case, the results of Theorem 3.2 and Corollary 3.3 do not apply
directly, at least not using the very favorable Stieltjes integral representation. One
possibility to overcome this problem and still use the Stieltjes representation in a
restarting algorithm is to first compute b̃ = Ab and then approximate f(A)b̃. While

this is theoretically feasible, it should be avoided in computations because ‖b̃‖ may
be significantly larger than ‖b‖, resulting in larger absolute errors of the Arnoldi

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

8 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

approximations. It is therefore desirable to be able to work with f̃ directly, and
Theorem 3.2 can be modified easily to accommodate for such functions.

Corollary 3.4. Let the assumptions of Theorem 3.2 hold and let f̃(z) = zf(z).

Denote by f̃m the m-th Arnoldi approximation (1.2) to f̃(A)b. Then

f̃(A)b− f̃m = γmA

∫
Γ

g(t)

wm(t)
(tI−A)−1vm+1 dt−hm+1,m

(
eTmf(Hm)e1

)
vm+1. (3.11)

Proof. By (1.2) we have

f̃m = VmHmf(Hm)e1. (3.12)

Inserting the Arnoldi decomposition (1.1) gives

f̃m = AVmf(Hm)e1 − hm+1,m

(
eTmf(Hm)e1

)
vm+1. (3.13)

By subtracting (3.13) from f̃(A)b we arrive at

f̃(A)b − fm = A (f(A)b − Vmf(Hm)e1)− hm+1,m

(
eTmf(Hm)e1

)
vm+1. (3.14)

The assertion now follows by applying Theorem 3.2 to the first term.
Corollary 3.4 can easily be generalized to functions of the form f̃(z) = z`f(z)

by repeated application of (1.1). We just stated the result for zf(z) for the sake of
notational simplicity and because it appears to be the most important case in practice.
Ignoring for a moment the term

−hm+1,m

(
eTmf(Hm)e1

)
vm+1 (3.15)

in (3.11), we observe that also in this case the error function ẽm(z) is of a similar form

as the original function f̃(z) = zf(z), in the sense that it is of the form zem(z), where
em(z) denotes the error function for f(z) from (3.4). The remaining term (3.15) in the
error representation does not hamper our restarting approach, as it can be evaluated
along with f̃m from (3.12) at almost no cost. A slightly modified restarting procedure
for functions of the form zf(z) thus simply involves evaluating (3.15), subtracting it
from the current iterate and then proceeding as before by approximating ẽm(A)vm+1

by a new Arnoldi cycle. Corollary 3.3 can also be straightforwardly transferred to
this modified situation, allowing all restarts to be performed in the same way.

Overall, we are now in a position to use Algorithm 1 for a broad class of functions
with an error function representation based on integrals instead of divided differences.
While mathematically equivalent, this seems favorable from a computational point of
view since the numerical evaluation of integrals is typically more stable than the
evaluation of difference formulas (see, e.g., [13] for a discussion of this topic in the
context of solving differential equations). The numerical experiments in section 5
indeed demonstrate that our restarting method based on the integral representation
of the error is more stable than algorithms based on the divided difference formulas
from [14] or [28]. In our approach only the evaluation of wm(t) may appear prone to
under- or overflow, as it is a polynomial of possibly high degree m. However, note
that

γm
wm(t)

= hm+1,meTm (tIm −Hm)
−1

e1, (3.16)

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR MATRIX FUNCTIONS 9

see, e.g., [36], so that the necessary scalar quantities can be computed by solving
a shifted linear system of dimension m. Another technique for reliably evaluating
wm(t) in factored form is to use a suitable reordering of its zeros while computing the
product. In our implementation and numerical tests reported in section 5 we always
used the shifted linear system approach based on (3.16).

4. Evaluation of the error function by numerical quadrature. The pre-
sented restarting method relies on the ability to approximate the action of the error
function, em(A)b, which in turns requires the approximation of the integral in (3.4)
by numerical quadrature. An arbitrary quadrature formula for em(z) from (3.4) is of
the form

êm(z) = γm
∑`

i=1
ωi

g(ti)

wm(ti)

1

ti − z
(4.1)

for quadrature nodes ti ∈ Γ and weights ωi. Clearly, (4.1) is a rational approximation
of type (` − 1, `) to em(z) with poles t1, . . . , t`. The restarting approach based on
quadrature of em(z) hence is similar in spirit to the method of [2] (see also Algo-
rithm 2), where a rational approximation of f(z) is used to allow for restarts with
constant work per restart cycle. Indeed, the following result states that under certain
assumptions both approaches are mathematically equivalent.

Lemma 4.1. Let the quadrature nodes and weights in (4.1) be fixed throughout
all restart cycles in Algorithm 1. Let Algorithm 2 utilize a rational approximation of
the form (2.8) with poles ti and weights αi = ωig(ti). Assume that this quadrature
formula is also used to evaluate f in the first restart cycle of Algorithm 1. Then both

algorithms produce the same approximations f
(k)
m at each restart cycle k ≥ 1.

Proof. From (2.9) and (4.1) (with wm(ti) = 1 in the first restart cycle) it imme-
diately follows that both algorithms produce the same first Arnoldi approximation

f (1)
m = ‖b‖V (1)

m

∑`

i=1
ωig(ti)(tiI −H(1)

m)−1e1. (4.2)

In subsequent restart cycles k ≥ 2 of Algorithm 1, using the error function represen-
tation (4.1), the approximations are computed as

f (k)
m = f (k−1)

m + ‖b‖V (k)
m

∑`

i=1

ωiγ
(1)
m · · · γ(k−1)

m g(ti)

w
(1)
m (ti) · · ·w(k−1)

m (ti)
(tiI −H(k)

m)−1e1. (4.3)

From (2.10) we get ri,k = h
(k−1)
m+1,m(eTmri,k−1)(tiI −H(k)

m)−1e1. Repeated application
of (3.16) yields

h
(k−1)
m+1,m(eTmri,k−1) =

γ
(1)
m · · · γ(k−1)

m

w
(1)
m (ti) · · ·w(k−1)

m (ti)
,

so that (4.3) is equivalent to

f (k)
m = f (k−1)

m + ‖b‖V (k)
m

∑`

i=1
ωig(ti)ri,k,

which is precisely the update formula of Algorithm 2 when αi = ωig(ti).
There are three main reasons why a restarting approach based on quadrature

is potentially superior to the method of [2] (Algorithm 2) based on a fixed rational

P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t
–
P
re
pr
in
t

10 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

approximant. First of all, the construction of a fixed rational approximant r such
that r(A)b ≈ f(A)b requires some a-priori information about a spectral region of A,
which may be difficult or impossible to obtain, in particular, for non-Hermitian A.
Our integral representation of the error (3.7) allows for the automated construction
of rational approximations without using any spectral information, in particular, if
the path Γ does not depend on spec(A) (as is the case for Stieltjes functions).

Secondly, in Algorithm 2, the same rational approximation has to be used in
every restart cycle because the vectors ri,k in (2.9) and (2.10) have to be stored and
updated separately for each of the underlying shifted linear systems. In our new
algorithm, however, there is no reason why the quadrature rule (4.1) needs to be fixed
throughout all restart cycles. In fact, this quadrature rule can be adapted dynamically

so that at each restart cycle k the required quantity e
(k−1)
m (H

(k)
m)e1 is computed with

sufficient accuracy. We will find that for later restart cycles the number of quadrature
nodes ` needed for a fixed absolute target accuracy can typically be decreased simply
because the integrand in (3.7) becomes uniformly smaller in magnitude. Even when
the path Γ must depend on A, as is the case for restarting the exponential function
of non-Hermitian A, we can cheaply use Ritz information available in our restarting
algorithm to adaptively choose Γ (see sections 4.3 and 5.3).

Thirdly, quadrature naturally allows for adaptivity and error control. In our im-
plementation given in Algorithm 3 we use a very simple form of adaptive quadrature.
At each restart cycle we approximate the integral of the error function (3.4) with

different numbers of quadrature nodes ˜̀ and ` with ˜̀< `. In our implementation we
initialize ˜̀= 8 and use ` = round(

√
2 · ˜̀). If the norm of the difference between the

resulting quadrature approximations is larger than a prescribed error tolerance tol,
we further increase the number of quadrature nodes by a factor

√
2 until the desired

accuracy is reached. If the number of quadrature nodes did not increase in a given
restart cycle, we start the next restart cycle with a reduced number of quadrature
nodes, see Algorithm 3.

Remark 4.2. In [15] an extension of Algorithm 2 with deflated restarting was
proposed. Such a deflation procedure can be straightforwardly adapted to Algorithm 3:

after each restart cycle k a reordered Schur decomposition of H
(k)
m is used to restart the

Arnoldi process with a set of d target Ritz vectors. The analysis in [15], in particular
Theorem 3.2, describes how the nodal polynomial wm(t) in (3.4) needs to be modified
with deflated restarting.

A crucial aspect for achieving a robust and efficient restarting algorithm is the
choice of a proper quadrature rule (4.1). In principle, any convergent quadrature
rule may be used. In our case, adaptive variants such as Gauss–Kronrod quadrature
(see [9]) seem appropriate, although for some special functions one can exploit the
structure of the integrand in the error function (3.4). We will therefore take a closer
look at some particularly important functions.

4.1. f(z) = z−α for α ∈ (0, 1). The inverse fractional powers f(z) = z−α for
α ∈ (0, 1) are Stieltjes functions, see (3.9). When working with Stieltjes functions
in general, one has the advantage that the path Γ is always explicitly known and
independent of spec(A), but on the other hand one has to deal with an infinite in-
tegration interval. Although there exist Gaussian quadrature rules for infinite (or
half-infinite) integration intervals (see, e.g., [19]), we will pursue a different approach
here by applying a variable substitution for transforming the infinite integral in (3.9)
into a finite one. A similar kind of integral transformation was also used in [7] when
working with integral representations for the matrix p-th root.

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR MATRIX FUNCTIONS 11

Algorithm 3: Quadrature-based restarted Arnoldi approximation for f(A)b.

Given: A, b, f , m, tol

Compute the Arnoldi decomposition AV
(1)
m = V

(1)
m H

(1)
m + h

(1)
m+1,mv

(1)
m+1e

T
m

with respect to A and b.

Set f
(1)
m := ‖b‖V (1)

m f(H
(1)
m)e1.

Set ˜̀ := 8 and ` := round(
√

2 · ˜̀).
for k = 2, 3, . . . until convergence do

Compute the Arnoldi decomposition AV
(k)
m = V

(k)
m H

(k)
m + h

(k)
m+1,mv

(k)
m+1e

T
m.

with respect to A and v
(k−1)
m+1 .

Choose sets (t̃i, ωi)i=1,..., ˜̀ and (ti, ωi)i=1,...,` of quadrature nodes/weights.
Set accurate := false and refined := false.
while accurate = false do

Compute h̃
(k)
m = e

(k−1)
m (H

(k)
m)e1 by quadrature of order ˜̀.

Compute h
(k)
m = e

(k−1)
m (H

(k)
m)e1 by quadrature of order `.

if ‖h (k)
m − h̃

(k)
m ‖ < tol then

accurate := true.
else

Set ˜̀ := ` and ` := round(
√

2 · ˜̀).
Set refined := true.

Set f
(k)
m := f

(k−1)
m + ‖b‖V (k)

m h
(k)
m .

if refined = false then

Set ` := ˜̀ and ˜̀ := round(`/
√

2).

Lemma 4.3. Let z ∈ C \ R−. Then for all β > 0

z−α =
2 sin((α+ 1)π)β1−α

π

∫ 1

−1

(x− 1)−α(x+ 1)α−1

−β(1− x)− z(1 + x)
dx. (4.4)

Proof. This follows by applying the Cayley transform t = −β 1−x
1+x to (3.9).

The representation (4.4) is particularly convenient for our purpose, because it can
be very efficiently dealt with by quadrature. To this end, observe that the numerator of
the integrand in (4.4) is exactly the Jacobi weight function ω(x) = (x−1)−α(x+1)α−1.
The Jacobi weight function can be resolved exactly by using Gauss–Jacobi quadrature,
cf. [9], despite its singularities at both endpoints of the interval of integration. The
remaining integrand 1

−β(1−x)−z(1+x) does not have any singularities as long as z stays

away from the negative real axis. The following result shows that Gauss–Jacobi
quadrature for (4.4) corresponds to a Padé approximant (cf. [3]), and it also gives
a hint on how to choose the transformation parameter β. The connection between
Padé approximation and quadrature is classical, but we include the following lemma
because we could not find it in this explicit form in the literature.

Lemma 4.4. Let β > 0 and let xi and ωi (i = 1, . . . , `) be the nodes and weights
of the `-node Gauss–Jacobi quadrature rule on [−1, 1]. Then

r`−1,`(z) =
2 sin((α+ 1)π)β1−α

π

∑`

i=1

ωi
−β(1− xi)− z(1 + xi)

(4.5)

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

12 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

is the (`− 1, `)-Padé approximant for z−α with expansion point β.
Proof. Note that (4.5) clearly is a rational function of type (` − 1, `) in partial

fraction form. Therefore we only have to verify the Padé matching conditions

dj

dzj
z−α

∣∣∣∣
z=β

=
dj

dzj
r`−1,`(z)

∣∣∣∣
z=β

for j = 0, . . . , 2`− 1. (4.6)

The derivatives of r`−1,`(z) are given by

dj

dzj
r`−1,`(z) =

2 sin((α+ 1)π)β1−α

π

∑`

i=1
(−1)j

j! · (1 + xi)
j · ωi

(−β(1− xi)− z(1 + xi))j+1
. (4.7)

For z = β all denominators in (4.7) become independent of xi and we arrive at

dj

dzj
r`−1,`(z)

∣∣∣∣
z=β

=
2 sin((α+ 1)π)β1−α

π

∑`

i=1
(−1)j

j! · (1 + xi)
j · ωi

(−2β)j+1
. (4.8)

As Gauss–Jacobi quadrature with ` nodes is exact for polynomials up to degree 2`−1,
we have for j = 0, . . . , 2`− 1 the relation

dj

dzj
r`−1,`(z)

∣∣∣∣
z=β

=
2j! · sin((α+ 1)π)β1−α

(−2β)j+1π
(−1)j

∫ 1

−1

(1 +x)j(1−x)−α(1 +x)1−α dx.

Differentiating the right-hand side of (4.4) and evaluating at β gives the same result,
which completes the proof.

Lemma 4.4 suggests that the rational approximation (4.5) is particularly well
suited for approximating A−α when the spectrum of A is clustered around β. A
reasonable choice of the transformation parameter therefore is β = trace(A)/n, the
arithmetic mean of the eigenvalues of A. We only note that in our context of using
quadrature for evaluating the error function in a restarted Arnoldi algorithm, more
sophisticated choices of β are certainly possible, for example based on the Ritz val-

ues spec(H
(k)
m) which can be explicitly computed when m is small. Our numerical

experiments suggest, however, that the method is not very sensitive to the choice
of β: although an unfortunate choice of β may well increase the number of required
quadrature nodes `, the computational cost of evaluating the quadrature rule is typi-
cally negligible compared to the matrix-vector products and orthogonalizations in the
Arnoldi process.

So far our analysis of the quadrature formula was carried out for the original func-
tion f(z) = z−α, but we will rather use quadrature to approximate the error function
em(z) in our algorithm. The situation gets slightly more difficult in this case: for
example, it is generally not excluded that the integrand in (3.4) will have singularities
on the interval of integration. Applying the Cayley transform t = −β 1−x

1+x to (3.4) and

using the integral representation (3.9) of z−α, the integral to be approximated when
evaluating the error function becomes

2 sin((α+ 1)π)β1−α

π

∫ 1

−1

1

wm(−β 1−x
1+x)

(x− 1)−α(x+ 1)α−1

−β(1− x)− z(1 + x)
dx. (4.9)

While the singularities at the endpoints of the interval [−1, 1] can still be handled by
Gauss–Jacobi quadrature, the term 1/wm(−β 1−x

1+x), being the reciprocal of a polyno-
mial of degree m, introduces m additional singularities in the integrand. Recalling

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR MATRIX FUNCTIONS 13

the definition wm(z) = (z − θ1) · · · (z − θm) of the nodal polynomial, one easily sees
that the singularities of the non-transformed integrand are exactly the Ritz values,
which can in general lie anywhere in the field of values of A, in or outside the interval
of integration. Hence we can only guarantee that there are no singularities on the
interval of integration if the field of values of A is disjoint from the negative real axis.
The most important special case in which this is known to be satisfied is when A is
Hermitian positive definite. In this case, the field of values of A reduces to the interval
[λmin, λmax], where λmin, λmax > 0 denote the smallest and largest eigenvalue of A,
respectively, so that all Ritz values are positive and bounded away from zero. For
non-Hermitian A, this can in most cases not be guaranteed, and it may occasionally
happen that a Ritz value appears on the negative real axis. We emphasize that this is
not a problem specific to our quadrature-based restarting approach but rather to the
nature of the functions f(z) = z−α and the respective error functions, which are not
defined for matrices with eigenvalues on the negative real axis. All other restarting
algorithms can potentially produce Ritz values on the negative real axis, too, if the
field of values of A is not disjoint from this set.

By using the representation zα = zzα−1 for α ∈ (0, 1), the presented techniques
can be extended directly to positive fractional powers with the error representation
from Corollary 3.4.

4.2. f(z) = log(1 + z)/z. The function f(z) = log(1 + z)/z also belongs to the
class of Stieltjes functions, see (3.10). Therefore the techniques and ideas are similar
to those presented in section 4.1. Again, the infinite interval of integration can be
easily transformed into a finite interval.

Lemma 4.5. Let z ∈ C \ (−∞,−1]. Then

log(1 + z)

z
=

∫ 1

−1

1

z(1 + x) + 2
dx. (4.10)

Proof. This follows by applying the transformation t = −2/(1 + x) to (3.10).
The integrand in (4.10) is analytic in a neighborhood of [−1, 1] as long as z stays

away from (−∞,−1], so that Gauss–Legendre quadrature is an obvious choice for
approximating this integral. In this case we can again make a connection to Padé
approximants.

Lemma 4.6. Let β > 0 and let xi and ωi (i = 1, . . . , `) be the nodes and weights
of the `-node Gauss–Legendre quadrature rule on [−1, 1]. Then

r`−1,`(z) =
∑`

i=1

ωi
−z(1 + xi) + 2

(4.11)

is the (`− 1, `)-Padé approximant for log(1 + z)/z with expansion point 0.
Proof. The proof proceeds analogously to the proof of Lemma 4.4 by noting that

`-node Gauss–Legendre quadrature is exact for polynomials of degree up to 2` − 1,
and using the formula

dj

dzj
r`−1,`(z) =

∑`

i=1
(−1)j

j! · (1 + xi)
j · ωi

(z(1 + xi) + 2)j+1
(4.12)

for the derivatives of r`−1,`(z).
Note that in contrast to the situation with z−α, the expansion point for the

Padé approximant (4.11) is fixed to be 0, and good approximation properties can

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

14 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

be expected especially when A has eigenvalues near the origin. Otherwise, using the
technique suggested by Corollary 3.4 and properties of the logarithm, one can instead
approximate log(I + (β−1A− I))b = log(A)b − log(β)b with the matrix (β−1A− I)
having a “shrinked” spectrum.

Concerning the singularities of the integrand in (3.4), the analysis from the pre-
vious section exactly carries over since the nodal polynomial wm(z) depends only on
the Ritz values (and thus A and b) but not on the function f to be approximated.

4.3. f(z) = ez. Clearly, the exponential is not a Stieltjes function, but it can be
represented via the Cauchy integral formula as

ez =
1

2πi

∫
Γ

et

t− z
dt, (4.13)

so that our quadrature-based algorithm can be applied. In the case where A is nega-
tive semi-definite, the trapezoidal rule on parabolic, hyperbolic or cotangent Hankel
contours Γ is well suited for approximating ez via quadrature, see [40,43,44]. However,
the contours discussed in these papers depend on the number of quadrature nodes `
and bend towards the imaginary axis as ` becomes larger, which causes oscillations
in the integrand. Here we are primarily interested in non-Hermitian matrices and the
contour thus needs to depend on A and the Ritz values computed in all restart cycles.
In numerical experiments not reported here we hoped to achieve a small approxima-
tion error in a larger neighborhood of the negative real axis by using the quadrature
rules of [40, 43, 44] with a slightly increased number of quadrature nodes. However,
with this straightforward approach we observed numerical instabilities and degrading
accuracies for the resulting scalar approximations of ez even on the negative real axis
z ≤ 0 (for which the Hankel contours have been optimized). We therefore decided to
use a possibly non-optimal but fixed parabolic contour Γ parameterized as

γ(ζ) = a+ iζ − cζ2, ζ ∈ R, (4.14)

where the parameters a, c > 0 can be used to shift the contour and to widen or
narrow the region enclosed by the contour. We choose these parameters dynamically
after each restart such that all Ritz values are enclosed by the contour with some
positive distance. More precisely, if Θ denotes the set of all Ritz values accumulated
until a certain restart, we choose a = max

[
real(Θ + 1) ∪ {1}

]
and c = min

[
{0.25} ∪√

a+ i · imag(Θ)−Θ
]
, where all operations on the set Θ are performed element-wise.

To truncate the infinite interval of integration for ζ up to a given error tolerance tol,
we define a truncation parameter ζt =

√
1− log(tol)/c such that |eγ(±ζt)| = tol.

We then approximate (4.13) as

ez ≈ 1

2πi

∫ ζt

−ζt

eγ(ζ)γ′(ζ)

γ(ζ)− z
dζ ≈ 2ζt

`

∑`

j=1

eγ(ζ(j))γ′(ζ(j))

γ(ζ(j))− z
, ζ(j) = ζt

(2j − 1

`
− 1
)
,

which corresponds to the application of the `-node midpoint rule on [−ζt, ζt].
For the quadrature approximation of error functions in subsequent restart cycles

we use the same contour parametrization (4.14), with a and c possibly adapted to
enclose the union of all Ritz values, and the same error tolerance tol.

5. Numerical experiments. In this section we demonstrate the stability and
efficiency of the proposed restarting approach, Algorithm 3, by applying it to various
model problems and problems from relevant applications. All computations were

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR MATRIX FUNCTIONS 15

0 5 10 15 20

10
−10

10
−5

10
0

cycle

ab
so

lu
te

 2
−

no
rm

 e
rr

or

48

32
22

22
14

14
14

8 8

8 8

8 4
4 4 4 2 2

48

32

22

14 8 4

ITS10
AEEG08
FGS13
FGS13 + deflation

method time

divided differences (ITS10) 0.34

rational approx. (AEEG08) 0.72

quadrature (FGS13) 0.77

quadrature + deflation 0.35

Fig. 5.1. Approximating A−1/2b: Convergence history (left) and running times (right) for the
different restarting algorithms. The numbers next to the curves for the new quadrature-based methods
indicate the number of quadrature nodes used for evaluating the error function in the corresponding
restart cycle. The restart length is m = 50 in all cases, and in the variant with deflation a number
of d = 5 Ritz vectors was used.

performed in Matlab 7. Since a part of Matlab code is interpreted, Matlab
implementations are not always best suited for comparing running times of algorithms,
but they are certainly appropriate to assess stability. Moreover, since all algorithms
spend most of their time in sparse matrix-vector multiplications, which are calls to
pre-compiled routines in Matlab, larger differences in running times can be trusted
to be significant.

5.1. 2D Laplacian, f(z) = z−1/2. In this first example we compute A−1/2b,
where A is the real, symmetric positive definite matrix arising from the finite differ-
ence discretization of the negative two-dimensional Laplace operator with N = 100
grid points in both spatial dimensions, so that A ∈ R104×104

. According to (3.9),
the function f under consideration belongs to the class of Stieltjes functions and we
will use the techniques discussed in section 4.1 in our quadrature-based restarting
algorithm. We compare the quadrature-based approach to the restarting algorithm
from [28] based on divided differences, as well as the restarting algorithm from [2]
using as the rational function the best relative Zolotarev approximation of order 24
on the spectral interval of A [45]. In addition, the behavior of the quadrature-based
deflated restarting method [15] with d = 5 target eigenvalues is reported. The left
part of Figure 5.1 shows the convergence history of the different methods for restart
length m = 50. We observe that the divided difference-based method (denoted as
ITS10) becomes highly unstable after the eighth restart, while the quadrature-based
approach (denoted as FGS13) and the approach using Zolotarev’s rational approxi-
mation (denoted as AEEG08) show a non-distinguishable convergence behavior. The
table on the right-hand side of Figure 5.1 reports the running time of the different
methods for m = 50. We observe that the method using divided differences has the
fastest running time (but is unstable), while the approach using a rational approxi-
mation and our quadrature-based restarting approach are slightly slower and require
almost the same running time. Note, however, that the time needed for estimating the
smallest and largest eigenvalue of A using the Matlab routine eigs when construct-
ing the Zolotarev approximation to z−1/2 is not included in the reported timings and
takes about one second. In contrast, the new quadrature-based method works as a
black-box and does not require any spectral information or additional computations,
so that in total it needs less than half the time of the method from [2] if f(A)b is

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

16 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

0 5 10 15 20 25 30
10−14

10−12

10−10

10−8

10−6

10−4

10−2

cycle

ab
so

lu
te

2−
no

rm
er

ro
r

21
78

15
40

10
88

76
8
54

2
38

2
27

0
19

0
19

0
13

4
94 13

4
9466 6666 66

46

32

32
22

20
14

8
4

2
2 2 2

21
78

15
40

10
88

76
8
54

2
38

2

27
0

27
0

19
0

19
0
13

4

13
4
94

66
66

46
32

22
14 8 4 2 2 2 2

implicit deflation
explicit deflation

0 2 4 6 8 10 12 14 16
10−14

10−12

10−10

10−8

10−6

10−4

10−2

cycle

ab
so

lu
te

2−
no

rm
er

ro
r

10
88

76
8

54
2

38
2

27
0

19
0

13
4

94

66

46

32

22

14 8

10
88

76
8

54
2

38
2

27
0

19
0

13
4

94 66 46 32

implicit deflation
explicit deflation

Fig. 5.2. Approximating sign(Q)b: Convergence history for the quadrature-based method with
implicit and explicit deflation of eigenvectors corresponding to the d = 15 smallest eigenvalues of Q
with restart length m = 20 (left) and m = 40 (right).

computed once for a single vector b.
The numbers next to the convergence curves of the quadrature-based restarting

method correspond to the numbers of quadrature nodes required to reach the desired
target accuracy of tol = 10−13 at each restart cycle. We observe that the numbers
decrease in later restart cycles, with no more than 8 quadrature nodes required in the
last eleven restart cycles of the method without deflation. This can be explained in
two ways. On the one hand, the relative accuracy needed to reach a certain prescribed
absolute error tolerance is lower in later restart cycles simply because the norm of the
error becomes smaller. On the other hand, the integrand in the representation of the
error function decays more rapidly when t goes towards −∞ for Stieltjes functions and
positive definite matrices in later cycles (because all Ritz values are on the positive
real axis), so that the integral becomes easier to handle numerically.

5.2. Overlap Dirac operator, f(z) = sign(z). In quantum chromodynam-
ics (QCD), an area of Theoretical Physics, the strong interaction between quarks
is studied. In lattice quantum chromodynamics, this theory is simulated on a four-
dimensional space–time lattice with 12 variables, corresponding to all possible combi-
nations of three colors and four spins, at each lattice point. The simulation of overlap
fermions, which preserve the so-called chiral symmetry on the lattice, requires the
solution of linear systems involving the overlap Dirac operator [33]

Novl := ρI + Γ5 sign(Q), (5.1)

where ρ > 1 is a mass parameter, Q represents a periodic nearest-neighbor coupling on
the lattice, and Γ5 is a permutation which permutes the spins on each lattice point in
an identical manner. The matrix Q is very large (of size n = 106 or greater for realistic
grid sizes), sparse and complex. Depending on the so-called chemical potential, Q is
Hermitian (zero chemical potential) or non-Hermitian (nonzero chemical potential).
In the following example, we will only investigate the Hermitian case.

As it is not feasible to explicitly compute sign(Q), the preferred technique for
solving linear systems with (5.1) is using an iterative method which only performs
matrix-vector products with sign(Q), and hence Krylov subspace techniques are the
methods of choice. At each outer Krylov iteration one therefore has to compute

sign(Q)b (5.2)

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR MATRIX FUNCTIONS 17

0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

66

66

66

66 66 94

66

38
2

27
0

19
0

19
0

19
0

19
0

19
0

19
0

38
2

54
2

54
2

54
2

54
2

54
2

54
2

54
2

cycle

ab
so

lu
te

 2
−

no
rm

 e
rr

or

ν = 0
ν = 100
ν = 200

ν = 0 ν = 100 ν = 200

a 1 1 1

c 0.25 0.04 0.004

ζt 11.12 29.48 87.89

Fig. 5.3. Approximating esAb: Convergence history and number of quadrature nodes for vary-
ing convection parameter ν = 0, 100, 200 (left) and parameters determining the Hankel contour
(right). The restart length is m = 70 in all cases.

with the vector b changing from one iteration to the next. As (5.2) needs to be evalu-
ated many times in a single simulation, it is common practice to explicitly deflate the
eigenvectors corresponding to the d smallest eigenvalues of Q once, thereby speeding
up convergence in all iterations.

We report on the results of our quadrature-based restarting method for a simu-
lation on a lattice with 16 points in each space–time direction, resulting in a matrix
Q ∈ C12·164×12·164

. The sign function is typically computed via the relation

sign(Q)b = (Q2)−1/2Qb, (5.3)

so that we can use our techniques developed in section 4.1 for z−α with α = 1/2. The
convergence history in case of implicit and explicit deflation is shown in Figure 5.2
for restart length m = 20 (left) and m = 40 (right). The deflation parameter is
d = 15 in all cases. We observe that, after an initial phase of slow convergence, the
restarting method with implicit deflation shows the same convergence slope as the
method with explicit deflation. This is in agreement with the analysis from [15] which
states that both methods exhibit the same asymptotic behavior. The running time of
the method needed to reach an accuracy of 10−10 is approximately 240 seconds with
explicit deflation and 350 seconds with implicit deflation. Note, however, that the
time needed for the computation of the d smallest eigenvectors of Q is not included
in the running time of the algorithm with explicit deflation. Using the MATLAB
function eigs, the explicit computation of 15 eigenvectors of Q takes about 4 hours,
so that this technique should only be used if sign(Q)b has to be computed for a very
large number of vectors b.

5.3. 2D convection–diffusion, f(z) = esz. In this paragraph we present re-
sults for the matrix exponential function applied to symmetric and non-symmetric
stable matrices A using the techniques from section 4.3. The matrices A correspond
to the standard finite difference discretization of a 2D convection–diffusion equation
on the unit square with constant convection field and different convection parameters
ν. The case ν = 0 corresponds to a symmetric problem and for increasing ν the
non-normal matrix A has eigenvalues with larger imaginary parts. We choose the
scaling parameter s = 2 · 10−3 and use 500 discretization points in both spatial di-
mensions, resulting in a matrix A ∈ R5002×5002

. The left part of Figure 5.3 shows the
convergence history of our quadrature-based restarting method with restart length

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

18 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

0 5 10 15
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

cycle

ab
so

lu
te

i2
−

no
rm

ie
rr

or

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

15
0

ITS10
EE06
FGS13
FGS13i+ideflation

method time

divided differences (ITS10) 0.28

accumulated Hkm (EE06) 17.49

quadrature (FGS13) 1.24

quadrature + deflation 0.64

Fig. 5.4. Approximating (e−s
√
A − I)A−1b: Convergence history (left) and running times

(right) for the different restarting procedures. The restart length is m = 50 in all cases, and in the
variant with deflation a number of d = 5 Ritz vectors was used.

m = 70 and three different values of ν. Again, the numbers next to the convergence
curves indicate the number of quadrature nodes used in each restart cycle. Note
that the choice of the integration path Γ must also be adaptive for the exponential
function, and the table on the right part of Figure 5.3 reports the maximum values
of the parameters a and ζt and the minimum values of the parameter c determining
the parabolic Hankel contour (4.14). We observe that with increasing convection ν
the number of required quadrature nodes increases. This seems reasonable because
the complex region on which the error function needs to be approximated becomes
larger. This is also reflected in the values of the parameter c reported in the table on
the right hand-side of Figure 5.3, which show that the contour becomes wider with
increasing convection ν.

5.4. 2D Laplacian, f(z) = (e−s
√
z − 1)/z. We consider the Stieltjes function

f(z) =
e−s
√
z − 1

z
=

1

π

∫ 0

−∞

sin(st−1
√
−t)

t− z
dt. (5.4)

This function has important applications for solving wave equations, because certain
solutions may be written as rational functions of f(z) from (5.4) and g(z) = z−α.
Standard adaptive quadrature rules suitable for infinite intervals like, e.g., Gauss–
Kronrod quadrature can be used to apply our restarting approach with this function.

We again choose the test matrix A as the finite difference discretization of the
negative Laplace operator in two spatial dimensions with 100 discretization points in
each spatial direction, and the parameter s = 10−3. Although this matrix is symmetric
positive definite, the method from [2] cannot be used straightforwardly, as rational
approximations for f seem to be difficult to construct. We therefore compare our
quadrature-based restarting approach with the method from [14] (denoted as EE06)
in which f is evaluated on a Hessenberg matrix Hkm of growing size.

The plot on the left-hand side of Figure 5.4 shows the convergence curves for the
different restart procedures, timings are again given in the table on the right-hand
side. The restart length has been chosen as m = 50 in all cases, and in the variant
with deflation a number of d = 5 Ritz vectors was used. In this situation where no
rational approximation can be computed a priori, the running times clearly show the
superiority of the new quadrature-based algorithm over the original method of [14],

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

EFFICIENT AND STABLE ARNOLDI RESTARTS FOR MATRIX FUNCTIONS 19

even though we simply used the Matlab routine quadgk [38] to evaluate the error
function and therefore did not exploit update formulas for the values wm(ti), result-
ing in many superfluous computations. Nevertheless, our quadrature-based method
is faster by a factor of about fifteen. The routine quadgk by default applies a variable
transformation to the integrand, partitions the integration interval into 10 subinter-
vals, then applies the Gauss(7)–Kronrod(15) rule on each subinterval, and refines if
necessary. In this example no refinements were necessary, resulting in a total number
of 150 function evaluations at each restart cycle (see the left of Figure 5.4).

6. Conclusions. We derived a quadrature-based Arnoldi restarting method for
computing f(A)b based on an integral representation of the error. Our approach
allows for restarting with essentially constant work per cycle for a large class of func-
tions. We have shown that our method is similar in spirit to the one from [2] but has
larger potential for adaptivity as the underlying rational approximation is not fixed
throughout all restarts and can be chosen dynamically at each cycle. Moreover, we
have shown that for some special functions the canonical quadrature rules correspond
to Padé approximants, and that adaptive quadrature allows for efficient control of
the approximation error. We compared our method to other existing restarting ap-
proaches for a number of problems and illustrated its favorable numerical stability
and efficiency. The extension of our method to problems where no suitable integra-
tion path is directly available and the tuning and optimization of the variant for the
exponential function will be subject of future research.

REFERENCES

[1] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, A generalization of the steepest
descent method for matrix functions, Electron. Trans. Numer. Anal., 28 (2008), pp. 206–
222.

[2] , Implementation of a restarted Krylov subspace method for the evaluation of matrix
functions, Linear Algebra Appl., 429 (2008), pp. 229–314.

[3] G. A. Baker and P. Graves-Morris, Padé Approximants, Cambridge University Press, 1996.
[4] B. Beckermann and L. Reichel, Error estimation and evaluation of matrix functions via

the Faber transform, SIAM J. Numer. Anal., 47 (2009), pp. 3849–3883.
[5] J. Bloch, A. Frommer, B. Lang, and T. Wettig, An iterative method to compute the sign

function of a non-Hermitian matrix and its application to the overlap Dirac operator at
nonzero chemical potential, Comput. Phys. Commun., 177 (2007), pp. 933–943.

[6] K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for fractional-in-space
reaction–diffusion equations, SIAM J. Sci. Comput., 34 (2012), pp. A2145–A2172.

[7] J. R. Cardoso, Computation of the matrix pth root and its Fréchet derivative by integrals,
Electron. Trans. Numer. Anal., 39 (2012), pp. 414–436.

[8] P. Davies and N. Higham, A Schur–Parlett algorithm for computing matrix functions, SIAM
J. Matrix Anal. Appl., 25 (2003), pp. 464–485.

[9] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New
York, 1975.

[10] C. de Boor, Divided differences, Surv. Approximation Theory, 1 (2005), pp. 46–69.
[11] V. Druskin and L. Knizhnerman, Two polynomial methods of calculating functions of sym-

metric matrices, U.S.S.R. Computational Mathematics and Mathematical Physics, 29
(1989), pp. 112–121.

[12] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: Approximation of the matrix
square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 775–771.

[13] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary
differential equations, BIT, 40 (2000), pp. 241–266.

[14] M. Eiermann and O. G. Ernst, A restarted Krylov subspace method for the evaluation of
matrix functions, SIAM J. Numer. Anal., 44 (2006), pp. 2481–2504.

[15] M. Eiermann, O. G. Ernst, and S. Güttel, Deflated restarting for matrix functions, SIAM
J. Matrix Anal. Appl., 32 (2011), pp. 621–641.

P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

20 A. FROMMER, S. GÜTTEL, AND M. SCHWEITZER

[16] T. Ericsson, Computing functions of matrices using Krylov subspace methods, Technical Re-
port, Chalmers University of Technology, Göteborg, Sweden, 1990.

[17] A. Frommer and V. Simoncini, Marix functions, in Model Order Reduction: Theory, Research
Aspects and Applications, H. A. van der Vorst, W. H. A. Schilders, and J. Rommes, eds.,
Mathematics in Industry, Springer-Verlag, Berlin/Heidelberg, 2008.

[18] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approxi-
mation methods, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 1236–1264.

[19] W. Gautschi, Quadrature formulae on half-infinite intervals, BIT, 31 (1991), pp. 437–446.
[20] S. Güttel, Rational Krylov Methods for Operator Functions, PhD thesis, Fakultät für Mathe-

matik und Informatik der Technischen Universität Bergakademie Freiberg, 2010.
[21] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and opti-

mal pole selection, GAMM Mitteilungen, 36 (2013), pp. 8–31.
[22] S. Güttel and L. Knizhnerman, A black-box rational Arnoldi variant for Cauchy–Stieltjes

matrix functions, BIT Numer. Math., (2013).
[23] P. Henrici, Applied and Computational Complex Analysis Vol. 2, John Wiley & Sons, 1977.
[24] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008.
[25] N. J. Higham and A. H. Al-Mohy, Computing matrix functions, Acta Numer., 19 (2010),

pp. 159–208.
[26] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential

operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.
[27] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010),

pp. 209–286.
[28] M. Ilić, I. W. Turner, and D. P. Simpson, A restarted Lanczos approximation to functions

of a symmetric matrix, IMA J. Numer. Anal., 30 (2010), pp. 1044–1061.
[29] L. Knizhnerman, Calculation of functions of unsymmetric matrices using Arnoldi’s method,

Comput. Math. Math. Phys., 31 (1991), pp. 1–9.
[30] L. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov subspace

method for matrix function evaluations, Numer. Linear Algebra Appl., 17 (2010), pp. 615–
638.

[31] G. Lastman and N. Sinha, Infinite series for logarithm of matrix, applied to identification of
linear continuous-time multivariable systems from discrete-time models, Electronics Let-
ters, 27 (1991), pp. 1468–1470.

[32] I. Moret and P. Novati, RD-rational approximations of the matrix exponential., BIT, 44
(2004), pp. 595–615.

[33] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B, 417 (1998), pp. 141–144.
[34] C. C. Paige, B. N. Parlett, and H. A. Van der Vorst, Approximate solutions and eigen-

value bounds from Krylov subspaces, Numer. Linear Algebra Appl., 1 (1993), pp. 1–7.
[35] Y. Saad, Analysis of some Krylov subspace approximations to the exponential operator, SIAM

J. Numer. Anal., 29 (1992), pp. 209–228.
[36] , Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, 2003.
[37] Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[38] L. F. Shampine, Vectorized adaptive quadrature in Matlab, Journal of Computational and

Applied Mathematics, 211 (2008), pp. 131–140.
[39] B. Singer and S. Spilerman, The representation of social processes by Markov models, Amer-

ican Journal of Sociology, (1976), pp. 1–54.
[40] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational

approximations, BIT, 46 (2006), pp. 653–670.
[41] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, and H. A. van der Vorst,

Numerical methods for the QCD overlap operator, I. Sign-function and error bounds,
Comput. Phys. Commun., 146 (2002), pp. 203–224.

[42] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix
exponential, SIAM J. Sci. Comput., 27 (2006), pp. 1438–1457.

[43] J. A. C. Weideman, Optimizing Talbot’s contours for the inversion of the Laplace transform,
SIAM J. Numer. Anal., 44 (2006), pp. 2342–2362.

[44] J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing
the Bromwich integral, Math. Comp., 76 (2007), pp. 1341–1356.

[45] E. I. Zolotarev, Application of elliptic functions to the question of functions deviating least
and most from zero, Zap. Imp. Akad. Nauk. St. Petersburg, 30 (1877), pp. 1–59.

